1. Rozvíňte v řadu integrál $\int_0^\infty \cos x \log(1 + e^{-x}) \, dx$.

Řešení.

\[
\int_0^\infty \cos x \log(1 + e^{-x}) \, dx = \int_0^\infty \left(\sum_{k=1}^{\infty} (-1)^{k+1} \frac{e^{-kx} \cos x}{k} \right) \, dx \\
= \sum_{k=1}^{\infty} \int_0^\infty \frac{(-1)^{k+1} e^{-kx} \cos x}{k} \, dx \\
= \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2 + 1}.
\]

Odůvodnění záměny podle kritéria “$\sum \int |f_k| < \infty$”:

\[
\sum_{k=1}^{\infty} \int_0^\infty \left| \frac{(-1)^{k+1} e^{-kx} \cos x}{k} \right| \, dx \leq \sum_{k=1}^{\infty} \int_0^\infty \frac{e^{-kx}}{k} \, dx = \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty.
\]

2. Spočtěte integrál

\[
F(a) = \int_0^\infty \log(1 + ax^2) \, dx.
\]

Řešení. Pro $a < 0$ je integrand nedefinován na intervalu, tudíž integrál nemá smysl. $F(0) = 0$. Pro $a > 0$ máme

(1) $F'(a) = \int_0^\infty \frac{1}{(1 + ax^2)(1 + x^2)} \, dx.$

Odůvodnění: Podmínka měřitelnosti je splněna. Majoranta $\frac{1}{1+x^2}$, pro $a = 1$ máme

\[
\frac{\log(1 + x^2)}{x^2(1 + x^2)} \leq \frac{1}{x^2 + 1},
\]

takže integrál konverguje aspoň v jednom bodě (bod $a = 0$ se nedá použít, protože není v sledovaném intervalu). Integrant v (1) je spojitý, takže ta samá majoranta dává i spojitost derivace v $(0, \infty)$. Počítáme

\[
(a - 1)F'(a) = \int_0^\infty \left(\frac{a}{1 + ax^2} - \frac{1}{1 + x^2} \right) \, dx = \frac{\pi}{2} (\sqrt{a} - 1),
\]

tedy

(2) $F'(a) = \frac{\pi/2}{\sqrt{a} + 1}$

platí pro $a \in (0, \infty) \setminus \{1\}$. Jak už jsme zmínilí, F' je spojitá v 1, takže (2) platí i pro $a = 1$. Odtud $F(a) = \pi (\sqrt{a} - \log(1 + \sqrt{a})) + C$. Jelikož F je spojitá v 0+ (majoranta $\frac{\log(1+x^2)}{x^2(1+x^2)}$ pro $a \in [0,1]$ a přímý výpočet dává $F(0) = 0$, máme

\[
F(a) = \pi \left(\sqrt{a} - \log(1 + \sqrt{a}) \right), \quad a \geq 0.
\]

3. Spočtěte míru množiny:

\[
M = \left\{ [x, y, z] \in \mathbb{R}^3 : z\sqrt{x^2 + y^2} < 2, \sqrt{x^2 + y^2} < z + 1, \ z > 0 \right\}.
\]
Řešení. Ve válcových souřadnicích:

\[
\lambda_3(M) = \int_{0<r<2 \atop 0<\alpha<\pi} r \, dr \, dh \, d\alpha = 2\pi \int_0^1 \left(\int_0^{h+1} r \, dr \right) dh + 2\pi \int_1^\infty \left(\int_0^{2/h} r \, dr \right) dh
\]

\[
= \pi \int_0^1 (h^2 + 2h + 1) \, dh + \pi \int_1^\infty \frac{4}{h^2} \, dh = \pi \left(\frac{1}{3} + 1 + 4 \right) = \frac{19}{3} \pi.
\]

1. Spočtěte limitu \(\lim_{n \to \infty} n \int_0^\infty (1 + \frac{x}{n})^{-n} \sin \frac{x}{n} \, dx \).

\(\text{Řešení.} \)

\[
\lim_{n \to \infty} n \int_0^\infty (1 + \frac{x}{n})^{-n} \sin \frac{x}{n} \, dx = \int_0^\infty \left(\lim_{n \to \infty} (1 + \frac{x}{n})^{-n} \right) \sin \frac{x}{n} \, dx = \int_0^\infty xe^{-x} \, dx = \Gamma(2) = 1.
\]

Záměna podle Lebesgueovy věty. Pokud \(n \geq 3 \), pak \(\left(\frac{n}{3} \right) ^n \geq \frac{27}{2} \) a tudíž podle binomické věty \((1 + \frac{x}{n})^n \geq 1 + \frac{x^2}{27} \). Dále \(\sin \frac{x}{n} \leq \frac{x}{n} \). Tedy majoranta integrandu je

\[
\frac{27x}{27 + x^3}.
\]

2. Spočtěte

\[
F(a) = \int_0^\infty \frac{1 - e^{-a^2x^2}}{x^2} \, dx.
\]

\(\text{Řešení.} \) Máme

\[
F'(a) = \int_0^\infty 2a e^{-a^2x^2} \, dx = 2a \int_0^\infty e^{-t^2} \, dt = \pm \sqrt{\pi} \quad (t = |a| x, \ a \neq 0).
\]

Podmínka měřitelnosti je splněna. Integrál konverguje pro všechna \(a \in \mathbb{R} \). U nuly má integrand vlastní limitu \(a^2 \), u nekonečna je odhadnutý \(1/x^2 \). Majoranta pro derivaci \(2ae^{-a^2x^2} \) pro \(p < |a| < q, \ q > p > 0 \). Máme

\[
F(a) = \sqrt{\pi} a + C_1, \quad a > 0; \quad F(a) = -\sqrt{\pi} a + C_2, \quad a < 0.
\]

Přímým výpočtem dostaneme \(F(0) = 0 \). Abychom odtud učinili závěr, že \(F(a) = \sqrt{\pi}|a|, \ a \in \mathbb{R} \), musíme ještě ověřit spojitost \(F \) aspoň v nule. Majoranta pro spojitost je \(\frac{1-e^{-a^2x^2}}{x^2} \) pro \(|a| < q, \ q > 0 \).

3. Spočtěte integrál \(\int_M \frac{x \, dx \, dy \, dz}{x^2 + y^2} \), kde

\[
M = \{ x, y, z \} \in \mathbb{R}^3 : 0 < xz < x^2 + y^2 < 1, \ z > 0 \}.
\]

\(\text{Řešení.} \) Ve válcových souřadnicích \(x = r \cos \alpha, \ y = r \sin \alpha, \ z = h \), Jakobíán \(r \) uvážíme, že podmínka \(h \cos \alpha > 0 \) dává omezení \(|\alpha| < \pi/2 \). Máme

\[
\int_M \frac{x \, dx \, dy \, dz}{x^2 + y^2} = \int_{0<h \cos \alpha<r<1 \atop -\pi/2<\alpha<\pi/2} \cos \alpha \, dr \, dh \, d\alpha
\]

\[
= \int_{-\pi/2}^{\pi/2} \left(\int_0^1 \left(\int_0^{r \cos \alpha} \cos \alpha \, dh \right) dr \right) d\alpha = \int_{-\pi/2}^{\pi/2} \left(\int_0^1 r \, dr \right) d\alpha = \pi/2.
\]