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Linear mixed effects model
(theoretical and empirical issues)
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Lecture 7

A brief overview
❏ Simple linear regression model for repeated measurements within

(independent) subjects i ∈ {1, . . . , N} in a form

Yi = Xi β + εi

for the response vector Yi ∈ Rni where Xi = (Xi1, . . . , Xini )⊤, Xij ∈ Rp

for j = 1, . . . , ni are the explanatory vectors and β ∈ Rp is the unknown
vector of parameters—measurements taken at times ti = (ti1, . . . , tini )⊤

❏ The variance-covariance structure within each subject is modelled by the
vector parameters α ∈ Rq, such that εi ∼ Nni (0i ,Vi (ti , α)), where

εij = z⊤
ij wi + Wi (tij) + ωij

for random vector wi , random process Wi (t), and random variable ωij

❏ This can be rewritten as a linear mixed (effects) model (LMM) with
fixed effects, random effects, and the error terms

Yi = Xi β + Zi wi + Ri ,

where Ri = (Ri1, . . . , Rini )⊤ = (Wi (ti1) + ωi1, . . . , Wi (tini ) + ωin1 )⊤

(different formulations of the same model depending on which part of the model is emphasized)
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Lecture 7

Two stage approach vs. LMM formulation
❏ Considering the longitudinal data {(Yij , Xij); i = 1, . . . , N; j = 1, . . . , ni }

the statistical analysis can be either performed in a two stage process
(1) separate models Yi = X(1)

i βi + εi for each subject i = 1, . . . , N
(2) and the overall model for regression parameters βi = X(2)

i β + bi

❏ Alternatively (but not equivalently), one common model with mixed
effects (LMM) can be used instead where

Yi = X(1)
i βi + εi

βi = X(2)
i β + bi

}
=⇒ Yi = X(1)

i X(2)
i︸ ︷︷ ︸

Xi

β + X(1)
i︸︷︷︸
Zi

bi︸︷︷︸
wi

+ εi︸︷︷︸
Ri

What are common drawbacks of the two-stage model formulation that are
overcome in the overall LMM formulation?

Consider, for instance, a linear regression line in the first stage and a subject with only
one observations. Or, instead, a quadratic fit in the first stage and some subjects with
only two measurements?
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Lecture 7

Components of the LMM

❏ Fixed effects Xi β

❏ the same structure for all subjects (the population mean structure)
❏ covariates Xij are generally assumed to be random but the regression

framework is typically considered conditionally on the model matrix X

❏ Random effects Zi wi

❏ the subject-specific part of the model (the individual mean structure)
❏ describes how the mean parameters for one subject differ from the mean

parameters for the other subject—resp. how the population mean
(common) differs from the subject’s specific mean (individual)

❏ Non-systematic terms (error) Ri

❏ sometimes called the variance components model
❏ accounts for the between and withing subjects’ variability
❏ partially modeled by the subject specific covariates...
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Lecture 7

Population vs. individual interpretation
Consider LMM of the form Yi = Xiβ + Ziwi + Ri where, typically,
wi ∼ N(0,G) and Ri ∼ N(0,Ri) – alternatively Y = Xβ + Zw + R

❏ Marginal model Yi ∼ N(Xi β,ZiGZ⊤
i + Ri )

A population characterization and a population interpretation of the model—the
model describes the conditional mean given a subset of specific (sub-population)
characteristics. Inference with respect to the subpopulation differences

❏ Hierarchical model Yi |wi ∼ N(Xi β + Zi wi ,Ri ) and wi ∼ N(0,G)

Subject specific characterization and subject specific as well as population
interpretation of the model—the model describes—in two levels (therefore
hierarchical)—the conditional mean of a specific subject i but it can be
integrated over the distribution of wi to obtain the population characterization
(similarly as in the marginal model)

↪→ note, that the hierarchical model can be used to obtain the marginal model, but
this does not hold in vise-versa manner. Also, different hierarchical models can
produce the same marginal model
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Lecture 7

Examples

❏ Example 1 Consider a simple linear mixed effect model for two repeated
observations only (i.e., ni = 2) with a random intercept term and
uncorrelated heterogenous errors Ri = (Ri1, Ri2)⊤ where Ri1 ∼ N(0, τ 2

1 )
and Ri2 ∼ N(0, τ 2

2 ). What is the mean structure? What is the overall
variance-covariance structure ZiGZ⊤

i + Ri ?

❏ Example 2 Consider a simple linear mixed effect model for two repeated
observations only (i.e., ni = 2) with (uncorrelated) random intercept and
random slope terms and homoscedastic errors Ri ∼ N2(0, τ2I). What is
the mean structure? What is the overall variance-covariance structure?

Thus, as a direct consequence, any good marginal model fit can not be used as an
argument to justify also a good hierarchical model fit...
We can only contradict a wrong model... we can not prove a right model!
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Lecture 7

Inference in a marginal model

Basically, there are two parts of the model that we can be interested in
when performing the statistical inference about the unknown parameters

❏ Inference about the fixed effects (parameters β ∈ Rp)
❏ Wald type tests
❏ t-tests and F -tests
❏ likelihood ratio tests
❏ robust (sandwich) inference

❏ Inference about variance/covariance components (parameters α ∈ Rq)
❏ Wald type tests
❏ likelihood ratio tests

↪→ in practical applications there are also various information criteria used
(AIC, BIC, Hannan and Quinn (HQIC), Bozdogan (CAIC), etc.)
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Lecture 7

Inference – statistical properties (overview)

❏ the estimate for β ∈ Rp

β̂(α̂) =
(
X⊤WX

)−1X⊤WY

where W−1 = V(α, t), and α̂ ∈ Rq is a REML (ML) estimate of α ∈ Rq

(an unbiased estimate whatever the value of α̂ ∈ Rq is plugged-in)

❏ the variance of β̂(α̂) is

Var [β̂(α̂)] =
(
X⊤WX

)−1
(
X⊤W⊤[VarY ]WX

)(
X⊤WX

)−1

and for a correctly specified variance matrix Var [β̂(α̂)] =
(
X⊤WX

)−1

❏ the distribution of β̂(α̂) is (conditionally on α̂) approximately normal,
with the corresponding mean and variance structure

8 / 17
Longitudinal and Panel data | (NMST 422)

▲



Lecture 7

Inference for the mean structure
Consider the null hypothesis of the form H0 : Lβ = 0 vs. HA : Lβ ̸= 0

❏ Wald tests (approximate)

T = β̂⊤L⊤
[
L

(
X⊤V−1(t, α̂)X

)−1
L⊤

]−1

Lβ̂
H0∼
as.

χ2
rank(L)

❏ t-tests and F -tests (approximate)

F =
β̂⊤L⊤

[
L

(
X⊤V−1(t, α̂)X

)−1
L⊤

]−1

Lβ̂

rank(L)
H0∼
as.

Frank(L),M

where M needs to be approximated (containment method (SAS),
Satterthwaite approximation, Kenward & Roger approximation)

❏ likelihood ratio tests (approximate)

L = −2 ln λ = −2 ln
[
L(model H0)/L(model HA)

] H0∼
as.

χ2
dim(HA)−dim(H0)
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Lecture 7

Inference for the variance structure

Both, ML and REML estimates of α ∈ Rq are approximately normally
distributed with the true value as the mean vector and the inverse Fisher
information matrix as the variance-covariance matrix

❏ approximate Wald type tests
(in SAS the option covtest in the proc mixed statement)

❏ however, some statistical tests may not have any reasonable interpretation
under the hierarchical model (the tests are only meaningful under the
marginal model) (Consider: VarYi (t)) = (1, t)G(1, t)⊤ + σ2)

❏ moreover, the quality of the normal approximation depends on the true
value of α ∈ Rq and the approximation completely fails when testing for
boundary values (Again marginal vs. hierarchical model)

❏ likelihood ratio tests
(also valid for REML if the same mean structure is used)
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Lecture 7

Individual profiles (hierarchical model)

The measurements of the dependent variable, Yij ∈ R, for subjects i = 1, . . . , N and
repeated observations j = 1, . . . , ni within the subject i (taken at the time-points
ti1 < ti2 < · · · < tini ) can be also expressed as

Yi(tij) ≡ Yij = µ(tij) + Uij + Wi(tij) + ωij

where
❏ µ(tij) ≡ X⊤

ij β is the mean profile
❏ Uij = z⊤

ij wi , where Uij ∼ N(0, z⊤
ij Gzij), independent in i ∈ {1, . . . , N}

❏ Wi (tij) are realization of independent copies {Wi (t)} of a zero mean
Gaussian process with the covariance function σ2ρ(u)

❏ ωij ∼ N(0, τ 2) are mutually independent measurement errors

Goal: To construct an estimate (a prediction) for an individual i outcome
at the time point t, meaning that we want to obtain the profile for Ŷi(t)
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Lecture 7

Towards the individual’s prediction

❏ as far as ωij ∼ N(0, τ 2) are zero-mean (independent) measurement errors
they do not contribute to the prediction/estimation of Yi (t)

❏ therefore, the prediction/estimate of Yi (t) can be expressed as

Ŷi (t) = µ̂(t) + Û + Ŵi (t) = µ̂(t) + Ω̂i (t)

where µ̂(t) represents the estimate for the mean structure and Ω̂i (t)
represents the estimate for the variance/covariance structure

❏ the mean structure can be estimated by standard techniques (e.g., by
assuming a linear regression model)

❏ How the estimate the variance/covariance structure Ωi (t)?
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Lecture 7

Continuous process vs. discrete realizations

❏ the subject specific profile Yi (t) is only observed at some finite number of
time points ti = (ti1, . . . , tini )⊤ ∈ Rni

❏ the same can be also said about the subject specific variance/covariance
profile Ωi (t) that is only observed at ti = (ti1, . . . , tini )⊤ ∈ Rni

❏ Analogously, the estimate for Ωi (t) will be only provided for some specific
(finitely many) time points, lets say t = (t1, . . . , tn)⊤ ∈ Rn

❏ Under the assumed normality, we have Yi ∼ N(Xi β,ZiGZ⊤
i + σ2Hi + τ 2Ii )

and also Ωi = (Ωi (t1), . . . , Ωi (tn))⊤ ∼ N(0,ZtGZ⊤
t + σ2Ht) where Zt

and Ht correspond to the time points t = (t1, . . . , tn)⊤

❏ Thus, it also holds that(
Ωi
Yi

)
∼ Nn+ni

((
0

Xi β

)
,

(
Σ(t, t) Σ(t, ti )
Σ(ti , t) Σ(ti , ti )

))
where Σ(·, ·) represent the corresponding covariance matrix

13 / 17
Longitudinal and Panel data | (NMST 422)

▲



Lecture 7

Continuous process vs. discrete realizations

❏ the subject specific profile Yi (t) is only observed at some finite number of
time points ti = (ti1, . . . , tini )⊤ ∈ Rni

❏ the same can be also said about the subject specific variance/covariance
profile Ωi (t) that is only observed at ti = (ti1, . . . , tini )⊤ ∈ Rni

❏ Analogously, the estimate for Ωi (t) will be only provided for some specific
(finitely many) time points, lets say t = (t1, . . . , tn)⊤ ∈ Rn

❏ Under the assumed normality, we have Yi ∼ N(Xi β,ZiGZ⊤
i + σ2Hi + τ 2Ii )

and also Ωi = (Ωi (t1), . . . , Ωi (tn))⊤ ∼ N(0,ZtGZ⊤
t + σ2Ht) where Zt

and Ht correspond to the time points t = (t1, . . . , tn)⊤

❏ Thus, it also holds that(
Ωi
Yi

)
∼ Nn+ni

((
0

Xi β

)
,

(
Σ(t, t) Σ(t, ti )
Σ(ti , t) Σ(ti , ti )

))
where Σ(·, ·) represent the corresponding covariance matrix

13 / 17
Longitudinal and Panel data | (NMST 422)

▲



Lecture 7

Continuous process vs. discrete realizations

❏ the subject specific profile Yi (t) is only observed at some finite number of
time points ti = (ti1, . . . , tini )⊤ ∈ Rni

❏ the same can be also said about the subject specific variance/covariance
profile Ωi (t) that is only observed at ti = (ti1, . . . , tini )⊤ ∈ Rni

❏ Analogously, the estimate for Ωi (t) will be only provided for some specific
(finitely many) time points, lets say t = (t1, . . . , tn)⊤ ∈ Rn

❏ Under the assumed normality, we have Yi ∼ N(Xi β,ZiGZ⊤
i + σ2Hi + τ 2Ii )

and also Ωi = (Ωi (t1), . . . , Ωi (tn))⊤ ∼ N(0,ZtGZ⊤
t + σ2Ht) where Zt

and Ht correspond to the time points t = (t1, . . . , tn)⊤

❏ Thus, it also holds that(
Ωi
Yi

)
∼ Nn+ni

((
0

Xi β

)
,

(
Σ(t, t) Σ(t, ti )
Σ(ti , t) Σ(ti , ti )

))
where Σ(·, ·) represent the corresponding covariance matrix

13 / 17
Longitudinal and Panel data | (NMST 422)

▲



Lecture 7

Continuous process vs. discrete realizations

❏ the subject specific profile Yi (t) is only observed at some finite number of
time points ti = (ti1, . . . , tini )⊤ ∈ Rni

❏ the same can be also said about the subject specific variance/covariance
profile Ωi (t) that is only observed at ti = (ti1, . . . , tini )⊤ ∈ Rni

❏ Analogously, the estimate for Ωi (t) will be only provided for some specific
(finitely many) time points, lets say t = (t1, . . . , tn)⊤ ∈ Rn

❏ Under the assumed normality, we have Yi ∼ N(Xi β,ZiGZ⊤
i + σ2Hi + τ 2Ii )

and also Ωi = (Ωi (t1), . . . , Ωi (tn))⊤ ∼ N(0,ZtGZ⊤
t + σ2Ht) where Zt

and Ht correspond to the time points t = (t1, . . . , tn)⊤

❏ Thus, it also holds that(
Ωi
Yi

)
∼ Nn+ni

((
0

Xi β

)
,

(
Σ(t, t) Σ(t, ti )
Σ(ti , t) Σ(ti , ti )

))
where Σ(·, ·) represent the corresponding covariance matrix

13 / 17
Longitudinal and Panel data | (NMST 422)

▲



Lecture 7

Conditional normal distribution
❏ A natural estimate for Ωi would the the conditional expectation, i.e.

Ω̂i = E [Ωi |Yi ]

❏ Using standard properties of a multivariate normal distribution, where(
X
Y

)
∼ Np+q

((
µ1
µ2

)
,

(
Σ11 Σ12
Σ21 Σ22

))
it holds that

❏ conditional expectation of X given Y is
E [X|Y = y ] = µ1 + Σ12Σ−1

22 (y − µ2)
(µX |Y )

❏ conditional variance of X given Y is
Var [X|Y = y ] = Σ11 − Σ12Σ−1

22 Σ21

(ΣX |Y )
❏ conditional variance of X given Y is

X|Y = y ∼ Np(µX |Y , ΣX |Y )
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Var [X|Y = y ] = Σ11 − Σ12Σ−1

22 Σ21

(ΣX |Y )
❏ conditional variance of X given Y is

X|Y = y ∼ Np(µX |Y , ΣX |Y )
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Lecture 7

Estimate for the subject’s profile
Using now the properties of the multivariate normal distribution we
finally obtain

❏ Ω̂i = E [Ωi |Yi ] = Σ(t, ti )
[
Σ(ti , ti )

]−1
(Yi − Xi β)

❏ Var [Ω̂i |Yi ] = Σ(t, t) − Σ(t, ti )
[
Σ(ti , ti )

]−1
Σ(ti , t)

❏ in the expressions above there are still some quantities that are unknown
(the vector of the regression parameters β ∈ Rp or the parameters α ∈ Rq

that specifies the variance/covariance structure)
❏ plug-in techniques are typically used to obtain the final estimate for Ωi

❏ note, that for τ 2 = 0 and t ≡ ti , the estimator/predictor Ω̂i reduces to
(Yi − Xi β̂) with zero variance (meaning that if there is no measurement
error than the data are perfect estimate/prediction for the true outcome
at the existing observation time points)

❏ when τ 2 > 0, than Ω̂i reflects some compromise between (Yi − Xi β̂) and
zero tending to zero when τ 2 increases
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Lecture 7

Examples

❏ Example 1 Assume a simple linear (regression) model with a random
intercept term (i.e., zij = 1 and wi ∼ N(0, ν2))

❏ observations Yi (tij ) ≡ Yij = µ(tij ) + Ui + Wi (t)ij + ωij
❏ thus, Yi ∼ N(Xi β, ν2Ji + σ2Hi + τ2Ii )
❏ and, also, Ωi ∼ N(0, ν2Jt + σ2Ht)

❏ Example 2 Assume a simple linear (regression) model with a random
intercept and random slope (i.e., zij = (1, tij)⊤ and wi ∼ N2(0, ν2I)),
where I ∈ R2×2 is a unit matrix and wi = (wi1, wi2)⊤

❏ observations Yi (tij ) ≡ Yij = µ(tij ) + (wi1 + wi2tij ) + Wi (t)ij + ωij
❏ thus, Yi ∼ N(Xi β, ν2Mi + σ2Hi + τ2Ii ), where Mi = (1 + tij tik)ni

j,k=1
❏ and, also, Ωi ∼ N(0, ν2Mt + σ2Ht), where Mt = (1 + tj tk)n

j,k=1
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Lecture 7

Bayesian interpretation

❏ prior density for the random effects: wi ∼ g(w)
❏ conditional density of the data: Yi |wi ∼ f (y |w)
❏ posterior density for the random effects

g(w |y) = f (y |w)g(w)∫
f (y |w)g(w)

❏ posterior mean of g(w |y) used as an estimate for wi
(still depends on the estimated parameters in α̂ ∈ Rq)
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