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Abstract. Mixed-hybrid finite element discretization of Darcy’s law and the continuity equation
that describe the potential fluid flow problem in porous media leads to symmetric indefinite saddle-
point problems. In this paper we consider solution techniques based on the computation of a null-
space basis of the whole or of a part of the left lower off-diagonal block in the system matrix and on
the subsequent iterative solution of a projected system. This approach is mainly motivated by the
need to solve a sequence of such systems with the same mesh but different material properties. A
fundamental cycle null-space basis of the whole off-diagonal block is constructed using the spanning
tree of an associated graph. It is shown that such a basis may be theoretically rather ill-conditioned.
Alternatively, the orthogonal null-space basis of the sub-block used to enforce continuity over faces
can be easily constructed. In the former case, the resulting projected system is symmetric positive
definite and so the conjugate gradient method can be applied. The projected system in the latter
case remains indefinite and the preconditioned minimal residual method (or the smoothed conjugate
gradient method) should be used. The theoretical rate of convergence for both algorithms is discussed
and their efficiency is compared in numerical experiments.
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1. Introduction. Let us consider a set of porous media occupying the bounded
connected domain Ω ⊂ R3 with boundary ∂Ω = ∂ΩD ∪ ∂ΩN . We assume that
∂ΩD 6= ∅, ∂ΩD ∩ ∂ΩN = ∅ and that the area of ∂ΩD is strictly positive.

The steady state equations for the potential fluid flow in Ω combine Darcy’s law
for the velocity u and the piezometric potential (fluid pressure) p, and the continuity
equation with Dirichlet and Neumann boundary conditions on ∂Ω as follows

A(x)u = −∇p, ∇ · u = q, x ∈ Ω(1.1)

p = pD on ∂ΩD, u · n = uN on ∂ΩN ,(1.2)

where A(x) is the symmetric and uniformly positive definite second rank tensor of hy-
draulic permeability of the media and n is the outward normal vector defined (almost
everywhere) on the boundary ∂Ω. We approximate the weak form of (1.1-1.2) by a
mixed-hybrid finite-element method that uses the low order Raviart-Thomas finite
elements RT0 (for details we refer to [30, 33]). The family of meshes is computed by
dividing the domain Ω̄ into trilateral prisms with vertical faces and general nonparal-
lel bases (see, e.g., [30, 33, 34]) and with each prisma diameter bounded by h. All our
results can be directly generalized to tetrahedra or other three-dimensional elements

∗Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK. (M.Arioli@rl.ac.uk)
† Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou
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since our analysis can be applied to almost any matrix arising from an RT0 based
mixed-hybrid discretization of (1.1-1.2).

Mixed finite elements yield very accurate approximations to fluid pressure and
velocity components. However, the mixed matrix system becomes ill-conditioned
for steady-flow problems [8] and the hybridization seems to be one of the possible
strategies able to avoid this problem. Hybridization of the mixed formulation was
introduced in [13]. The local conservation property of mixed and hybrid finite element
models fairly well transport phenomena. Moreover, from the algebraic point of view,
the systems resulting from hybridization have a rather transparent and simple sparsity
structure. In particular, the hybridization can be considered as a specific matrix
stretching technique [22], [1].

A mixed-hybrid discretization technique requires the solution of the following
symmetric indefinite system of linear algebraic equations
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u
p
λ



 =





q1

q2

q3



 ,(1.3)

where

u = (u1, ..., u5∗NE)T , p = (p1, ..., pNE)T , λ = (λ1, ..., λNIF+NNC)T

represent, respectively, the unknown values of the velocity momentum through the
faces, the pressure values in the prisms, and the pressure values on the faces. We
denote by:

• NE the number of elements,
• NIF the number of interior inter-element faces,
• NNC the number of faces with the prescribed Neumann boundary condition,

and
• NDC the number of faces with the prescribed Dirichlet boundary condition

(NDC 6= 0).
The total number of faces is 5 ∗ NE = 2NIF + NDC + NNC.

We assume that the elements in the mesh have been enumerated such that the
global position of every face and its corresponding entries in the matrices is given
by the position of the element in the enumeration, and by its local position on the
element. The matrix block A ∈ R5∗NE,5∗NE is symmetric positive definite and from
the analysis in [34] it follows that its spectrum lies in the interval

σ(A) ⊂ [
c1

h
,
c2

h
],(1.4)

where c1 and c2 are positive constants independent of the discretization parameter
h. The off-diagonal block B ∈ R5∗NE,NE is the face-element incidence matrix (with
weights equal to −1) and, therefore, 5−1/2B is an orthogonal matrix. The matrix
block C has the form C = (C1 C2) ∈ R5∗NE,NIF+NNC, where the matrix block CT

1

represents the discrete continuity equation for the fluid velocity across interior inter-
element faces and where CT

2 stands for fulfilment of the Neumann boundary conditions
(for details we refer to [33], [34]). Both matrix blocks 2−1/2C1 and C2 are orthogonal
and CT

1 C2 = 0. Thus, after scaling, the matrix C is an orthogonal matrix. The
normalization coefficients do not play an important role here and eventually may
be circumvented by a proper scaling of the columns and corresponding rows in the
system matrix (1.3) (or later in (1.6)). The condition number of the whole off-diagonal
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matrix block (B C) (the ratio between the largest and the smallest singular values)
is, however, dependent on the mesh size h [34] and for its singular values we have

sv(B C) ⊂ [c3h, c4] ;(1.5)

here c3 and c4 are again positive constants independent of the discretization param-
eter h [34]. Let D = diag(h1/2I5∗NE , h−1/2INE , h−1/2INIF+NNC) a block diagonal
matrix. If we consider the symmetric diagonal scaling of the whole indefinite system
(1.3) by D we have





A B C
BT

CT



 =





hA B C
BT

CT



 = D





A B C
BT

CT



D.(1.6)

Then the inclusion set for the spectrum of the positive definite matrix block A becomes
independent of the parameter h with σ(A) ⊂ [c1, c2]. The matrix block (B C) remains
untouched and it is now the only part of the system matrix (1.6) that depends on
the mesh size h. We note here again, that its sub-blocks B and C are matrices
with an orthogonal set of columns. In addition to this, when the conditioning of the
matrix A itself is rather significant, scaling of the matrix with its diagonal may lead
to substantial improvements.

Linear systems similar to (1.3) have recently attracted a lot of attention in a num-
ber of applications e.g. Navier-Stokes problems [47], magneto-static problems [40],
quadratic and nonlinear programming ([4], [32]) or porous media problems ([30],[7]).
Several approaches for a solution of such systems have been considered. They range
from the Uzawa-type and other splitting iteration methods [17], [6] , nonstationary
conjugate gradient-type methods like the MINRES method [39] applied to the whole
indefinite system (see e.g. [47], [34] or [43]) or the conjugate gradient method ap-
plied to the Schur complement systems ([30], [35]). Other possible techniques are the
geometric multigrid approach ([16], [50]) or the direct solution based on the Bunch-
Parlett or the LDLT -factorization ([15], [49]). An approach based on the null-space
method (using the sparse QR decomposition) combined with the iterative solver was
presented in [4].

In this paper we consider an approach based on the computation of a null space
basis of some off-diagonal block in the system matrix (1.6) and on the use of an
iterative method in order to solve the remaining part of a system projected onto the
computed null-space. At the continuous level this is equivalent to a procedure based
on divergence-free finite elements. In the two-dimensional case such finite elements
correspond to stream functions. In three dimensions, which is our case of interest,
the divergence-free finite elements can be characterized as curls of appropriate vector
potentials [38]. The problem of finding an explicit divergence-free basis in the three-
dimensional case is open even for the lowest-order Raviart-Thomas discretization. A
partial solution to this problem was proposed in [53], see also [46].

Our approach is purely algebraic and it allows interesting insight into the problem.
First, we consider the off-diagonal block (B C)T and its fundamental cycle null-space
basis which is computed using a spanning tree of a directed incidence graph related to
the block (B C)T . The resulting projected system is then symmetric positive definite
and a conjugate gradient or a smoothed conjugate gradient method (minimal residual
method) can be applied. Unfortunately, as we will show later, the computed null-
space basis may be ill-conditioned and, therefore, the convergence rate of an iterative
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solver applied to the projected systems may be rather slow for a mesh with a large
number of elements.

Alternatively, we can take advantage of the structure of the submatrix

(

A B
BT

)

(1.7)

which is permutable in a block diagonal form where each of the NE diagonal blocks
is of order 6 and has the structure of an augmented system. Therefore, we consider
the approach based on a null-space basis of the block CT . Since the matrix block C is
orthogonal, one can very easily construct a null-space basis of CT , which is orthogonal
as well. The projected system is now symmetric indefinite, and it is equivalent to the
system obtained approximating the problem (1.1) with the boundary conditions (1.2)
by the Raviart-Thomas mixed finite element method [9]. For this symmetric indefinite
problem, instead of the pure conjugate gradient method its smoothed variant or, in
other words, the minimal residual method is used. Its rate of convergence is estimated
and linear asymptotic dependence on the mesh size h is shown. Thus this approach is
asymptotically as efficient as other approaches like the Schur complement reduction
([30, 35]) or the solution using some indefinite iterative solvers on the whole system
(1.3) ([47, 34]).

Moreover, for nonlinear schemes modelling the transport of chemicals and/or
saturation, a sequence of problems with the same topology, i.e. with the same off-
diagonal matrix blocks B and C, must be solved. Therefore, the dual variable methods
can compute once at the starting the null space of (B C)T (or the null space of CT )
and use it to project the gradient of the nonlinear function during an outer iteration of
a Newton like method. On the contrary, Schur complement methods need to compute
a new block matrix at each step and then they must recombine all the blocks.

Both the Schur complement and dual variable approaches can be naturally cou-
pled with multilevel procedures to avoid deterioration of convergence with decreasing
h (see [28] where instead of construction of an explicit basis the kernel of the curl
operator is eliminated in a multilevel way). In our case, however, the convergence de-
terioration is principally related to the actual size of constants than to the asymptotic
dependence on mesh discretization [33].

The outline of this paper is as follows. In Section 2 we focus on the approach based
on the computation of a null-space basis of the whole block (B C)T . We study the
structural and spectral properties of a fundamental cycle null-space basis and based
on these results, the theoretical convergence rate of the conjugate gradient method
applied to the resulting projected system is estimated. In Section 3 we describe an
approach based on a null-space basis of the block CT and analyze the spectrum of
a resulting indefinite matrix projected onto the orthogonal null-space basis. Section
4 describes some numerical experiments which compares these two approaches. In
Section 5 we give some conclusions and point out directions for the future research.

2. Approach based on a null-space basis of the matrix block (B C)T .

The dual variable method [24] for computing the unknowns u, p and λ in the system
(1.3) is given in the following Algorithm.

Algorithm 2.1. The dual variable method for a solution of the system (1.3) -

an approach based on a null-space of

(

BT

CT

)

.
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Step 1. Compute a null space basis Z of the matrix

(

BT

CT

)

so that

(

BT

CT

)

Z = 0.

Step 2. Find some solution u1 of the underdetermined system

(

BT

CT

)

u1 =

(

q2

q3

)

.

Step 3. Compute (iteratively) u2 from the projected system

ZTAZu2 = ZT (q1 − Au1).

Step 4. Set u = u1 + Zu2.
Step 5. Find the unknown vectors p and λ such that

(B C)

(

p
λ

)

= q1 − Au.

2.1. Step 1. The most critical component of Algorithm 2.1 is Step 1. There
exist several approaches how to compute a null space basis Z. Some of them are
tightly coupled with particular applications. An extensive overview of null space
basis algorithms based on sparse decompositions is given in [25]. A possible way
to compute a null space basis of an equilibrium matrix in structural optimization is
based on looking for a set of cycles in a suitably defined graph, see e.g. [26, 42].
The cycle null space basis can be found efficiently using various techniques (see, e.g.,
[41, 14, 11, 31]). Special attention should be paid to the approach used for solving
two-dimensional problems in computational fluid dynamics (see [2, 24, 10]). These
techniques use network algorithms to find a suitable cycle null space basis for a discrete
divergence matrix which comes from certain finite difference discretizations.

First we briefly recall the basic terminology used in the following text. In our
description we will use a slightly generalized concept of a graph by allowing more edges
between a pair of vertices. This generalization is commonly called a multigraph, but
since all the standard tools for graphs which we use can be trivially extended to
multigraphs we will not emphasize this difference later.

Definition 2.1. Let G = (V, E) be a connected directed graph with |V | vertices
and |E| edges such that |E| − |V | + 1 > 0. Then the vertex-edege incidence matrix of
the graph is |V | × |E| matrix with a row associated to each vertex and and a column
associated to each edge. The column associated with edge (i, j) has only two nonzero
entries, a ”1“ entry in the row associated to vertex i and a ”-1“ entry in the row
associated with vertex j.

We start with a definition of a cycle null space basis of a graph.
Definition 2.2. Let G = (V, E) be a connected directed graph such that |E| −

|V | + 1 > 0. Then the columns of the cycle basis are given by a set of |E| − |V | + 1
linearly independent edge incidence vectors that correspond to some cycles in the graph
G. These incidence vectors have the i-th component equal to +1 if ei is an edge in the
cycle and the orientations of the cycle and ei agree, equal to −1 if ei is an edge in the
cycle and the orientations disagree, and equal to 0 if ei is not an edge in the cycle.
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Since the cycle basis is formally defined for a graph we will not distinguish between
the basis of the graph and the basis formed from the columns of its incidence matrix.
The concept of fundamental cycle basis is based on the notion of a spanning tree
defined as follows.

Definition 2.3. A spanning tree of a connected directed graph G = (V, E) is a
connected subgraph of G with |V | vertices and |V | − 1 edges.

Note that in the previous definition we did not consider the fact that the edges are
oriented. In the following we define the fundamental cycle basis.

Definition 2.4. A cycle basis is fundamental if it is obtained from a spanning
tree T of the graph in such a way that each cycle in the basis has exactly one non-tree
edge e and its other edges lie on the unique path in T connecting the vertices of the
edge e.

The following lemma introduces a graph which will be used for enumeration of the
cycle null space basis vectors in our application.

Lemma 2.1. Denote by S the matrix obtained from (B C)T by removing the rows
corresponding to Neumann boundary conditions, removing the columns corresponding
to faces with Neumann boundary conditions and adding a row which has ones in all
the positions corresponding to faces with Dirichlet boundary condition. Then S is an
incidence matrix of some directed graph GS = (VS , ES).

Proof. The columns and rows of the matrix (B C)T can be reordered to an upper
block triangular form with the unit diagonal block formed from the rows correspond-
ing to Neumann boundary conditions and the columns corresponding to faces with
Neumann boundary conditions. This means that the components of null space vectors
corresponding to faces with Neumann boundary conditions must be zero. Therefore
we do not need to consider their columns and rows in the matrix (B C)T . Denote by
S̃ the resulting matrix and let sT be the row vector with components corresponding
to faces with Dirichlet boundary condition equal to one and remaining components

equal to zero. Then define S =

(

S̃
sT

)

. It is clear that S is an incidence matrix

(with the column sum equal to zero) of some directed graph which we denote from
now by GS .

An example of an off-diagonal block (B C)T and the corresponding matrix S is
shown in Figure 2.1 and Figure 2.2, respectively. Figure 2.3 depicts the corresponding
graph GS .

If we find a fundamental cycle basis to the graph of the incidence matrix S we can
easily extend it to the null space basis of (B C)T . We border ZS with rows of zero
in correspondence of the columns in (B C)T relative to the edges of the Neumann
boundary conditions. Therefore, we can pay our attention to the matrix S only. For
easier reference we will formulate it as a proposition.

Proposition 2.1. Let ZS be a null space basis of S. Then the null space basis
Z of (B C)T can be obtained from ZS by adding zero rows to positions of faces with
Neumann boundary condition.

For large and sparse problems it is important to keep sparsity of the null space
basis as much as possible. The problem to find the sparsest null-space basis for a given
matrix is NP-hard ([18, 12]). The sparsest null-space basis, however, may not be the
most efficient way when solving our problem. Namely, it may be rather ill-conditioned.
Therefore, an effort was devoted to computation of orthogonal null-space bases (see
[4]). On the other hand, the sparse QR-decomposition may lead to rather dense and
in practice infeasible factors. In this section we attempt to find a compromise between
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Fig. 2.1. An example of an off-diagonal block (B C)T for a simple test problem
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Fig. 2.2. The matrix S constructed from the off-diagonal block (B C)T in Figure 2.1

these two extreme cases. In particular, we would like to compute a relatively sparse
null-space basis and, at the same time, to keep it sufficiently linearly independent.

We specify now more precisely how our fundamental cycle null space basis is
constructed. The cycles in GS here are determined using some spanning tree. By its
choice one can influence the conditioning of the basis in a substantial way. We assume
that the spanning tree is constructed using the Algorithm 2.2. In its description we
use the technique of partitioning the graph nodes into n node sets (L0, L1, . . . , Ln−1)
which are called level sets. Starting with some initial node, which forms the initial level
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Fig. 2.3. The graph GS corresponding to the matrix S from Figure 2.2. Orientation of edges
is not shown

set L0, the level set Lk is defined recursively as the set of all unmarked neighbouring
nodes of all the nodes of a previous level set Lk−1. This technique is intensively used,
e.g., for graph partitioning or in heuristics to find graph pseudoperipheral vertices
(see [19, 45]).

Algorithm 2.2. Algorithm to construct the spanning tree T = (VS , ET ) of the
graph GS = (VS , ES).
Step 1. Find a level set partitioning (L0, L1, . . . , Ln−1) of GS starting from an arbi-
trary node x ∈ VS.
Step 2. For all components of subgraphs induced by a level set partitioning construct
an arbitrary spanning tree. Add all these edges of every spanning tree into ET .
Step 3. Connect the set of edges ET into a spanning tree of the whole graph GS.

This construction guarantees that there are no cycles in the graph GS which
would use nodes from more than two levels of the partitioning. The whole process
of construction is schematically depicted in Figure 2.4. The situation after Step 2 in
Algorithm 2.2 is illustrated on the left-hand side and the spanning tree of GS after
Step 3 is depicted on the right-hand side. The edges of the spanning tree are denoted
by double lines.

In the following we study the conditioning of the null-space basis constructed
using the spanning tree from Algorithm 2.2. We give bounds on the extreme singular
values of the matrix ZS, i.e. the smallest and the largest singular value. In particular,
we are interested in their asymptotic behaviour with respect to the discretization
parameter h under uniformly regular refinement of the mesh.

Theorem 2.2. Let ZS be a matrix with fundamental cycle null-space basis vectors
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Fig. 2.4. Graph with level sets and spanning tree edges after Steps 2 and 3 of Algorithm 2.2

induced by the spanning tree from Algorithm 2.2. Let σmax(ZS) ≥ σ2(ZS) ≥ . . . ≥
σmin(ZS) > 0 be the singular values of ZS. Then there exist a constant c5 such that
σmax(ZS) ≤ c5h

−2.

Proof. In a uniform mesh the ratio between the internal and the external diameters
of any element is independent of h and both diameters are of order O(h). Then, the
number of elements in each direction is independent of the direction. Algorithm 2.2
computes a “Shortest Path Spanning Tree” for the graph GS where each arc has
length 1. Therefore, the value of a level set is also the value of the minimum distance
of any of its nodes from the root. Such a distance is equal to the number of elements
in the mesh that we cross going from a node in the level set to a node corresponding
to a boundary element directly connected to root. Because of the uniformity of the
mesh this number is in the worst case of order O(h−1). The nodes in a level set map
into a wavefront in the mesh, therefore, the number of nodes in a level set is in the
worst case of order O(h−2). Since ZS is a cycle null-space basis, its Frobenius norm is
determined by the count of its nonzero entries. Each column of ZS corresponds to an
arc which is not in the tree and the number of non zeros in the column is the length of
the shortest cycle formed using the nodes on the tree and the arc. Because the max
distance of a node in the tree from the root is of order O(h−1) the maximum length
of the cycle is O(h−1). The total number of arcs out-of-tree is O(h−3). Then, the
number of nonzeros in ZS is of order O(h−4). Hence there exists a positive constant
c5 such that σmax(ZS) = ||ZS || ≤ ||ZS ||F ≤ c5h

−2.

Theorem 2.3. Let σ1(ZS) ≥ σ2(ZS) ≥ . . . ≥ σmin(ZS) > 0 be the singular
values of the matrix ZS given by the fundamental cycle null-space basis vectors ZS.
Then σmin(ZS) ≥ 1.

Proof. From the Courant-Fischer theorem we have

σmin(ZS) = min
dim(S)=1

max
x∈S,x 6=0

||ZSx||
||x|| ≥ min

||x||=1
||ZSx||.

Because S is the incidence matrix of the graph GS , there exist P1 and P2 permutation
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matrices [36] such that

P1SP2 =

(

L1

L2

)T

,

with L1 non singular lower triangular matrix. Then

ZS =

(

−L−T
1 LT

2

I

)

.

Since the matrix ZS has a unit submatrix embedded, it always satisfies ||ZSx|| ≥ ||x||.
From this observation we obtain the desired result.

The approach which we adopted is based on the concept of the fundamental cycle
null space basis Z for which one could simply bound the smallest singular value of
Z from below but then some growth in the norm of the matrix Z with the bound
in Theorem 2.2 should be expected. Another approach which uses cycles of small
lengths for the basis can fall into a different trap. While the norm of Z can be simply
bounded by a constant times a maximum degree in the graph GS , it is not easy to
give a reasonable lower bound for the minimum singular value of Z in the case of
general domain. Nevertheless, we do not exclude that such ill-conditioned null-space
basis vectors may appear frequently in practical computations.

2.2. Step 2. The construction of a particular solution u1 in Step 2 of Algorithm
2.1 is considerably simpler than the construction of the null space basis (cf. [24]).
Compute the uniquely determined components of the particular solution correspond-
ing to the faces with the Neumann boundary conditions. Denote by F the matrix
obtained from (B C)T after elimination of these components and after removal of
all columns corresponding to faces with a Dirichlet boundary condition. Construct a
spanning tree TF of its incidence graph GF rooted in a vertex which corresponds to
some element with a Dirichlet boundary condition. Then remove all non-tree columns
(columns corresponding to non-tree edges) from F . The resulting matrix F̂ is then the
incidence matrix of TF . Therefore, the rows and columns of F̂ can be reordered into
upper Hessenberg form such that the row corresponding to the root will be numbered
first. Adding a linearly independent Dirichlet column related to the root we get a
nonsingular upper triangular system. By solving this system and setting all the other
non-tree and Dirichlet components to zero we get the desired particular solution u1.
Note that the construction of the particular solution based on the incidence matrix
can be done in a stable fashion. Indeed, it is clear that the norm of u1 is uniformly
bounded with respect to the norm of the right-hand side vector.

2.3. Step 3. For a solution of the projected system in Step 3 one may use the
iterative conjugate gradient [27] or the minimal residual method [48]. The theoretical
rate of convergence has been throughly studied and the bounds for their error and/or
residual norm has been given (see e.g. [27, 45]). Here we consider the conjugate
gradient method smoothed by the minimal residual smoothing, which is mathemat-
ically equivalent to the minimal residual method [23]. If we apply this method to
the symmetric and positive definite projected system, the residual norm of the n-th
approximate solution un

2 can be bounded as follows

‖ZT (q1 −A(u1 + Zun
2 ))‖ ≤ 2

(

1 − 1/
√

κ(ZTAZ)

1 + 1/
√

κ(ZTAZ)

)n

‖ZT (q1 −A(u1 + Zu0
2))‖.(2.1)
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The bound (2.1) indicates that its rate depends strongly on the spectrum of the
projected matrix ZTAZ. Using the bounds on the singular values of the null-space
basis matrix Z constructed in Step 1 and using the bound for the eigenvalues of
the positive definite matrix block A (1.4) with scaling (1.6) then we can obtain the
following simple result on the eigenvalues of the matrix ZTAZ.

Lemma 2.4. Let ZS be the fundamental null-space basis matrix induced by the
spanning tree from Algorithm 2.2 and let Z be the null-space basis matrix of the block
(B C)T obtained from ZS by adding zero rows corresponding to faces with Neumann
boundary condition. Then for the eigenvalues of the matrix ZTAZ we have

σ(ZT AZ) ⊂ [c1, c2
c2
5

h4
].(2.2)

Proof. The statement of lemma follows from (1.4) and (1.6), from results given
in the subsection Step 1 and from the inequality

c1(Zx, Zx) ≤ (ZTAZx, x) ≤ c2(Zx, Zx),

which gives the relation between the spectrum of ZTAZ and the singular values of
Z.

Considering the bound (2.1) and Lemma 2.4 we have

‖ZT (q1 − A(u1 + Zun
2 ))‖

‖ZT (q1 − A(u1 + Zu0
2))‖

≤ 2





1 − 1
c5

√

c1

c2

h2

1 + 1
c5

√

c1

c2

h2





n

.(2.3)

For the asymptotic convergence factor then it follows from (2.3) that there exists a
positive constant c6 independent of the discretization such that

lim
n→∞

(‖ZT (q1 − A(u1 + Zun
2 ))‖

‖ZT (q1 − A(u1 + Zu0
2))‖

)1/n

≤ 1 − c6h
2 + O(h4).(2.4)

Preconditioning of projected matrices arising in optimization was studied in [37], see
also [21].

2.4. Step 5. The vector (pT , λT )T in Step 5 of Algorithm 2.1 can be found as fol-
lows. Consider the spanning tree TF of the matrix F and the upper triangular system
constructed in Step 2 (see Subsection 2.2). The unknowns p and λ are then a solution
of the system with a nonsingular lower triangular matrix obtained by transposing
the matrix from Step 2. The components of the unknown vector λ corresponding to
Neumann boundary conditions are determined accordingly from remaining rows of
(B C). The right hand-side vector is given as q1 − Au substituting for the vector u
computed in Step 4.

3. Approach based on a null-space basis of the matrix block CT . Since
the off-diagonal matrix block C has orthogonal columns it is much easier to construct
a null-space basis for the block CT rather than for the whole block (B C)T . In
contrast to the previous approach, this basis can be chosen orthogonal and thus the
condition number of the basis matrix is not dependent on the discretization parameter.
Although we are splitting the potentially ill-conditioned matrix block (B C) into two
matrix blocks with orthogonal columns, the spectrum of the remaining part of the
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indefinite system is dependent on the discretization parameter. Consequently, the
rate of convergence of the minimal residual method applied to the projected system
can be bounded in terms of the mesh size and it depends linearly on the uniform mesh
refinement. The algorithm is given as follows.

Algorithm 3.1. The dual variable method for a solution of the system (1.3) -
approach based on a null-space of CT .

Step 1. Determine the null space basis Z of the matrix block CT such that

CT Z = 0.

Step 2. Find some solution u1 of the underdetermined system

CT u1 = q3.

Step 3. Compute iteratively u2 and p from the projected system

(

ZTAZ ZT B
BT Z

)(

u2

p

)

=

(

ZT (q1 − Au1)
q2 − BT u1

)

.

Step 4. Set u = u1 + Zu2.
Step 5. Find the unknown λ such that Cλ = q1 − Au − Bp.

3.1. Step 1. The matrix block C has orthogonal columns and it has the form
C = (C1 C2) ∈ R5∗NE,NIF+NNC, where the block C1 has two nonzeros per column,
corresponding to the interior inter-element faces between neighbouring elements in the
mesh. The block C2 is just the face-Neumann boundary condition incidence matrix.
Therefore it is easy to construct the null-space matrix Z such that CT Z = 0. The
resulting matrix Z = (Z1 Z2) ∈ R5∗NE,NIF+NDC can be chosen in the following way.
The block Z1 ∈ R5∗NE,NIF will have two nonzeros per column (1 and -1) exactly
in the same position as in the corresponding block C1; the block Z2 is the face-
Dirichlet boundary condition incidence matrix. It is obvious that such matrix Z has
an orthogonal set of columns with ZT Z = diag(2, . . . , 2, 1, . . . , 1) (which can be also
orthonormalized). The null-space basis matrix Z for our example is given in Figure
3.1.

3.2. Step 2. The matrix block C has one entry per row, so the system CT u1 = q3

can be immediately solved by permuting its rows and columns to an upper trapezoidal
form. In other words, we immediately get the unknowns that correspond to faces
with the Neumann condition, and setting one of the two unknowns that stand for the
interior inter-element faces, we can recompute the other. The remaining unknowns
corresponding to Dirichlet faces are then set to zero. Another possible approximate
solution is the least squares solution u1 = C(CT C)−1q3 which is clearly stable since
C is orthogonal up to normalization coefficients

√
2.

3.3. Step 3. The projected system from Step 3 is symmetric but indefinite. On
the other hand, the null-space basis matrix Z is orthogonal. Therefore, this approach
can be very efficient. The projected system can be written as a result of an orthogonal
projection applied to the remaining part of the indefinite system matrix in (1.6) in
the form

(

ZTAZ ZT B
BT Z

)

=

(

ZT

I

)(

A B
BT

)(

Z
I

)

.(3.1)
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Fig. 3.1. Null-space basis of the off-diagonal block CT from our example in Figure 2.1

The structural pattern of the resulting system for our example is depicted in Fig-
ure 3.2. The projected system (3.1) is still rather sparse, so its iterative solution may
be a reasonable option. Moreover, the expression given by (3.1) shows that we can
implement the matrix-vector product quite efficiently. The product Zv is equivalent
to a permutation of the vector v. The product ZT w can be implemented in parallel
because the rows of the matrix ZT are structurally orthogonal. Furthermore, the
matrix

(

A B
BT

)

can be symetrically permuted in a block diagonal form with diagonal blocks of size 6.
Here we consider the conjugate gradient method smoothed by the minimal residual
smoothing [23]. It is well known that the rate of convergence of symmetric iterative
methods depends strongly on the eigenvalue distribution of the system matrix ([45,
23]). In the following we analyze the spectrum of the matrix in the projected system
(3.1).

Lemma 3.1. Let Z be the null-space basis of the off-diagonal block CT con-
structed in Step 1 of Algorithm 3.1. Then for the spectrum of the projected matrix
block ZTAZ it follows σ(ZTAZ) ⊂ [c1, 2c2].
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Fig. 3.2. Structural pattern of the projected matrix (3.1) from our simple problem

Proof. The proof of the lemma is similar to the proof of Lemma 2.4 provided that
ZT Z = diag(2, . . . , 2, 1, . . . , 1).

Lemma 3.2. Let Z be the null-space basis of the off-diagonal block CT con-
structed in Step 1 of Algorithm 3.1. Then there exist positive constants c7 and c8 such
that for the singular values of the matrix block ZT B it follows sv(ZT B) ⊂ [c7h, c8].

Proof. Define the graph GB = (VB , EB) as follows. Let VB = {0, 1, . . . , NE}. Let
(i, j) be an edge in EB whenever elements i and j are connected by an interior inter-
element face. Furthermore, let (0, i) ∈ EB be an edge for each Dirichlet boundary
condition defined on some element i. Note that there can be more edges between the
node 0 and some node i 6= 0. Moreover, introduce the mapping d : VB → IR such that
d0 = 0 and

∑

i∈VB
d2(i) = 1 and the induced mapping wd : EB → IR satisfying the

formula wd(e) = |d(j) − d(i)| for e = (i, j) ∈ EB.
Consider a tree T = (VB, ET ) rooted in the node 0 such that |ET | = |VB | − 1.

Let k be its arbitrary node. Using the Schwarz inequality we get

d2(k) ≤ l(k)
∑

e∈P (0,k)

w2
d(e),(3.2)

where P (0, k) is a unique path between the nodes 0 and k in T (where we do not
take into account the orientation of the edges) and ℓ(k) is its length. Summing the
inequalities in (3.2) for all k ∈ VB we get

1 ≤
∑

k∈VB

ℓ(k)
∑

e∈P (0,k)

w2
d(e) ≤ ℓ2

max

∑

e∈ET

w2
d(e) ≤ ℓ2

max

∑

e∈EB

w2
d(e),(3.3)

where ℓmax is the length of the path of maximum length from the node 0 to some
node i ∈ VB. This implies that

∑

e∈EB

w2
d(e) ≥ ℓ−2

max.(3.4)
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Consider now the matrix ZT B ∈ IRNIF+NDC,NE . Its rows correspond to Dirichlet
boundary conditions and interior inter-element faces. There is only one nonzero in
the rows corresponding to Dirichlet boundary conditions (either +1 or −1) placed
in the column of the element where this condition is imposed. In the rows which
correspond to the interior faces, there are exactly two nonzeros, equal to +1 and −1,
respectively. Consider a vector d = (d0, d1, . . . , dNE)T such that d(0) = 0. Clearly,
from the definition of GB we have

∑

e∈EB

w2
d(e) =‖ (ZT B)d̂ ‖2,(3.5)

where d̂ = (d1, . . . , dNE)T . Consequently, using the Courant-Fischer theorem and (3.4)
we have

σmin(ZT B) = min
‖d̂‖2=1

‖ (ZT B)d̂ ‖≥ ℓ−1
max.(3.6)

The uniformly regular mesh refinement provides that ℓmax = O(NE−1/3) = O(h).
Therefore, there is a positive constant c7 such that

σmin(Z
T B) ≥ c7h.(3.7)

Since ‖ ZT B ‖≤‖ Z ‖ ‖ B ‖≤
√

2
√

5, the singular values of ZT B are bounded by a
positive constant c8 =

√
10 and this completes the proof.

Lemma 3.3. Let Z be the null-space basis of the off-diagonal block C constructed
in Step 1 of Algorithm 3.1. Then for the spectrum of the projected matrix (3.1) it
follows

σ

(

ZTAZ ZT B
BT Z

)

⊂ [
1

2
(c1 −

√

c2
1 + 4c2

8),−
c2
7

c2
h2 + O(h4)] ∪ [c1, c2 +

√

c2
2 + c2

8]

Proof. The proof of the lemma follows from [44], Lemma 2.1 and from the state-
ments of Lemma 3.1 and Lemma 3.2.

It is well-known that applying the minimal residual method to the projected
system (3.1) the relative residual norm of the n-th approximate solutions un

2 and pn,
n = 0, 1, . . . can be bounded (see also [23, pag. 54], [52, pag. 234]) as follows

∥

∥

∥

∥

(

ZT (q1 − Au1)
q2 − BT u1

)

−
(

ZTAZ ZT B
BT Z

)(

un
2

pn

)∥

∥

∥

∥

∥

∥

∥

∥

(

ZT (q1 − Au1)
q2 − BT u1

)

−
(

ZTAZ ZT B
BT Z

)(

u0
2

p0

)∥

∥

∥

∥

≤ 2





1 −
√

bc
adh

1 +
√

bc
adh





[n/2]

,(3.8)

where a = 1/2(
√

c2
1 + 4c2

8 − c1), b = c2
7/c2, c = c1 and d = c2 +

√

c2
2 + c2

8. From (3.8)
we obtain the bound for the asymptotic convergence factor in the form

lim
n→∞









∥

∥

∥

∥

(

ZT (q1 − Au1)
q2 − BT u1

)

−
(

ZTAZ ZT B
BT Z

)(

un
2

pn

)∥

∥

∥

∥

∥

∥

∥

∥

(

ZT (q1 − Au1)
q2 − BT u1

)

−
(

ZTAZ ZT B
BT Z

)(

u0
2

p0

)∥

∥

∥

∥









1/n

≤ 1 − c9h + O(h2).

Clearly, the bounds for the rate of convergence of the minimal residual method applied
to the indefinite projected system depend linearly on the discretization parameter h.
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Fig. 3.3. Null-space basis of the off-diagonal block ZT B from our example in Figure 2.1

Moreover, since we have used, in fact, the assumption on the symmetric spectrum for
the projected matrix, this bound may be an overestimate of the actual rate of con-
vergence of the unpreconditioned minimal residual method [52]. The preconditioning
of the projected matrix (3.1) can be incorporated as well and many other approaches
are possible [47], [44], [51].

3.4. Step 5. Since the matrix block C has an orthogonal set of columns, the
unknown vector λ is given as λ = D−1CT (q1 −Au−Bp) which is easy to solve owing
to the fact that D = CT C = diag(2, . . . , 2, 1, . . . , 1) is a diagonal matrix.

4. Numerical experiments. In this section we give the results from numerical
experiments. Two sets of matrices have been considered.

The first set corresponds to a model potential fluid flow problem in a rectangular
domain with homogeneous Neumann on the top and bottom and Dirichlet condi-
tions prescribed on the rest of the boundary. The tensor of hydraulic permeability
is constant in the whole domain. Uniform prismatic discretization with the varying
mesh size h was used. In Table 4.1, we give the values of discretization parameters
NE = 2/h3, NIF , NNC and NDC for different values of h. The dimension of the re-
sulting indefinite system matrix (1.3) can be computed as N = 6 ∗NE + NIF + NNC
and the number of columns of the off-diagonal block (B C) is given by NBC =
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Table 4.1

Model potential fluid flow problem on a rectangular domain with a constant tensor of hydraulic
permeability. The quantity NE denotes the number of elements, NIF stands for the number of
interior inter-element faces, NDC and NNC denotes the number of Dirichlet and Neumann boundary
conditions, respectively. The dimension of the null-space of (B C)T is given as NZ1 = 4 ∗ NE −

NIF − NNC and the dimension of the null-space of CT is given as NZ2 = 5 ∗ NE − NIF − NNC.

Discretization parameters Dimension of null-spaces
h NE NIF NDC NNC NZ1 NZ2

1/5 250 525 100 100 375 625
1/10 2000 4600 400 400 3000 5000
1/15 6750 15975 900 900 10125 16875
1/20 16000 38400 1600 1600 24000 40000
1/25 31250 75625 2500 2500 46875 78125
1/30 54000 131400 3600 3600 81000 135000
1/35 87750 209475 4900 4900 138625 226375
1/40 128000 313600 6400 6400 192000 320000

NE + NIF + NNC. In Table 4.1 we report the dimension NZ1 of the null-space of the
whole block (B C)T and the dimension NZ2 of the null-space of the block CT for all
values of mesh size h.

Table 4.2 reports the inclusion sets of the spectrum of matrix blocks A and (B C)
as well as of the whole symmetric indefinite matrix from (1.3). The extreme singu-
lar values of the block (B C) (square roots of the extreme eigenvalues of the matrix
(B C)T (B C)) and the extreme positive and negative eigenvalues of the whole indefi-
nite matrix were approximated by the eigenvalues of the symmetric tridiagonal matrix
obtained from 2000 steps of the symmetric Lanczos algorithm [20]. The eigenvalue
computation of the resulting tridiagonal matrix was done using the LAPACK dou-
ble precision subroutine DSYEV [3]. The extreme eigenvalues of the diagonal matrix
block A were computed directly by the LAPACK symmetric eigenvalue solver element
by element. It is clear from Table 4.2 that the computed eigenvalues of the block A
are in a good agreement with the result (1.4) and after scaling (1.6) the spectrum
of the diagonal block A becomes independent of h. Similarly the computed extreme
singular values of (B C) agree well with (1.5).

Approaches based on the computation of the null-space basis of the whole off-
diagonal block (B C)T are discussed first. In Table 4.3, we compare the memory
requirement (denoted as NNZ(Z1)) and the computational cost of constructing the
null-space basis and iteration counts for the (smoothed) conjugate gradient method
applied to the projected positive definite system in Algorithm 2.1, Step 3. For com-
putation of the null space basis Z (such that (B C)T Z = 0) we use the sparse QR
factorization (for details see [4]) and the fundamental cycle null space basis. Sparse
QR decomposition was computed with the code MA49 from the Harwell Subroutine
Library [29]. Fundamental cycle null space basis is based on the shortest path span-
ning tree of GS , SDS algorithm from [14]. In Table 4.3 we further give the number
of nonzero elements (denoted as NNZ(QR)) necessary for storing the orthogonal and
upper triangular factors of (B C) and the time of computation in seconds (in brack-
ets). All experiments were performed on the SGI Origin 200 with processor R10000.
Our results from Table 4.3 indicate that the use of sparse QR factorization becomes
prohibitive for last two values of h and the ratio NNZ(R)/NNZ(QR) tends to ap-
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Table 4.2

Model potential fluid flow problem on a rectangular domain with a constant tensor of hydraulic
permeability. Spectral properties of the matrix blocks and the whole indefinite system for different
values of mesh size h. The extreme eigenvalues and singular values were approximated using the
symmetric Lanczos process and subsequent computation of the eigenvalues of resulting tridiagonal
form.

spectrum of matrix blocks whole indefinite system
h spectrum of A s.v. of (B C) negative part positive part

1/5 [0.0016, 0.01] [0.1810, 2.63] [-2.63 , -0.1800] [0.00166, 2.63]
1/10 [0.0033, 0.02] [0.0927, 2.64] [-2.64, -0.0898] [0.00335, 2.64]
1/15 [0.0050, 0.03] [0.0622, 2.64] [-2.64, -0.0354] [0.00509, 2.65]
1/20 [0.0066, 0.04] [0.0467, 2.64] [-2.64, -0.0413] [0.00679, 2.65]
1/25 [0.0083, 0.05] [0.0374, 2.65] [-2.64, -0.0311] [0.00861, 2.65]
1/30 [0.0099, 0.06] [0.0312, 2.65] [-2.64, -0.0241] [0.01040, 2.65]
1/35 [0.0110, 0.07] [0.0268, 2.65] [-2.64, -0.0190] [0.01200, 2.65]
1/40 [0.0130, 0.08] [0.0234, 2.65] [-2.64, -0.0152] [0.01360, 2.65]

proach the value 1/2 with the decrease of h. Note that the number of nonzeros in the
fundamental cycle null-space basis NNZ(Z1) is significantly smaller than the number
of nonzeros in the factors Q and R. This is even more pronounced for the computation
time. In the iterative part the initial approximation of u2 was set to zero, the relative

residual norm ‖rn‖
‖r0‖

= 10−8 was used as the stopping criterion. Only the unprecon-

ditioned case is considered in this case. In the case of the QR approach we included
the number of iterations and timing in seconds for two possible approaches using ei-
ther both factors Q and R (denoted in Table 4.3 as QR, see also [4]) or solution via
seminormal equations (SN) (for details we refer to [40]) which uses only the upper
triangular factor R from the QR factorization. The latter then necessarily leads to
approximately double cost of matrix-vector multiplications in the iterative solver. For
the case of fundamental cycle basis we report the number of iterations and timings
when the matrix ZTAZ is unpreconditioned and kept in factorized form (UN). We
have noticed that simple preconditioning strategies like Jacobi (note that the system
matrix was initially scaled) or IC (using explicit matrix assembling) do not help to
improve the results. It is clear from iteration counts in Table 4.3 that the number of
iterations in the case of the QR factorization remains independent of the mesh size
h while the number iterations in the approach based on the fundamental cycle basis
increases more than linearly with h, which leads to higher timings also in the iterative
part of the process.

In Table 4.4 we compare the approaches based on the null-space basis of the off-
diagonal block CT . The iteration counts and times of the preconditioned conjugate
gradient method applied to the projected indefinite system in Algorithm 3.1, Step 3
are discussed for positive definite block diagonal preconditioner (IP) and indefinite
(constraint) preconditioner (IQ), where the inverses of corresponding matrices are
approximated by the incomplete Cholesky decomposition IC(0) (see e.g. numerical
experiments in [40] and references therein). For comparison we also give results for the
preconditioner based on the approximate factorization of the indefinite system (NS)
developed originally by Nash and Sofer [37, pag. 52, formula (3.2)]. It is clear from
Table 4.4 that the computed results are in a good agreement with the theoretical
result (3.8) developed in Section 3. Indeed, the number of iterations required for
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Table 4.3

Model potential fluid flow problem on a rectangular domain with a constant tensor of hydraulic
permeability. Memory requirements (the number of nonzero entries NNZ(QR) and NNZ(Z1))of
the approaches using the null-space basis of the whole block (B C)T , iteration counts and timings
(in brackets for both approaches) of the conjugate gradient method applied to the projected positive
definite system.

memory requirements iteration counts
h QR approach fund. cycles QR approach fund. cycles

NNZ(QR) NNZ(Z1) QR SN UN
1/5 28360 3360 22 20 71

(3e-2) (7e-3) (0.17) (0.44) (0.08)
1/10 410466 47120 22 21 163

(0.97) (0.07) (1.87) (4.23) (1.57)
1/15 1979203 226780 22 21 252

( 9.73) (0.30) (8.48) (17.1) (19.9)
1/20 7120947 697840 22 21 346

(59.6) (0.93) (25.0) (48.6) (75.9)
1/25 18105131 1675800 22 21 438

(237) (2.21) (57.2) (107) (222)
1/30 40837823 3436160 21 21 523

(980) (4.60) (110) (214) (510)
1/35 — 6314420 — — 596

(8.64) (1009)
1/40 — 10706080 — — 670

(14.8) (1900)

reducing the relative residual norm to 10−8 increases linearly with the decrease of
h. The results with the IQ and IP preconditioners are reasonably good, better than
the results for the NS preconditioner which has, on the other hand, more potential
for parallel implementation. We note that the stopping criterion and the level 10−8

used throughout the paper leads usually to much higher accuracy of the approximate
solution than that required in practice in a finite element method framework. For a
thorough discussion we refer to [5].

The iterative solution of the projected indefinite system (Algorithm 3.1, Step 3) is
compared with the approach based on the sparse QR of the off-diagonal block BT Z.
We report the memory requirement NNZ(QR) and the timings for the computation
of the factors together with the number of nonzeros in the null-space basis Z (denoted
as NNZ(Z2) here). We note that since the latter is equal to 2 ∗NIF + NDC the time
for the construction of Z is negligible and it is not included in Table 4.4. Similarly
to Table 4.3 in Table 4.4 we also included iteration counts and times for the iterative
part of the QR approach that uses either both Q and R factors (QR) or only the
factor R (SN).

The first set of matrices was obtained from a discretization of a model potential
fluid flow problem with a constant tensor of permeability in a rectangular domain.
Theoretical analysis and numerical experiments for the first set clearly indicate that
the conditioning of the positive definite block A does not dramatically affect the
behaviour of the conjugate gradient method used in the iterative part of the whole
solution process. In addition, the linear dependence (or independence in the case of
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Table 4.4

Model potential fluid flow problem on a rectangular domain with a constant tensor of hydraulic
permeability. Number of nonzeros of the projected matrix onto the null-space basis Z of the block CT

(see Algorithm 3.1, Step 3), iteration counts and timings of the preconditioned conjugate gradient
method applied to the orthogonally projected indefinite system compared to the memory requirements
and iteration counts for the solution of the same system based on the sparse QR decomposition of
its off-diagonal block ZT B.

pure iteration sparse QR
h NNZ(Z2) IP IQ NS NNZ(QR) QR SN

1/5 14375 62 35 55 20834 18 14
(0.05) (0.03) (0.10) (0.02) (0.09) (0.09)

1/10 123000 103 64 108 356267 19 16
(0.68) (0.48) (1.60) (0.35) (1.11) (0.89)

1/15 424125 144 93 160 1840670 21 15
(5.17) (3.79) (13.6) (3.14) (6.09) (4.63)

1/20 1016000 186 118 212 6322468 21 15
(20.2) (14.2) (49.6) (17.97) (18.3) (14.94)

1/25 1996875 225 145 265 16661544 23 15
(50.8) (37.4) (122) (86.6) (47.0) (27.8)

1/30 3465000 260 174 311 40669978 22 15
(111) (84.2) (268) (584) (96.7) (85.5)

1/35 5518625 295 204 362 — — —
(224) (173) (520)

1/40 8256000 331 230 412 — — —
(383) (295) (941)

the QR approach) in the iteration counts of the conjugate gradient method on mesh
size does not represent a serious difficulty in terms of the computational complexity,
especially owing to the fact that in the three-dimensional case even large values of
mesh size (h < 1/40) lead to a rather large problems, so a further decrease of h
would lead to a practically infeasible system anyway. The second set of matrices
comes from a real-world application of underground water flow modelling in the area
of Stráž pod Ralskem in northern Bohemia. Realistic values of hydraulic permeability
lead to the positive definite diagonal block A with the condition number which may
become a dominating factor for the behaviour of the iterative solver applied onto a
projected system. This is illustrated in the following experiments. In Table 4.5 we
give a description of the problems together with the inclusion sets for the extreme
eigenvalues of A and extreme singular values of (B C) computed as for the model
problem in Table 4.2.

Similarly as before, in Tables 4.6 and 4.7 we report the same quantities for the
second set of matrices. It follows from Table 4.6 that also here the memory require-
ments and the times for computing the (sparse) QR decomposition are substantially
larger than in the case of construction of the fundamental cycle null-space basis. For
realistic examples, however, the iteration counts and timings for the conjugate gra-
dient method applied on the system with ZT AZ (UN) dramatically increase and for
last two examples exceed 9999 iterations. The iteration counts and timings for both
QR approaches (QR and SN), on the other hand, remain comparable to the results
in Table 4.3. Iterations counts and timings for the positive definite block-diagonal
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Table 4.5

Realistic problems from underground water flow modelling in Stráž pod Ralskem. The name
of the problem, the number of elements NE and the dimension of the whole indefinite system N =
6∗NE +NIF +NNC. The spectral properties of the matrix blocks A and (B C) for all matrices. The
extreme eigenvalues and singular values were approximated using the symmetric Lanczos process and
subsequent computation of the eigenvalues of the resulting tridiagonal form

discretization parameters spectrum of matrix blocks
name NE N spectrum of A s.v. of (B C)
k1san 14700 126980 [0.21e-4,0.80e2] [0.026,2.64]

olesnik0 24300 210060 [0.74e-4,0.91e3] [0.020,2.64]
dpretok 36300 313940 [0.77e-3,0.12e5] [0.017,2.64]
turon 50700 438620 [0.19e-4,0.96e2] [0.014,2.64]

Table 4.6

Realistic problems from underground water flow modelling in Stráž pod Ralskem. Memory
requirements of the approaches using the null-space basis of the whole block (B C), iteration counts
and timings of the conjugate gradient method applied to the projected positive definite system.

memory requirements iteration counts
Name QR approach fund. cycles QR approach fund. cycles

NNZ(QR) NNZ(Z1) QR SN UN
k1san 3674914 983640 44 44 2635

(38.1) (0.95) (34.4) (78.4) (703)
olesnik0 6626296 2057880 58 58 4544

(102) (2.03) (79.1) (181) (2397)
dpretok 10453556 3719320 37 37 >9999

(224) (3.73) (78.6) (187) (—)
turon 15398104 6095960 36 36 >9999

(434) (6.62) (116) (265) (—)

preconditioner (IP) and indefinite (constraint) preconditioner (IQ) in Table 4.7 are
comparable to results in Table 4.4 and show that this approach is very efficient even for
realistic problems. The Nash-Sofer preconditioning is, however, substantially worse
for problems with the dominant tensor of hydraulic permeability. The QR approach
applied to the projected indefinite system seems to be a useful approach. Nevertheless,
it may fail in some cases.

Finally, we report a comparison of the dual variable approach from Section 3 with
the primal approach based on the construction of the Schur complement matrix, and
its subsequent solution by the conjugate gradient method [35]. Instead of considering
the model potential flow problem (1.1) and (1.2) in a rectangular domain with a
uniform mesh refinement [33], [34], where the primal approach typically outperforms
our null-space based variants, we present results on our real-world problems where
realistic values of hydraulic permeability tensor lead to the positive definite diagonal
block A with a large condition number which significantly affects efficiency of iterative
solvers applied to systems (1.3). In Table 4.8 we present the number of nonzeros of
the corresponding Schur complement matrix, and projected matrix (3.1), iteration
counts and total time for solving the linear system (1.3) including time for all initial
transformations and substitutions. Here we considered both unpreconditioned and
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Table 4.7

Realistic problems from underground water flow modelling in Stráž pod Ralskem. Number of
nonzeros of the projected matrix onto the null-space basis Z of the block CT (see Algorithm 3.1,
Step 3), iteration counts and timings of the preconditioned conjugate gradient method applied to the
orthogonally projected indefinite system compared to the memory requirements and iteration counts
for the solution of the same system based on the sparse QR decomposition of its off-diagonal block
ZT B.

pure iteration sparse QR
Name NNZ(Z2) IP IQ NS NNZ(QR) QR SN
k1san 862820 184 76 3156 3284826 93 93

(17.1) (7.86) (629) (5.80) (51.1) (59.1)
olesnik0 1426140 287 103 5582 6007628 > 9999 > 9999

(44.9) (18.4) (1846) (13.7) (—) (—)
dpretok 2130260 112 51 1705 9495418 23 23

(26.3) (14.1) (865) (26.1) (35.6) (42.3)
turon 2975180 155 80 442 14426491 26 26

(56.0) (32.7) (325) (49.6) (59.0) (72.1)

Table 4.8

Real application problems from the underground water flow modelling in Stráž pod Ralskem.
Memory requirements, iteration counts and total timings of the pure and preconditioned conjugate
gradient method applied to the Schur complement system with ((−A/A)/A11)/B22 compared to the
memory requirements, iteration counts and total timings for the solution of the projected system
(3.1) using the pure and preconditioned MINRES method.

Matrix Schur complement approach dual variable approach
NNZ(S) unprec prec NNZ(Z2) unprec prec

k1san 33880 6632 221 49420 650 76
(244) (13.3) (36.2) 10.3

olesnik0 56160 > 9999 925 81540 727 103
(—) (92.7) (65.7) (20.5)

dpretok 84040 > 9999 407 121660 784 51
(—) (65.9) (117) (22.5)

turon 117520 1843 376 169780 722 80
(302) (91.8) (161) (40.3)

preconditioned variants. In the preconditioned case we applied IC(0) preconditioning
to the Schur complement system, and the indefinite constraint preconditioning [21],
[32], [43] to the indefinite projected system with block inverses approximated by IC(0).
The results in Table 4.8 show that the dual variable variant based on the null-space
basis of CT is significantly faster for the chosen set of real-world problems.

5. Conclusions. In this paper we have compared the computational efficiency
of several dual methods for the solution of augmented linear systems coming from
the mixed-hybrid finite element approximation of the potential fluid flow problem
in porous media. We have discussed the approach based on the computation of a
null-space basis either of the whole off-diagonal block (B C)T or its orthogonal part
CT . We have shown that although the sparse QR decomposition of the off-diagonal
block is prohibitive for large problems in terms of memory requirements for storing
the factors, its iterative part is very efficient (although the cost of iteration is rather
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high) and not dependent on the mesh size. On the other hand, the construction of
the fundamental cycle null space basis is very fast, but the iteration counts are much
worse. In addition, since the basis is non-orthogonal the number of iterations in the
iterative part is no longer independent of the mesh size and in the case of more difficult
tensors of hydraulic permeability may become very large. The cost of iteration is,
however, owing to higher sparsity of the basis lower than for the QR approach. Good
preconditioning of the projected matrix ZT AZ may be of help especially for realistic
examples and in general it is an open question. For examples with moderate values
of hydraulic permeability it seems useful to keep the projected matrix in factorized
form.

The approach based on the null space of the off-diagonal block CT seems to be
more efficient both in terms of the memory requirements and computational cost. The
null-space basis of CT can be explicitly given and the construction of the resulting
projected (mixed) system is cheap. Again, the sparse QR decompostition of ZT B
(if it is not prohibitive) leads to lower iteration counts and times in the iterative
part. Numerical experiments on all examples indicate that the pure iterative solution
of the projected and still indefinite system is a very promising approach especially
together with some efficient preconditioning techniques like the indefinite (constraint)
or block-diagonal positive definite preconditioner. Moreover, following the discussion
of Section 3.3, we can take advantage of (3.1) for an efficient parallel implementation
of the matrix by vector product.

6. Acknowledgement. Authors would like to thank Marco Manzini for helping
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are also indebted to the Dept. of Mathematical Modelling in DIAMO, s.e., Stráž pod
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