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Abstract. The classical example of a variational problem with linear growth is
the minimal surface problem. It is well known that for smooth data such problem
possesses a regular (up to the boundary) solution if the domain is convex (or
has positive mean curvature). On the other hand, for non-convex domains we
know that there always exist data for which the solution does exist only in the
space of functions of bounded variations (the desired Dirichlet boundary datum is
not attained). Recently, in continuum mechanics there were identified problems
(limiting strain) that can be under certain circumstances rewritten as variational
problems with linear growth but possibly having different structure than the
minimal surface problem. We identify the class of functionals for which we always
have regular (up to the boundary) solution in any dimension d ≥ 2 for arbitrary
C1,1 domain. Furthermore, we show that this class is sharp in the following sense:
whenever the functional does not belong to the class then we can find data for
which the W 1,1 solution does not exist.

Introduction

In the paper we analyse the existence of a solution U ∈W 1,1(Ω) to problem

−div

(
∇U

(1 + |∇U |a)
1
a

)
= 0 in Ω, U = U0 on ∂Ω, (1)

for Ω ⊂ Rd of class C1,1 and the parameter a > 0. The special case for a = 2 is the well-known minimal
surface problem. The problem (1) also has a variational formulation. Define a function F : Rd → R,

F (x) :=
1

2

∫ |x|2
0

1

(1 + |s| a2 )
1
a

ds.

To find a weak solution to (1) is equivalent to find U ∈W 1,1(Ω) such that U = U0 on ∂Ω and∫
Ω

F (∇U) dx ≤
∫

Ω

F (∇V ) dx (2)

for all V ∈W 1,1(Ω), V = U0 on ∂Ω.
Motivation for studying such problem arises from continuum mechanics. Consider deformation of

the body Ω ⊂ R3 with ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω described by the balance of linear momentum
and Dirichlet and Neumann boundary conditions,

−divTTT = f in Ω, u = u0 on ΓD, TTTn = g on ΓN , (3)

where u is the displacement, TTT the Cauchy stress tensor, f the external body forces, g the external
surface forces. Let εεε be the linearised strain tensor, i.e.,

εεε = εεε(u) :=
1

2
(∇u + (∇u)T ).

To complete the system (3), it remains to prescribe the relation of the Cauchy stress and the displacement
gradient or more specifically to the strain tensor defined as EEE := 1

2 (FFFTFFF − III). Note that if χ : Ω → R3

is a function that describes the deformation then u(x) := χ(x) − x describes displacement. Now,
∇u = ∂χ

∂x −
∂x
∂x = FFF− III, where FFF denotes the deformation gradient and III is the identity tensor. Therefore,

FFF = ∇u + III. Consequently, the strain tensor can be expressed as EEE = 1
2 (∇u + (∇u)T + (∇u)T∇u),

which after linearisation with respect to ∇u (∇u is dimensionless and therefore the linearisation is valid
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provided that |∇u| � 1), can be replaced by εεε. It is easy to observe that the condition for linearisation,
|∇u| � 1, implies |εεε| � 1. However, the usual linear models, i.e., models where the Cauchy stress is
a linear function of the small strain cannot guarantee that the small strain remains small under a large
loading. On the other hand, it is of a real interest to consider models, which admit large stresses
but simultaneously the small strain tensor remains small. A class of such models where suggested by
Rajagopal and Walton [2011] (see also Kulvait et al. [2013] for numerical simulations), who considered

εεε(u) = εεε∗(TTT) :=
TTT

(1 + |TTT|a)
1

∂xi
. Find

a scalar function U : Ω→ R, U(x) = U(x1, x2) such that

T13 =
1√
2
Ux2

and T23 = − 1√
2
Ux1

,

then divTTT = 0 is fulfilled. Also, it is easy to check that |TTT|2 = |∇U |2. Relation (4) reads

ux1
=

2T13

(1 + |TTT|a)
1
a

and ux2
=

2T23

(1 + |TTT|a)
1
a

,

and the compatibility conditions for u(x1, x2) hold, that is, (ux1)x2 = (ux2)x1 . Combining all these
properties together we realize that U must satisfy

−div

(
∇U

(1 + |∇U |a)
1
a

)
= 0 in Ω, Ux2

n1 − Ux1
n2 =

√
2g on ΓN .

Furthermore, if Ω is simply connected, the existence of a solution U to this problem is equivalent to the
existence of a solution u to the original three dimensional problem in the simplified geometry.

Finally, note that the Neumann boundary condition includes the tangential derivative of U ,
(Ux1

, Ux2
) · (−n2,n1) =

√
2g. If we assume that ∂Ω is parameterized by a curve γ(s), then defining

U0 as

U(γ(τ)) = U(γ(0)) +
√
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a

(4)

for a parameter a > 0. General existence theory (for weak solutions) for such models was established
in Beck et al. [2016a], where it was pointed out that the Neumann boundary condition might not be
attained (in the sense of distributions) and one has to relax the notion of solution. In this paper we study
these models in simplified geometries and we characterize under which assumption on the parameter a
such a pathological behaviour does not take place.

Special geometry and equivalent reformulation

First, we consider a very special case of the problem (3). Let f ≡ 0 and g(x) = (0, 0, g(x1, x2)) be
given and we look for u, TTT of the form

u(x) = (0, 0, u(x1, x2)) and TTT(x) =

 0 0 T13(x1, x2)
0 0 T23(x1, x2)

T13(x1, x2) T23(x1, x2) 0

 .

Thanks to this we can simplify the problem significantly in the following way. Let fxi
:= ∂f

2

∫ τ

0

g(γ(s)) |γ′(s)| ds =: U0(x)

for x = γ(τ) makes the problem Dirichlet. After all, we look for U , a weak solution to (1).

Existence of solution

The text above can serve as a motivation for how the equations in (1) can be obtained. However,
now the problem can be viewed at as purely mathematical — let the dimension be arbitrary d (d ≥ 2)
and let the domain Ω ⊂ Rd be arbitrary of the class C1,1. In what follows , we are interested in the
investigation how the solution depends on the function space in which we look for the weak solution, the
shape of the domain and the parameter a.

The relation between the function space and the parameter a has been studied before for Lipschitz
domain (i.e., of class C0,1) by Bildhauer and Fuchs [2002a,b]. The result says that the solution in the



(1 + |∇U |a)
1
a

)
= 0 in BR \Br, U = 0 on ∂Br, U = K on ∂BR, (5)

for 0 < r < R. We demand the solution to attain the boundary value for any K ∈ R.

Lemma 1 (Existence on (arbitrary) annulus). For a > 1, the problem (5) has a weak solution in
W 1,1(BR \Br) if and only if

|K| ≤
∫ R

r

rd−1(
za(d−1) − ra(d−1)

) 1
a

dz. (6)

If a ∈ (0, 1], then for any K ∈ R there exists a weak solution to problem (5).

Proof. First of all, we show that U , a weak solution to (5), if exists, is independent of rotation. That is,
there exists a function Ũ : [r,R]→ R such that U(x) = Ũ(|x|). To prove this, we need to show that for
an arbitrary rotation matrix QQQ ∈ Rd×d (i.e., QQQQQQT = III and detQQQ = 1), function V : Ω→ R, defined as

V (x) := U(QQQx),

is also a weak solution to (5). Obviously, V ∈ W 1,1(Ω). Also, rotation does not change values on the
boundary since both Br and BR are balls centered at origin and the boundary values are constants.
Therefore V = 0 on ∂Br and V = K on ∂BR.

The change of variables y = QQQTx does not change the shape of the domain Ω. Consider the
test function ψ ∈ D(Ω) (i.e., smooth compactly supported in Ω) such that ψ(x) := ϕ(QQQTx) for some
ϕ ∈ D(Ω). Then for the i-th component of ∇ψ it holds that

[∇ψ(x)]i =
d∑
j=1

[
∇ϕ(QQQTx)

]
j
QQQTji =

[
QQQ∇ϕ(QQQTx)

]
i
.

Similarly, ∇V (x) = QQQT∇U(QQQx). In the following calculation we use both these facts. Before that, we
multiply the first equation in (5) by ψ, integrate over Ω and integrate by parts,∫

Ω

∇U(x)

(1 + |∇U(x)|a)
1
a

· ∇ψ(x) dx = 0. (7)

After the change of coordinates y = QQQTx and the use of the definition of ψ we get∫
Ω

∇U(QQQy)

(1 + |∇U(QQQy)|a)
1
a

· (QQQ∇ϕ(y)) dy = 0. (8)
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space BV (Ω) of functions of bounded variation exists for any a > 0. Moreover, if a ∈ (0, 2], then
this solution is locally (in Ω) Lipschitz, however, in any case the trace U0 need not be attained. In
particular if a = 2, it was shown already by Finn [1965] that if Ω is not a pseudoconvex domain then
there always exists the Dirichlet data that are not attained by the BV minimizer. On the other hand,
for pseudoconvex domains, it is known due to result of Miranda [1979] that for sufficiently smooth data
there always exists a classical solution (so attaining the Dirichlet data).

In what follows, we want to look for a solution in the space W 1,1(Ω). To be more precise, we shall
study what the domain Ω and the parameter a should fulfil to guarantee the existence of such solution
(in particular we want to cover the cases of non-convex domains). In fact, there already are some positive
results introduced by Buĺıček et al. [2015], where the existence of a weak solution is proven for a ∈ (0,∞)
and Ω Lipschitz uniformly convex and for a ∈ (0, 2) and Ω Lipschitz piece-wise uniformly convex (i.e.,
some kind of non-convexity is allowed).

Note that the second result for a ∈ (0, 2) no longer includes the minimal surface problem (where
a = 2). However, natural question arises whether for some values of a the existence could be shown for
all C1,1 domains — even those fully non-convex. Simple answer is yes, it could. Yet, precise answer is
rather complicated and will be partially provided below. Unfortunately, providing the complete proof is
beyond the size of this paper.

Let us consider the simplest non-convex domain which cannot be divided into convex pieces (and
therefore is not the case of the result for a ∈ (0, 2)) — the annulus Ω := BR \ Br ⊂ Rd centered at the
origin,

−div

(
∇U
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Finally, we express the last integral in term of V . Since

QQQ∇U ·QQQ∇V =
d∑

i,j,k=1

QQQijUxj ·QQQikVxk
=

d∑
j,k=1

δjkUxjVxk
= ∇U · ∇V

(δjk denotes the Kronecker delta). Therefore QQQ will vanish in the denominator in the element |∇V (y)|a,
as

|QQQ∇V (y)|a =
(
|QQQ∇V (y)|2

) a
2 =

(
|∇V (y)|2

) a
2 = |∇V (y)|a,

and the same happens in the product QQQ∇V (y) ·QQQ∇ϕ(y). Consequently, (8) reduces to∫
Ω

∇V (y)

(1 + |∇V (y)|a)
1
a

· ∇ϕ(y) dy = 0.

which identifies V to be a weak solution to (5). Moreover, due to the strict monotonicity of F ′ we know
that the possible weak solution to (5) is unique and therefore U(x) = V (x) = U(QQQx). Since the rotation
matrix QQQ was chosen arbitrarily, this proves that U(x) = Ũ(|x|).

Then, ∇U(|x|) = Ũ ′(|x|) x
|x| and |∇U |a = |Ũ ′|a. Similarly, for any function g ∈ D([r,R]) we set

ψ(x) := g(|x|) in (7). Noticing that ∇ψ(|x|) = g′(|x|) x
|x| and using it in (7) we are led to∫

Ω

Ũ ′(|x|)(
1 + |Ũ ′(|x|)|a

) 1
a

g′(|x|) dx = 0 ⇔ Hd

∫ R

r

sd−1Ũ ′(s)(
1 + |Ũ ′(s)|a

) 1
a

g′(s) ds = 0,

where Hd is Hausdorff measure of the unit sphere in Rd. Therefore,

Ũ ′(s)(
1 + |Ũ ′(s)|a

) 1
a

=
c

sd−1
(9)

for some constant c and all s ∈ [r,R]. From (9) we know that Ũ ′ does not change the sign, that
sgn (Ũ ′) = sgn c = sgn Ũ = sgn K and that |c| < rd−1. The fact that Ũ ′ is of the same sign as Ũ is an
easy observation from the formulation of the problem. Also, after a simple manipulation one gets from
(9) that

Ũ ′(s) =
c(

sa(d−1) − |c|a
) 1

a

. (10)

Therefore,

Ũ(s) =

∫ s

r

c(
za(d−1) − |c|a

) 1
a

dz (11)

and

|K| = |Ũ(R)| =
∫ R

r

|c|(
za(d−1) − |c|a

) 1
a

dz ≤
∫ R

r

rd−1(
za(d−1) − ra(d−1)

) 1
a

dz.

The last inequality is legitimate thanks to the fact that the function |c|/(za(d−1) − |c|a)
1
a is increasing

in |c| ∈ [0, rd−1). Moreover, it gives the equivalent condition (see (6)) for the solvability of the problem
(5), as the last term is also the lowest upper bound for |K|, since we can get arbitrarily close to it by
a corresponding choice of the constant c. The question is, for which values of parameter a this term is
bounded and for which it is not. Hence to discuss the finiteness of the integral, we use the sequence of
the following approximations

|K| ≤
∫ R

r

1((
z
r

)a(d−1) − 1
) 1

a

dz =

∫ R

r

1(
ea ln( z

r )
d−1

− 1
) 1

a

dz ∼
∫ R

r

1(
ln
(
z
r

)) 1
a

dz

∼
∫ R

r

1

1

(lnw)
1
a

dw ∼
∫ R

r

1

1

(w − 1)
1
a

dw ∼
∫ R

r −1

0

1

t
1
a

dt.

Evidently, the last integral is finite if and only if a > 1. This completes the proof.
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MARINGOVÁ: VARIATIONAL PROBLEMS WITH LINEAR GROWTH

It is worth noticing that there were no further restrictions on r nor R but the natural one 0 < r < R.
Therefore, this lemma proves existence of solution on any annulus in Rd. Also, not only we know that
the solution exists, but (11) gives us the precise formula for it. Moreover, from (10) one can see that the
closer |c| is to r, the larger is |Ũ ′(r)| (and |K|). This information is crucial in the proof of the following
result.

Theorem 1 (Existence on general domain). For any domain Ω ⊂ Rd of class C1,1, boundary condition
U0 ∈ C1,1(∂Ω) and a ∈ (0, 1], there exists U ∈ C0,1(

F ′′(t)
≤ C2 for all s ≥ 1 and t ∈ [s/2, 2s].

Then the following statements are equivalent:

1. For arbitrary domains Ω of class C1 satisfying the exterior ball condition and arbitrary prescribed
boundary values u0 ∈ C1,1(Ω) there exists a unique function u ∈ C0,1(Ω) solving (2).

2. The function F satisfies ∫ ∞
1

tF ′′(t) dt =∞.

Remark 1. We define the exterior ball condition as: there exists a number r0 > 0 such that for every
point x0 ∈ ∂Ω there is a ball Br0(x1) with Br0(x1) ∩ Ω = {x0}.

Convexity or C1,1 regularity of the domain are sufficient for the exterior ball condition, thus, the
theorem holds for all convex domains of class C1 or for arbitrary domains of class C1,1.

Remark 2. Similar proof would work with C0,1 domains which are piece-wise C1,1 as well; except from
the corner points of the boundary, to which one can not attach the ball — hence we control the trace up
to the corner points, which is, however, the set of zero (d − 1) measure. Although, this solution is the
weak one and belongs to the space W 1,1(Ω).

This result is achieved via the so-called method of barrier functions denoted U b and Ub, which are
super- and sub-solution to (1), respectively.

Lemma 2 (Existence of barrier functions). Let Ω ⊂ Rd be of the class C1,1 with ai ∈ C1,1(Rd−1),
i = 1, . . . , N , corresponding parameterizations of the boundary. Let U ∈ L∞(Ω), ‖U‖∞ =: M and
U0 ∈ C1,1(∂Ω) such that U = U0 on ∂Ω.

Then there exist ε > 0 and rmax > 0 such that for every x0 ∈ ∂Ω and for every r < rmax there exist
functions U b, Ub : Rd → R such that for H(x0) := Uε(x0) ∩ ∂Ω for Uε(x0) an ε-neighbourhood of x0,

−div

(
∇U b

(1 + |∇U b|a)
1
a

)
> 0 in Ω, −div

(
∇Ub

(1 + |∇Ub|a)
1
a

)
< 0 in Ω,

U b > U0 on H(x0) \ {x0}, Ub < U0 on H(x0) \ {x0},
U b ≥M on ∂Ω \ H(x0), Ub ≤M on ∂Ω \ H(x0).

Moreover, Ub(x0) = U0(x0) = U b(x0).

In order for U (a solution to (1)) to be Lipschitz, we need the boundedness of the gradient. In the
tangential direction it is bounded thanks to attaining the Dirichlet boundary condition, in the normal
direction thanks to existence of barriers.
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Ω) a solution to problem (1).

The proof is not presented here, however, is included in the work Beck et al. [2016b], where the
minimization problem (2) is studied in detail for a broad class of convex functions F and not only those
presented in this paper. The result is formulated in the following theorem.

Theorem 2. Let F ∈ C2(R+) be a strictly convex function with lims→0 F
′(s) = 0 which satisfies, for

some constants C1, C2 > 0,

C1s− C2 ≤ F (s) ≤ C2(1 + s) for all s ∈ R+,

F ′′(s)
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Conclusion

In the paper, we briefly introduced the limiting strain problems from continuum mechanics. In very
special case we presented how the problem can be simplified to scalar one. We cited the known existence
results and explained how this one differs from them. According to function space, the existence in the
weaker sense has been known for spaces BV (Ω) and W 1,1

loc (Ω) (for respective values of parameter a),
however, with non-attainment of the trace. On the other hand, we often need the solution to have better
properties. Therefore, we studied what properties of the domain and the parameter would guarantee
the existence of a solution U ∈ W 1,1(Ω), U = U0 on ∂Ω. In this direction, we were inspired by the
previous work of Buĺıček et al. [2015] and improved the result in the natural way, i.e., for smaller interval
of admissible values of a we showed existence of solution on more general domains. That is, domains
with no restriction on convexity. Despite not being able to provide here the proof of this result in its
full completeness, we have given the reference on the submitted publication that shall accomplish this
mission even in a more general way.
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the Ministry of Education, Youth and Sports, Czech Republic.
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