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Each step must be carefully justified. If you use some lemma or theorem do not forget to check
that all assumptions are satisfied.

Name:

Question 1 2 3 Score

Maximum points 0 100 100 200

Points

1.[0] Formulate the continuous and compact embedding theorem of the Sobolev space W 1,p(Ω)
into the space of Hölder continuous functions.

Solution:

See lecture.
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2.[100] Formulate and prove the Lax–Milgram theorem.

Solution:

See lecture.
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3.[100] Let Ω ⊂ R2 be a Lipschitz set and z1, z2 ∈ L2(Ω) be given and define the set

S :=

{
f = (f1, f2) ∈ L2(Ω)× L2(Ω) :

∫
Ω

2∑
i=1

(fi − zi)
∂ϕ

∂xi
= 0 for all ϕ ∈W 1,2

0 (Ω)

}
.

Consider the functional F : S → R given as

F(f) :=

∫
Ω

f2
1 +Bf2

2 + 2Cf1f2 − 2f1 + 2x2f2,

where C,B ∈ R are given numbers. Finally, consider the minimization problem of the form:
Find f = (f1, f2) ∈ S such that for all h = (h1, h2) ∈ S there holds

F(f) ≤ F(h) (P)

20 % Write the Euler–Lagrange equation corresponding to (P). Prove that any solution f to
(P) satisfies the Euler–Lagrange equations.

30 % Show that if B > 0 and C2 < B then the problem (P) has a unique solution (minimizer).
(Hint: show that infimum of the functional F is finite, take the minimizing sequence,
show that it is bounded in a reflexive space L2 and show that it converges weakly to
minimum.)

50% Prove that there exists a matrix A ∈ R2×2 and u ∈ W 1,2(Ω), which is unique up to a
constant, such that u is a weak solution to

−divA∇u = −divz in Ω

and in addition fulfils A∇u = f almost everywhere in Ω. What is the trace of u?

Solution:

Euler–Lagrange equations: First, define

S0 :=

{
f = (f1, f2) ∈ L2(Ω)× L2(Ω) :

∫
Ω

2∑
i=1

fi
∂ϕ

∂xi
= 0 for all ϕ ∈W 1,2

0 (Ω)

}
.

Let f be a hypothetical solution to (P), g ∈ S0 and ε > 0 be arbitrary. If we set
h := f + εg then evidently h ∈ S and therefore it can be used in (P) as a competitor.
Thus, it follows from (P) that∫

Ω

f2
1 +Bf2

2 + 2Cf1f2 − 2f1 + 2x2f2 = F(f) ≤ F(h)

=

∫
Ω

(f1 + εg1)2 +B(f2 + εg2)2 + 2C(f1 + εg1)(f2 + εg2)− 2(f1 + εg1) + 2x2(f2 + εg2).

After a simple algebraic manipulation we deduce that (note that all integrals are well
defined and finite thanks to the Hölder inequality)

0 ≤
∫

Ω

2f1εg1 + ε2g2
1 + 2Bf2εg2 +Bε2g2

2 + 2C(f1εg2 + f2εg1 + ε2g1g2)− 2εg1 + 2x2εg2.
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Finally, dividing by 2ε and letting ε→ 0+ we get

0 ≤
∫

Ω

f1g1 +Bf2g2 + C(f1g2 + f2g1)− g1 + x2g2.

Since g ∈ S0 is arbitrary and −g ∈ S0 as well, it follows that there holds

0 =

∫
Ω

f1g1 +Bf2g2 + C(f1g2 + f2g1)− g1 + x2g2 for all g ∈ S0, (E-L)

which is nothing else than the Euler–Lagrange equation. Moreover, we have just
proven rigorously that if f solves (P) then it solves (E-L) as well.

Existence of minimizer: First, we show that F is bounded from below. To do so,
we use the assumption that C2 < B. For arbitrary δ1, δ2 ∈ (0, 1), we have (we use the
Young inequality)∫

Ω

f2
1 +Bf2

2 + 2Cf1f2 − 2f1 + 2x2f2

≥
∫

Ω

f2
1 +Bf2

2 − 2
(√

(1− δ1)|f1|
)( C|f2|√

1− δ1

)
− 2

√
1 + |x|2√
δ2

(
√
δ2|f |)

≥
∫

Ω

(δ1 − δ2)f2
1 +

(
B − C2

1− δ1
− δ2

)
f2

2 −
1 + |x|2

δ2
.

Hence, since B > C2 and Ω is bounded (because it is Lipschitz), we can choose δ1, δ2 > 0
sufficiently small (depending on B and C) and find positive constants C1 and C2 such
that

F(f) ≥ C1(B,C)‖f‖22 − C2(B,C,Ω) for all f ∈ L2(Ω)× L2(Ω). (A-E)

Next, let us denote

I := inf
f∈S
F(f).

Due to (A-E), we see that I > −∞. From the definition of infima, it follows that there
exists a sequence {fn}∞n=1 ⊂ S such that

I = lim
n→∞

F(fn). (I)

Setting h := z in (P) (it is a possible choice since z ∈ S), it also follows that

I ≤ F(z) ≤ C(1 + ‖z‖22),

where the second inequality follows from the Hölder inequality. Consequently, using also
(A-E), we see that there exists n0 such that for all n ≥ n0 we have

C1(B,C)‖fn‖22 − C2(B,C,Ω) ≤ F(fn) ≤ I + 1 ≤ C(2 + ‖z‖22)

and therefore

‖fn‖22 ≤ C.
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Consequently, fn is a bounded sequence in L2(Ω)×L2(Ω) which is a reflexive space and
therefore there exists a subsequence fnk and f such that

fnk ⇀ f weakly in L2(Ω)× L2(Ω).

Note that the above convergence means that for any g1, g2 ∈ L2(Ω) there holds

lim
nk→∞

∫
Ω

fnk
1 g1 + fnk

2 g2 =

∫
Ω

f1g1 + f2g2. (w-c)

Using the definition of S, the fact that fn ∈ S and (w-c) we can deduce that f ∈ S as
well. Finally, we show that f is really a minimizer, i.e., it solves (P). Indeed, using the
computation above (A-E), we have that (using the fact that B > C2)

0 ≤ (fnk
1 − f1)2 +B(fnk

2 − f2)2 + 2C(fnk
1 − f1)(fnk

2 − f2)

Consequently,

0 ≤
∫

Ω

(fnk
1 )2 + f2

1 − 2fnk
1 f1 +B(fnk

2 )2 +Bf2
2 − 2Bfnk

2 f2

+ 2Cfnk
1 fnk

2 − 2Cfnk
1 f2 − 2Cf1f

nk
2 + 2Cf1f2

= F(fnk) + F(f) +

∫
Ω

fnk
1 (2− 2f1 − 2Cf2) + fnk

2 (−2x2 − 2Bf2 − 2Cf1) + 2f1 − 2x2f2

Next we use (w-c) with g1 := 2−2f1−2Cf2 and g2 := −2x2−2Bf2−2Cf1, the relation
(I) and let nk →∞ in the above inequality to conclude

0 ≤ lim
nk→∞

(
F(fnk) + F(f) +

∫
Ω

fnk
1 (2− 2f1 − 2Cf2)

+ fnk
2 (−2x2 − 2Bf2 − 2Cf1) + 2f1 − 2x2f2

)
= I + F(f) +

∫
Ω

f1(2− 2f1 − 2Cf2) + f2(−2x2 − 2Bf2 − 2Cf1) + 2f1 − 2x2f2

= I −F(f).

But since I is infimum, it necessarily follows from the above inequality that f solves (P).
(Recall, that we know that f ∈ S)

Finally, we show that there is a unique minimizer. Let f and f̃ be two solutions to
(P) and denote w := f − f̃ . Since both functions solve (P) then they also satisfy the
Euler-Lagrange equation (E-L). Hence, subtracting (E-L) for f̃ from the identity (E-L)
for f we obtain

0 =

∫
Ω

w1g1 +Bw2g2 + C(w1g2 + w2g1) for all g ∈ S0. (Uniq)

Then, because f, f̃ ∈ S, we get that w ∈ S0 and so we can set g := w in (Uniq). Doing
so, we obtain

0 =

∫
Ω

w2
1 +Bw2

2 + 2Cw1w2 ≥ C1‖w‖22, (Uniq2)
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where for the second inequality, we used the fact that B > C2 (see the very similar
computation above (A-E)). Hence, w = 0 and so f = f̃ .

Elliptic problem: In fact, here we will show that the minimization problem is a dual
problem to certain elliptic equation. Define the matrix

Q :=

(
1 C
C B

)
Since matrix Q is regular and positively definite (because B > C2), we can find its
inverse,

A := Q−1

and A is positively definite as well, i.e., it satisfies for all ξ ∈ R2

2∑
i,j=1

Aijξiξj ≥ c1|ξ|2 (1)

with some c1 > 0. Finally, we set u0

u0 := x1 −
x2

2

2
.

The purpose of this setting is that we can now equivalently rewrite the Euler–Lagrange
equation (E-L) as

0 =

∫
Ω

(A−1f −∇u0) · g for all g ∈ S0. (E-L–II)

Next, we define an elliptic problem

−div A∇u = −divz in Ω, u = u0 on ∂Ω. (El)

Since A is elliptic matrix, we can use the Lax-Milgram theorem and find a unique
u ∈ W 1,2(Ω) being the weak solution, i.e., u − u0 ∈ W 1,2

0 (Ω) and for all ϕ ∈ W 1,2
0 (Ω)

there holds ∫
Ω

(A∇u− z) · ∇ϕ = 0. (w-f)

Finally, we show that A∇u = f . First, it follows from the fact that f ∈ S and (w-f) that
(A∇u− f) ∈ S0. Next, we can compute (using the ellipticity of A)

c1‖∇u−A−1f‖22 = c1

∫
Ω

|∇u−A−1f |2 ≤
∫

Ω

A(∇u−A−1f) · (∇u−A−1f)

=

∫
Ω

(A∇u− f) · (∇u−A−1f)

=

∫
Ω

(A∇u− f)︸ ︷︷ ︸
∈S0

· ∇(u− u0︸ ︷︷ ︸
∈W 1,2

0

) +

∫
Ω

(A∇u− f)︸ ︷︷ ︸
∈S0

· (∇u0 −A−1f) = 0,

where the first integral is equal to zero just because of definition of S0 and the second
integral vanishes thanks to (E-L–II).
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Alternative proof of the existence of minimizer: Here, we quickly present a proof
for the existence of minimizer f , which is just based on the use of Lax-Milgram theorem.
First, we consider the problem (El). By using the Lax-Milgram theorem we get the
unique u a weak solution. Next, we define f := A∇u and show that it solves (P). First,
since u is a weak solution, we have

0 =

∫
Ω

(A∇u− z) · ∇ϕ =

∫
Ω

(f − z) · ∇ϕ,

for all ϕ ∈ W 1,2
0 (Ω). Hence, f ∈ S. Next, we show that f satisfies the Euler–Lagrange

equations (E-L). Note that (E-L) can be equivalently rewritten as (E-L–II). Hence, for
arbitrary g ∈ S0 we can compute∫

Ω

(A−1f −∇u0) · g =

∫
Ω

∇(u− u0)︸ ︷︷ ︸
∈W 1,2

0 (Ω)

· g︸︷︷︸
∈S0

= 0,

where the last equality follows from the definition of S0. Therefore we obtained that f
solves (E-L). Finally, we show that any solution to (E-L) is also a solution to (P). Using
the definition of A, the fact that it is elliptic and the definition of u0 again we have that

F(f̃)−F(f) =

∫
Ω

(A−1f̃ − 2∇u0) · f̃ − (A−1f − 2∇u0) · f

=

∫
Ω

2(A−1f −∇u0) · (f̃ − f)︸ ︷︷ ︸
∈S0

+A−1(f̃ − f) · (f̃ − f)︸ ︷︷ ︸
≥0

≥ 0,

where the second inequality follows from the fact that f solves (E-L–II). Hence, f is a
minimizer.


