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Each step must be carefully justified. If you use some lemma or theorem do not forget to check
that all assumptions are satisfied.

Given name and family name:

Question 1 2 Score

Maximum points 100 100 200

Points

1.[100] Formulate and prove the Morey lemma. Formulate and prove the Sobolev embeddingW 1,p(Ω) ↪→
C0,α(Ω) for p ∈ (d,∞), where Ω ⊂ Rd.

Solution:

See lecture.
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2.[100] Let Ω ⊂ Rd be a Lipschitz set uD ∈ W 1,2(Ω) and f ∈ L2(Ω). Further, let g, h : R→ [−1, 1]
be continuous functions. Consider the problem: for given data find u : Ω→ R solving

−4u+ g(x1)
∂2u

∂x1∂x2
+ h(u) = f in Ω,

u = uD on ∂Ω.

20% Find a proper definition of a weak solution. Check that for given data such a definition
is meaningful.

40% Show the existence of a weak solution.

20% In case that h is nondecreasing show also its uniqueness.

20% Moreover, in case h ∈ C1, show that if h′ ≥ −γ > −µ1

2 , where µ1 is the smallest
eigenvalue of the Laplace operator subjected to Ω and zero Dirichlet data, then the
solution is also unique.

Solution:

First, we formally derive the weak formulation. Let v ∈ W 1,2
0 (Ω) be arbitrary. We mul-

tiply the equation by v and integrate over Ω. For the first two terms, we use the inte-
gration by parts and since v = 0 on ∂Ω we obtain∫

Ω

∇u · ∇v − g(x1)
∂u

∂x1

∂v

∂x2
+ h(u)v dx =

∫
Ω

fv dx. (1)

It is important here that in the second term we integrate by parts with respect to x2

because g(x1) may not have derivative with respect to x1 as it is assumed to be only
continuous!

We say that u ∈W 1,2(Ω) is a weak solution iff (1) holds for all v ∈W 1,2
0 (Ω) and u = uD

on ∂Ω in the sense of traces. The fact that all integrals in (1) are finite follows from the
Hölder inequality and boundedness of g and h.

Next, we focus on solvability. First, we rewrite the leading term into a bilinear form.
Denoting

aij(x) :=


1 for i = j,

− g(x1) for i = 2, j = 1,

0 otherwise.

we see that (1) is equivalent to

B(u, v) +

∫
Ω

h(u)v dx =

∫
Ω

fv dx for all v ∈W 1,2
0 (Ω), (2)

where

B(u, v) :=

∫
Ω

d∑
i,j=1

aij(x)
∂u

∂xj

∂v

∂xi
dx.

Since, |g| ≤ 1, we gain that |aij(x)| ≤ 1 and more importantly

d∑
i,j=1

aij(x)zizj ≥
|z|2

2
. (3)
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Next, we “decide”how to solve (2). By process of elimination, we end up with the Galerkin
method. Indeed since the equation is not linear, there is no hope for the Lax-Milgram
theorem. Moreover, since h is only continuous and not Lipschitz, there is no hope for non-
linear version of the Lax-Milgram theorem. Finally, since the matrix a is not symmetric
there is no hope for potential and for using the variational approach. On the other hand
the presence of h(u) is only a compact “perturbation”therefore we choose the Galerkin
method.

As usual, we look for u being of the form u = uD + u0, where u0 ∈ W 1,2
0 (Ω). With this

notation, the identity (2) is tantamount to

B(u0, v) +

∫
Ω

h(u0 + uD)v dx =

∫
Ω

fv dx−B(uD, v) for all v ∈W 1,2
0 (Ω). (4)

Set V := W 1,2
0 (Ω) and let {wi}i∈N ⊂W 1,2

0 (Ω) be linearly independent with a dense span

in V . We look for uN0 (x) =
∑N
i=1 c

N
i wi(x), cNi ∈ R, solving an approximate problem

B(uN0 , wi) +

∫
Ω

(h(uN0 + uD)− f)wi dx+B(uD, wi) = 0 for all i = 1, . . . , N. (5)

We know how to attack (5): Let us define F : RN → RN as F (cN )i is LHS of (5)i.
The function F is clearly continuous and so existence of its zero point is guaranteed by
F (ρ) ·ρ ≥ 0 on some (non-degenerate) sphere. First, since the matrix a(x) is elliptic (see
(3)) we can use the Poincaré inequality to conclude that the bilinear form B is V -elliptic
and V -bounded. Therefore (for some α > 0)

F (cN ) · cN = B(uN0 , u
N
0 ) +B(uD, u

N
0 ) +

∫
Ω

(h(uN + uD)− f)uN0 dx

≥ α‖uN0 ‖2V − C‖uN0 ‖V ‖uD‖V − C‖h(un0 + uD)− f‖2‖uN0 ‖V

≥ α

2
‖uN0 ‖2V − C2‖uD‖2V − C2‖h(un0 + uD)− f‖22

≥ α

2
‖uN0 ‖2V − C2‖uD‖2V − C2‖|f |+ 1‖22 ≥

α

2
‖uN0 ‖2V −K(uD, f,Ω),

where we used the Young inequality repeatedly and the constant K is some generic
constant depending only on the data. Since linear independence of {wi}i∈N ensures
‖uN0 ‖V ∼ |cN |, we are done with proving existence of a zero point for F and therefore a
solution uN to (5). Moreover, since cN is zero point of F it follows from the computation
above that

α

2
‖uN0 ‖2V ≤ K(uD, f,Ω),

which is independent of N . Due to the reflexivity of V , we can find a subsequence (that
we do not relabel) and u0 ∈ V such that

uN0 ⇀ u0 weakly in V.

The compact embedding further entails (for a subsequence)

uN0 → u0 strongly in L2(Ω).
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Finally, the above convergence results implies (for a subsequence )

uN0 → u0 almost everywhere in Ω.

Hence for fix i ∈ N we have no problem to let N → ∞ in (5) (recall h is bounded, so
we may invoke the Lebesgie dominated convergence theorem, and B is bilinear, so the
weak convergence suffices to pass to the limit), to obtain

B(u0, wi) +

∫
Ω

(h(u0 + uD)− f)wi dx+B(uD, wi) = 0 for all i ∈ N.

The density property of {wi}i∈N finally gives (4), so the proof of the existence is finished.

Let now h be non-decreasing and u1, u2 be two weak solutions. Subtracting (2) pertinent
to u1 and u2 and setting v := u1 − u2 ∈W 1,2

0 (Ω), we have

B(u1 − u2, u1 − u2) +

∫
Ω

(h(u1)− h(u2)(u1 − u2) dx = 0. (6)

The non-decreasing nature of h implies
(
h(u1)− h(u2)

)
(u1 − u2) ≥ 0 and so we are left

practically with ‖∇(u1 − u2)‖2 ≤ 0, meaning u1 − u2 ≡ 0, as u1 − u2 ∈W 1,2
0 (Ω).

The starting point for the last question will be (6). Notice again that from (3) it follows
that

B(u1 − u2, u1 − u2) ≥ 1

2
‖∇(u1 − u2)‖22

and due to additional properties of h also(
h(u1)− h(u2)

)
(u1 − u2) =

∫ 1

0

d

dt
h(u2 + t(u1 − u2)) dt (u1 − u2)

=

∫ 1

0

h′(u2 + t(u1 − u2)) dt |u1 − u2|2

≥ −γ|u1 − u2|2.

Hence assuming that u1 6= u2, we deduce form (6) and form the assumption on γ that

‖∇(u1 − u2)‖22 ≤ 2γ‖u1 − u2‖22 < µ1‖u1 − u2‖22.

Hence we make a hypothesis that would clearly lead to our objective as long as it held:

‖∇v‖22 ≥ µ1‖v‖22 for any v ∈W 1,2
0 (Ω). (7)

Let v ∈ W 1,2
0 (Ω). We know there is a sequence {vi}i∈N ⊂ W 1,2

0 (Ω) and 0 < µ1 ≤ µ2 ≤
. . .→∞ such that for any i ∈ N the Laplace equation

−∆vi = µivi in Ω,

vi = 0 on ∂Ω,
(8)

is satisfied (at least) in the weak sense, {vi} is an orthonormal basis in L2(Ω) and an
orthogonal basis in W 1,2

0 (Ω). In addition due to the orthogonality and (8) we also have

‖∇vi‖22 = µi‖vi‖22 = µi,

∫
Ω

∇vi · ∇vj dx = 0 for i 6= j. (9)
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Since {vi} forms a basis we can write

v =

∞∑
i=1

aivi,

where the sum converges in V . Since {vi} is orthonormal in L2(Ω) we can use the Parseval
equality and therefore

‖v‖22 =

∞∑
i=1

a2
i .

In addition

‖∇v‖22 = lim
n→∞

∥∥∥∥∥∇
n∑
i=1

aivi

∥∥∥∥∥
2

2

= lim
n→∞

 n∑
i=1

a2
i ‖∇vi‖22 +

n∑
i 6=j

aiaj

∫
Ω

∇vi · ∇vj dx


= lim
n→∞

n∑
i=1

a2
iµi =

∞∑
i=1

a2
iµi,

where for the third equality we used (9). Consequently since µi ≤ µj for i ≤ j we gain

‖∇v‖22 =

∞∑
i=1

a2
iµi ≥ µ1

∞∑
i=1

a2
i = µ1‖v‖22,

which is nothing else than (7). The proof is complete.

Alternative proof of the existence of a solution for real fans of the Lax-
Milgram theorem: Let us define the mapping F : L2(Ω) → L2(Ω) as v 7→ u0, where
u0 ∈W 1,2

0 solves the problem

B(u0, v) =

∫
Ω

fv dx−B(uD, v)−
∫

Ω

h(v + uD)v dx for all v ∈W 1,2
0 (Ω). (10)

Since B is bilinear, V -bounded and V -elliptic, and h is bounded we can use the Lax-
Milgram theorem to get that for all v ∈ L2(Ω) there exists unique u0 ∈ V solving (10).
Moreover, due to the continuity of h and the V -ellipticity of B it follows that F is
continuous. In addition (again from the Lax-Milgram theorem) we know that

‖u0‖ ≤ C(‖f‖2 + ‖uD‖V + ‖g(v + uD)‖2) ≤ K,

where the constantK does not depend on v since g is bounded function. Therefore, we see
that F is continuous mapping that maps L2(Ω) into a bounded ball in V . Since V ↪→↪→
L2(Ω) (the compact embedding of the Sobolev spaces), we see that F is continuous
compact mapping that maps L2(Ω) into a bounded ball of L2(Ω). Therefore it must
have a fixed point ū0. However, using (10) this fixed point must satisfy

B(ū0, v) +

∫
Ω

h(ū0 + uD)v dx =

∫
Ω

fv dx−B(uD, v) for all v ∈W 1,2
0 (Ω).

and therefore u := ū0 + uD is a weak solution to (1).


