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A B S T R A C T

This paper deals with adaptively preconditioned iterative methods for solving large and sparse systems of linear equa-
tions. In particular, the paper discusses preconditioning where adaptive dropping reflects the quality of preserving the
relation between the direct factor U and the inverse factor Z that satisfy and . The
proposed strategy significantly extends and refines the approach from [1], see also [2], by using a specific multilevel
framework. Numerical experiments with two levels demonstrate that the new preconditioning strategy is very promising.
Namely, we show a surprising fact that in our approach the Schur complement is better to form in a more sophisticated
way than by a standard sparse matrix-matrix multiplication.
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1. Introduction

An important source of linear systems with positive definite ma-
trices is represented by discretization of partial differential equations.
Such equations arise in numerous applications in science and engi-
neering and often lead to problems with sparse matrices. Let us con-
sider the system of linear equations

where A is the system matrix, x is the vector of unknowns and b is the
right-hand side vector. Here we will assume that the system matrix A
is symmetric and positive definite.

Direct methods including the sparse Cholesky method as their stan-
dard representative are often considered as a method of choice. This
approach is usually based on the factorization where U
is upper triangular. An important alternative to direct solvers are it
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erative Krylov space methods. In the symmetric and positive defi-
nite case, a natural choice in this class is the conjugate gradient (CG)
method. In order to increase the robustness of iterative methods, the
system (1) needs to be transformed, and this transformation is called
preconditioning.

While in some cases preconditioning can be application-based, in
other situations we have to rely on general algebraic approaches. Con-
sequently, the need for generally reliable incomplete factorizations is
strong. An important preconditioning strategy is based on incomplete
Cholesky factorizations, that is on factorization where is
upper triangular. There are a lot of possibilities to determine the way
to approximate the exact Cholesky factorization.

But there are a few potential problems connected to the incomplete
Cholesky factorization. First, it can break down. This means that a di-
agonal entry computed at some factorization step is zero or negative.
Such a situation can be cured by various strategies that modify the
original matrix introducing in this way an additional error. Formally
the incomplete Cholesky factorization can be described as an exact
factorization of a perturbed matrix

where the matrix is called the factorization error. Theoretical analy-
sis of the incomplete Cholesky factorization that takes into account
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general matrix perturbations used in practice is very difficult and suc-
cessful only in special cases, see, e.g., [3]. In addition, the bounds for
the factorization error are often rough, they typically need additional
assumptions and are difficult to apply if the factorization should be
kept reasonably sparse. An important step to make factorization more
robust is based on incomplete factors computed with the inverse-based
dropping proposed by Bollhöfer and Saad [4–6]. Another attempt to
get more reliable factorization is to evaluate simultaneously the di-
rect approximate factor with the approximate inverse factor see
[7,8].

A counterpart of the Cholesky factorization is the inverse factor-
ization introduced in [9]. It computes with Z upper trian-
gular. Its algorithm is nothing more than the Gram–Schmidt orthogo-
nalization of standard unit vectors with respect to a non-standard inner
product induced by the matrix A. In this way we get two factors Z and
U that satisfy the identities . Similarly to the Cholesky
factorization of A, the inverse factorization can be computed incom-
pletely. In general, even more effort must be done to keep reasonable
sparsity in the approximate inverse factorization com-
puted by the approximate Gram–Schmidt orthogonalization, but such
approximate inverse construction has also strong advantages. For ex-
ample, we can get an incomplete Cholesky factor U without a break-
down and construct rather robust preconditioners for some classes of
problems [10,11].

There is a rich history of incomplete factorizations that are based
on multilevel reorderings or that explicitly use more levels in the fac-
torization. Let us consider first the goal to achieve the multilevel ef-
fect by reorderings including also approaches for more general sys-
tems than symmetric and positive definite. In case of matrices from
structured PDE discretizations we have interesting examples of recur-
sive red-black reorderings in [12] where the author looks at condition-
ing of the final system matrix, studies the nested recursive factoriza-
tion with two levels for nine-point difference matrices [13] and use
it as a smoother in multigrid. Another combination of multigrid with
incomplete factorization is described in [14]. A renumbering strategy
with more levels that works also on unstructured grids was presented
in [15], see also [16]. Let us also mention general matrix reorderings
in [17], solving eigenvalue problems in [18] and also the use of more
levels in incomplete factorizations in various applications. Such fac-
torizations are typically used either directly, for example, for solv-
ing saddle-point problems, or as preconditioners, see, e.g., in [19–21],
and also [22]. Related approximate inverse factorizations considered
here is the line of research in [23–25]. We believe that the construc-
tion of the Schur complement proposed here may be combined with
the framework and strategies in [26–28], but see also recent papers on
other multilevel approaches from domain decomposition and nonsym-
metric multilevel approximate inverse technique based on a block in-
dependent set reordering scheme and using factorized inverses as [29].

This paper presents a multilevel approach for computing the above
mentioned approximate inverse factorization. The factorization uses
the adaptive dropping introduced in [30], see also [1]. Here we

propose the approximate inverse multilevel factorization as well as a
new way to perform data transfer between levels in order to minimize
the errors caused by related incomplete orthogonalization process.

If we use the computed approximate factorized inverse as a precon-
ditioner of some Krylov space method then the transformed system is

The quality of the approximation is determined by the loss of orthogo-
nality between the column vectors of defined as
. This quantity is an analogue of the expression intro-
duced by Chow and Saad [31] as a measure of stability. It is clear
that a small right residual together with a small error
in Cholesky factorization (2) imply a small loss of orthogonality
. Indeed, we have

This relation is a theoretical basis of the adaptive dropping that we will
use here.

The paper is organized as follows. Basics of the underlying theory
are summarized in Section 2. The multilevel scheme is described in
Section 3. Experimental results showing the qualitative improvements
of the new approach are shown in Section 4 and the paper is finalized
by conclusions and description of future work.

2. Gram––Schmidt based approximate inverse preconditioners

Let us consider the Gram–Schmidt orthogonalization of the stan-
dard unit vectors with respect to the inner product ⟨·, ·⟩A in-
duced by the matrix A. We assume that the unit vectors are permuted
so that they represent column vectors of the permutation matrix P. In
this case, the Gram–Schmidt process applied to the columns of P leads
to the factors Z and U satisfying

where the columns of Z are A-orthonormal with and U
is the upper triangular Cholesky factor of the matrix
. It is clear that Z is the inverse factor satisfying . The
Gram–Schmidt process is summarized in Algorithm 1, where

are the resulting A-orthonormal vectors and
contains the orthogonalization and normalization coeffi-

cients. Here we consider the modified version of the Gram–Schmidt
process [32] that is equivalent to the SAINV algorithm [33] as ex-
plained in [2].

Algorithm 1. Modified version of the Gram–Schmidt process with column permutation and with respect to the inner product ⟨·, ·⟩A.

(3)

(4)

(5)
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Algorithm 1 computes for each k a column zk of the factor Z us-
ing the vector Pek that is A-orthogonalized against the previously com-
puted vectors . This organization of the computation is
known as the left-looking approach. Our goal is to obtain factor U
such that its entries satisfy inequalities

Note that, (6) and (7) also imply

The permutation P that leads to U in the above mentioned form is
not a priori known and has to be computed on-the-fly. In addition,
Algorithm 1 requires additional precomputation of orthogonalization
coefficients using the classical variant of the Gram–Schmidt process
[32]. For each k and we update the A-norms of the vectors

as follows

The new kth column vector Pek ≡ ei is chosen such that

Permutation P is thus obtained implicitly by the application of column
pivoting with the criterion (10).

It has been shown in [1,34] that the generalized Gram–Schmidt
process with pivoting combined with a specific adaptive dropping may
lead to successful preconditioners from the point of view sparsity and
convergence of the preconditioned conjugate gradient method at the
same time. Let us remind, that the generalized Gram–Schmidt process
computes the same factors as the Cholesky factorization algorithm
only in exact arithmetic. Its numerical properties in the finite precision
arithmetic for various implementations are summarized in [35]. For a
comparison with another approach [36] on similar type of engineering
problems, see [34].

Without going into the details, an incomplete factorization based
on dropping entries in with respect to local thresholds

has been proposed in [34]. An input parameter τ determines accuracy
of the factorization (preconditioner), κ(·) denotes the condition num-
ber. Note that an extra lower subscript in the matrix notation, e.g.,

is used to denote leading principal submatrices. In addi-
tion, we introduce an extra upper tilde notation for approximate quan-
tities computed by the dropping technique as described in [34]. This
dropping is performed by comparing components of the vector

and corresponding threshold τk. Nonzero entries
(fill) in the incomplete factor are allowed only at positions where ele-
ments of the vector are larger than τk.

Taking into account together

with (11), it is clear that dropping based on quantity τk may tend to
produce more fill-in in vectors for increasing k. Our goal here is to
store the inverse triangular factor implicitly, i.e., in a more compact
way. One possible way how to improve its sparsity may be the multi-
level approach introduced in next section.

3. Multilevel approximate inverse preconditioning with adaptive
dropping

In this section we propose a multilevel scheme for SAINV with
lmax levels. Assume are permutation matrices,
such that

where the entries of the Cholesky factorization of

satisfy inequalities (6) and (7) at each level. Let the inverse of B(l) be
approximated by (incomplete inverse triangular factor-

ization). Then we can write

Eliminating the off-diagonal blocks in (13) we obtain

where is the Schur complement of the principal leading block
with respect to the matrix on the right-hand side of (13). This can be
written in a standard way via matrix multiplications as

But, as we will see below, dealing with a factorization based on in-
complete orthogonalization, we have more possibilities to define the
system matrix for the next level. Note that the block rep

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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resents a block of the Cholesky factor of the partially decomposed ma-
trix

The steps described by formulas (12)–(14) are then recursively
applied at all levels. In the last step we get

equal to . There are various possi-

bilities how the levels can be defined and used, for example, by find-
ing strong connections as in the algebraic multigrid or looking for in-
dependent sets, see, e.g., [24]. We propose a different criterion to start
a new level that is based mainly on the size of ( ), see

(19). In addition, we use reordering based on the above mentioned piv-
oting with respect to the diagonal entries in see [1,34]. Note that

the block in the solve steps is applied in a factored form,

i.e., storing and E(l) separately.

Having a partial factorization for some level 1 ≤ l < lmax, let us con-
sider construction of the system matrix for the next level, that is typ-
ically formed as the Schur complement by matrix multiplication. It is
easy to see that this construction of the Schur complement (15) repre-
sents the classical Gram–Schmidt (CGS) process, i.e.,

An alternative way to get the next system matrix is to employ the
right-looking version of the modified Gram–Schmidt (MGS) process
and compute the Schur complement as

where the vectors and are computed using the scalar prod-
uct from Algorithm 1. The practical difference between these two ap-
proaches may be enormous and we will discuss it in Section 4.

4. Numerical experiments

In this section we show results of our numerical experiments.
All the experiments here were performed using MatlabTM with

. In particular, we chose the matrix bcsstk08 [37] with
κ(A) ≈ 4.7 · 107, and dimension equal to 1074 but
our tables cover also other matrices from the Harwell-Boeing set. Sim-
ilarly as in [1] we use a cheap evaluation of τk based on approximation
of by the ratios of extremal diagonal entries of .

In order to present advantages of multilevel framework clearly, we
first show for comparison purposes results without using the multi-
level framework as depicted in Fig. 1.

The condition under which we start a new level in this framework
will be considered in the form

where and nl denotes dimension of A(l). This condi-
tion has led for all considered values of τ to at most two level scheme,
i.e., . Numerical results for the case when the Schur com-
plement is formed by the coefficients of the classical Gram–Schmidt
process (17), are shown in Fig. 2. It is easy to see that convergence of
CG method is significantly worse. Moreover, it is necessary to note
that the Schur complement A(2) is indefinite for all considered τ, and
some remedy is necessary. Correction of the Schur complement has
been done in an iterative fashion. When a breakdown occurs, we cor-
rect the Schur complement by an extra diagonal shift equal to the iden-
tity matrix multiplied by τk · 2p for until a breakdown
does not occur, see [3]. Fig. 3 depicts numerical results for the case
when the Schur complement is formed by the coefficients of the mod-
ified Gram–Schmidt process (18). More accurate computation of the
Schur complement delivers significantly better convergence of CG
method with respect previous case. Apart from this fact, the Schur
complement is positive definite for all τ, therefore corrections were
not necessary. In addition, similarities between convergence without
employing the multilevel framework and with multilevel framework

Fig. 1. One level approach: convergence of the CG method (left) and sparsity pattern of for (right).

(16)

(17)

(18)

(19)



UN
CO

RR
EC

TE
D

PR
OO

F

Advances in Engineering Software xxx (2016) xxx-xxx 5

Fig. 2. Multilevel approach with CGS form of Schur complement: convergence of the CG method (left) and sparsity pattern of for (right).

Fig. 3. Multilevel approach with MGS form of Schur complement: convergence of the CG method (left) and sparsity pattern of for (right).

when the Schur complement is formed by the modified
Gram–Schmidt process are very surprising. Let us also note that com-
putation of such preconditioning is only a slightly more demanding.
Number of nonzero entries of the preconditioner as a function of τ for
all three approaches is depicted in Fig. 4.

For the set of the chosen matrices from [37] we summarize results
of the algorithms in Tables 1–3. For these experiments we do not con

Fig. 4. Number of nonzeros of the preconditioner (for one level approach denoted as
“one level”, multilevel approach with CGS form of the Schur complement (17) denoted
as “multilevel CGS”, and multilevel approach with MGS form of the Schur complement
(18) denoted as “multilevel MGS”) as a function of τ (tiny dotted horizontal lines de-
note relative fill-in with respect dense triangular factor; tiny dashed horizontal line de-
notes nnz(A)).

sider any diagonal shift. The case when a breakdown occur due to the
indefinite Schur complement (its approximation) is denoted by sym-
bol †. By the same symbol is denoted when CG does not converge
within 500 iterations. Otherwise, we consider stopping criterion based
on backward error less than .

5. Conclusion and open questions

In this paper we have proposed a multilevel scheme for the factor-
ized approximate inverse preconditioning based on the Gram–Schmidt
process with the inner-product induced by a symmetric and posi-
tive definite matrix. We have shown that the multilevel framework
may significantly reduce preconditioner sizes. Moreover, the conver-
gence of the conjugate gradient method stays in the case of the new
Schur complement construction based on the modified Gram–Schmidt
process essentially the same as without employing the multilevel
framework. While here we were interested in presenting practical al-
gorithmic features of the approach, full theoretical analysis and con-
struction of preconditioners based on are open questions for the fu-
ture.
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Table 1
One-level algorithm.

matrix τ

0.01 0.05 0.1 0.2 0.4 0.6

bcsstk08 292,051 159,425 112,955 76,119 46,520 36,091

iters. 7 11 13 14 16 17
bcsstk09 313,018 60,145 28,778 10,880 2280 1955

iters. 18 53 78 127 202 212
bcsstk10 89,218 60,755 50,150 38,929 29,616 23,979

iters. 5 10 16 28 40 71
bcsstk19 80,694 60,047 52,783 51,606 42,675 42,823

iters. 43 77 112 166 235 351
bcsstk27 195,029 61,590 32,035 16,059 9568 6997

iters. 9 24 38 65 90 124
msc01050 488,146 216,140 140,945 125,907 112,625 67,907

iters. 15 43 33 45 51 62
nos2 157,276 155,732 153,972 129,746 33,443 13,894

iters. 6 24 49 131 † †
nos3 95,461 25,815 11,402 4087 1953 1336

iters. 14 30 49 91 133 191
nos7 192,117 80,622 63,436 48,322 36,783 30,180

iters. 5 8 8 13 16 21

Table 2
Multilevel algorithm, Schur complement formed by the coefficients of the CGS (17).

matrix τ

0.01 0.05 0.1 0.2 0.4 0.6

bcsstk08 † † † † † †

iters.
bcsstk09 147,156 † 24,193 10,934 2280 1963

iters. 19 118 115 202 214
bcsstk10 53,366 † † † † †

iters. 8
bcsstk19 † † † † † †

iters.
bcsstk27 109,770 59,031 32,188 16,186 9651 7144

iters. 10 25 38 64 89 120
msc01050 224,408 † † † † †

iters. 16
nos2 † † † † † †

iters.
nos3 27,517 17,525 11,470 4220 1956 1373

iters. 15 32 49 91 133 189
nos7 95,905 38,478 31,376 24,675 19,851 17,135

iters. 5 8 9 12 15 20

Table 3
Multilevel algorithm, Schur complement formed by the coefficients of the MGS (18).

matrix τ

0.01 0.05 0.1 0.2 0.4 0.6

bcsstk08 148,576 84,247 62,277 42,505 29,008 24,148

iters. 8 12 14 15 20 22
bcsstk09 143,326 36,615 23,218 10,934 2280 1963

iters. 17 56 90 115 202 214
bcsstk10 50,817 36,758 31,757 26,934 23,652 22,564

iters. 5 11 21 40 94 139
bcsstk19 24,042 17,616 15,169 13496 11,458 11,270

iters. 72 346 386 410 499 †
bcsstk27 105,991 58,948 32,188 16,186 9651 7144

iters. 9 24 38 64 89 120
msc01050 238,724 108,687 81,564 70,209 62,127 45,885

iters. 15 37 31 44 49 62
nos2 81,732 80,605 79,478 69,321 17,611 9899

iters. 6 24 54 165 † †
nos3 30,582 17,888 11,470 4220 1956 1373

iters. 13 31 49 91 133 189
nos7 96,621 38,914 32,157 25,821 20,903 17,904

iters. 5 8 9 12 16 20
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