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Linear mixed effects model
(theoretical and empirical issues)
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A brief overview

[ Simple linear regression model for repeated measurements within
(independent) subjects i € {1,..., N} in a form

Y =XiB +¢;

for the response vector Y; € R" where X; = (Xi1, ..., Xin,) ", Xj € R?
for j =1,...,n; are the explanatory vectors and 8 € R” is the unknown
vector of parameters—measurements taken at times t; = (ti1, ..., tin,) "

[ The variance-covariance structure within each subject is modelled by the
vector parameters a € RY, such that e; ~ N, (0;, Vi(t;, ), where

-
ey = z; wi + Wi(ty) + wy

for random vector w;, random process W;(t), and random variable wj
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A brief overview

[ Simple linear regression model for repeated measurements within
(independent) subjects i € {1,..., N} in a form

Y, =XiB+ei

for the response vector Y; € R" where X; = (Xi1, ..., Xin,) ", Xj € R?
for j =1,...,n; are the explanatory vectors and 8 € R” is the unknown
vector of parameters—measurements taken at times t; = (ti1, ..., tin,) "

[ The variance-covariance structure within each subject is modelled by the
vector parameters a € RY, such that e; ~ N, (0;, Vi(t;, ), where

ey = 2z wi + Wi(ty) +wj

for random vector w;, random process W;(t), and random variable wj;

[ This can be rewritten as a linear mixed (effects) model (LMM) with
fixed effects, random effects, and the error terms

Yi =XiB + Ziw; + R;,
where R; = (le, ey R,'nl.)T = (VV,'(t,'l) + Wity ..y ‘/V,‘(tin,.) + w,-,,l)T

(different formulations of the same model depending on which part of the model is emphasized)
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Two stage approach vs. LMM formulation

(1 Considering the longitudinal data {( Y35, X;); i=1,...,N;j=1,...,n}
the statistical analysis can be either performed in a two stage process

(1) separate models Y; = X,(-l),@i + €; for each subject i =1,..., N
(2) and the overall model for regression parameters 8; = Xl(.z)ﬂ + b;
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Two stage approach vs. LMM formulation

(1 Considering the longitudinal data {( Y35, X;); i=1,...,N;j=1,...,n}
the statistical analysis can be either performed in a two stage process
(1) separate models Y; = X,(-l)ﬂf + g; for each subject i =1,..., N
(2) and the overall model for regression parameters 8; = Xl(.Z)ﬂ + b;

[ Alternatively (but not equivalently), one common model with mixed
effects (LMM) can be used instead where

Y, = X,(”ﬂ,- + €; }

= Y =xUxPgix b + g
Bi=XPB + b ISR AN

——
X; Z; w; R;
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Two stage approach vs. LMM formulation

(1 Considering the longitudinal data {( Y35, X;); i=1,...,N;j=1,...,n}
the statistical analysis can be either performed in a two stage process

(1) separate models Y; = Xgl)ﬂ,' + €; for each subject i =1,..., N
(2) and the overall model for regression parameters 8; = XE2)ﬂ + b;

[ Alternatively (but not equivalently), one common model with mixed
effects (LMM) can be used instead where

- _ xWg. .
Y, = Xl(z)ﬂ' +&i — Y, = Xfl)xf2)ﬂ + Xfl) b + &
B =xXB + b, N — —~~
X; Z; w; R;

What are common drawbacks of the two-stage model formulation that are
overcome in the overall LMM formulation?

Consider, for instance, a linear regression line in the first stage and a subject with only
one observations. Or, instead, a quadratic fit in the first stage and some subjects with

only two measurements?
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Components of the LMM

1 Fixed effects X;8

[d the same structure for all subjects (the population mean structure)
[J covariates Xj; are generally assumed to be random but the regression
framework is typically considered conditionally on the model matrix X

1 Random effects Z;w;

[ the subject-specific part of the model (the individual mean structure)

1 describes how the mean parameters for one subject differ from the mean
parameters for the other subject—resp. how the population mean
(common) differs from the subject’s specific mean (individual)

1 Non-systematic terms (error) R;

1 sometimes called the variance components model
[d accounts for the between and withing subjects’ variability
[ partially modeled by the subject specific covariates...
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Population vs. individual interpretation

Consider LMM of the form Y; = X;8 + Z;w; + R; where, typically,
w; ~ N(0,G) and R; ~ N(0,R;) — alternatively Y = X8 +Zw + R

d Marginal model Y; ~ N(X,ﬂ,Z,—GZ,-T +Ry)

A population characterization and a population interpretation of the model—the
model describes the conditional mean given a subset of specific (sub-population)
characteristics. Inference with respect to the subpopulation differences

(1 Hierarchical model Yj|w; ~ N(X;8 + Ziw;,R;) and w; ~ N(0,G)

Subject specific characterization and subject specific as well as population
interpretation of the model—the model describes—in two levels (therefore
hierarchical)—the conditional mean of a specific subject i but it can be
integrated over the distribution of w; to obtain the population characterization
(similarly as in the marginal model)
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Population vs. individual interpretation

Consider LMM of the form Y; = X;8 + Z;w; + R; where, typically,
w; ~ N(0,G) and R; ~ N(0,R;) — alternatively Y = X8 +Zw + R

d Marginal model Y; ~ N(X,ﬂ,Z,—GZ,-T +Ry)

A population characterization and a population interpretation of the model—the
model describes the conditional mean given a subset of specific (sub-population)
characteristics. Inference with respect to the subpopulation differences

(1 Hierarchical model Yj|w; ~ N(X;8 + Ziw;,R;) and w; ~ N(0,G)

Subject specific characterization and subject specific as well as population
interpretation of the model—the model describes—in two levels (therefore
hierarchical)—the conditional mean of a specific subject i but it can be
integrated over the distribution of w; to obtain the population characterization
(similarly as in the marginal model)

< note, that the hierarchical model can be used to obtain the marginal model, but
this does not hold in vise-versa manner. Also, different hierarchical models can
produce the same marginal model
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Examples

[ Example 1 Consider a simple linear mixed effect model for two repeated
observations only (i.e., n; = 2) with a random intercept term and
uncorrelated heterogenous errors R; = (Ri1, R2) " where Ry ~ N(0,77)
and R ~ N(0,72). What is the mean structure? What is the overall
variance-covariance structure Z;GZ;" + R;?
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Examples

[ Example 1 Consider a simple linear mixed effect model for two repeated
observations only (i.e., n; = 2) with a random intercept term and
uncorrelated heterogenous errors R; = (Ri1, R2) " where Ry ~ N(0,77)
and R ~ N(0,72). What is the mean structure? What is the overall
variance-covariance structure Z;GZ;" + R;?

d Example 2 Consider a simple linear mixed effect model for two repeated
observations only (i.e., nj = 2) with (uncorrelated) random intercept and
random slope terms and homoscedastic errors R; ~ N2(0, 72I). What is
the mean structure? What is the overall variance-covariance structure?
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Examples

[ Example 1 Consider a simple linear mixed effect model for two repeated
observations only (i.e., n; = 2) with a random intercept term and
uncorrelated heterogenous errors R; = (Ri1, R2) " where Ry ~ N(0,77)
and R ~ N(0,72). What is the mean structure? What is the overall
variance-covariance structure Z;GZ;" + R;?

d Example 2 Consider a simple linear mixed effect model for two repeated
observations only (i.e., nj = 2) with (uncorrelated) random intercept and
random slope terms and homoscedastic errors R; ~ N2(0, 72I). What is
the mean structure? What is the overall variance-covariance structure?

Thus, as a direct consequence, any good marginal model fit can not be used as an
argument to justify also a good hierarchical model fit...
We can only contradict a wrong model... we can not prove a right model!
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Inference in a marginal model

Basically, there are two parts of the model that we can be interested in
when performing the statistical inference about the unknown parameters

[ Inference about the fixed effects (parameters 8 € R”)

1 Wald type tests

[ t-tests and F-tests

[ likelihood ratio tests

[ robust (sandwich) inference

[ Inference about variance/covariance components (parameters o € RY)

1 Wald type tests
[ likelihood ratio tests
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Inference in a marginal model

Basically, there are two parts of the model that we can be interested in
when performing the statistical inference about the unknown parameters

[ Inference about the fixed effects (parameters 8 € R”)

[ Wald type tests

[J t-tests and F-tests

[ likelihood ratio tests

[ robust (sandwich) inference

[ Inference about variance/covariance components (parameters o € RY)

1 Wald type tests
[ likelihood ratio tests

< in practical applications there are also various information criteria used
(AIC, BIC, Hannan and Quinn (HQIC), Bozdogan (CAIC), etc.)
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Inference — statistical properties (overview)

[ the estimate for 8 € R”?
Ba) = (X"WX) X 'Wy

where W™! = V(a, t), and & € R? is a REML (ML) estimate of o € R?
(an unbiased estimate whatever the value of & € R? is plugged-in)

0 the variance of (&) is

Var[B(a@)] = (XxTWx) ™ (XTWT[VarY]WX> (XTWx) ™

and for a correctly specified variance matrix Var[E(a)] = (XTWX)_I

O the distribution of B(&) is (conditionally on &) approximately normal,
with the corresponding mean and variance structure
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Inference for the mean structure
Consider the null hypothesis of the form Hy : LB =0vs. Ha : LB #0

[d Wald tests (approximate)

~ Ho

. -1 ]t
T=8TLT {L(XTV‘l(tya)X) LT} L %

[ t-tests and F-tests (approximate)

_ —1
BTLT []L(XTVI(t, a)x) LT] LA
Ho
F= ~ Fran
rank(LL) as. k(L) M

where M needs to be approximated (containment method (SAS),
Satterthwaite approximation, Kenward & Roger approximation)

[ likelihood ratio tests (approximate)

L=—2In\=—2In [L(model Ho)/L(model Ha)] & Ximra)—dim(tt)
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Inference for the variance structure

Both, ML and REML estimates of o € R9 are approximately normally
distributed with the true value as the mean vector and the inverse Fisher
information matrix as the variance-covariance matrix

[ approximate Wald type tests
(in SAS the option covtest in the proc mixed statement)

[d however, some statistical tests may not have any reasonable interpretation
under the hierarchical model (the tests are only meaningful under the
marginal model) (Consider: VarY;(t)) = (1,t)G(1,t)" + ¢?)

[ moreover, the quality of the normal approximation depends on the true
value of a € RY and the approximation completely fails when testing for
boundary values (Again marginal vs. hierarchical model)
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Inference for the variance structure

Both, ML and REML estimates of o € R9 are approximately normally
distributed with the true value as the mean vector and the inverse Fisher
information matrix as the variance-covariance matrix

[ approximate Wald type tests
(in SAS the option covtest in the proc mixed statement)

[d however, some statistical tests may not have any reasonable interpretation
under the hierarchical model (the tests are only meaningful under the
marginal model) (Consider: VarY;(t)) = (1,t)G(1,t)" + ¢?)

[ moreover, the quality of the normal approximation depends on the true
value of a € RY and the approximation completely fails when testing for
boundary values (Again marginal vs. hierarchical model)

(1 likelihood ratio tests
(also valid for REML if the same mean structure is used)
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Individual profiles (hierarchical model)

The measurements of the dependent variable, Yj; € R, for subjects i =1,..., N and
repeated observations j = 1,..., n; within the subject i (taken at the time-points
tip < tip < --- < tip;) can be also expressed as

Yi(ty) = i = ulty) + Uj + Wi(ty) + wy

where
0 u(ty) = Xj B is the mean profile
QO Uy = zj w;, where U; ~ N(0, z] Gzy), independent in i € {1,..., N}

1 W;(t;) are realization of independent copies {W;(t)} of a zero mean
Gaussian process with the covariance function o2p(u)

O wj ~ N(0,72) are mutually independent measurement errors
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Individual profiles (hierarchical model)

The measurements of the dependent variable, Yj; € R, for subjects i =1,..., N and
repeated observations j = 1,..., n; within the subject i (taken at the time-points
tip < tip < --- < tip;) can be also expressed as

Yi(ty) = Yy = p(ty) + Uy + Wilty) + wjj

where
0 u(ty) = Xj B is the mean profile
QO Uy = zj w;, where U; ~ N(0, z] Gzy), independent in i € {1,..., N}

1 W;(t;) are realization of independent copies {W;(t)} of a zero mean
Gaussian process with the covariance function o2p(u)

O wj ~ N(0,72) are mutually independent measurement errors

Goal: To construct an estimate (a prediction) for an individual i outcome
at the time point t, meaning that we want to obtain the profile for Y;(t)
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Towards the individual’s prediction

O as far as w; ~ N(0,7%) are zero-mean (independent) measurement errors
they do not contribute to the prediction/estimation of Y;(t)

[ therefore, the prediction/estimate of Y;(t) can be expressed as
Yi(t) = fi(t) + U + Wi(t) = A(t) + Q(t)

where [i(t) represents the estimate for the mean structure and Q;(t)
represents the estimate for the variance/covariance structure
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Towards the individual’s prediction

O as far as w; ~ N(0,7%) are zero-mean (independent) measurement errors
they do not contribute to the prediction/estimation of Y;(t)

[ therefore, the prediction/estimate of Y;(t) can be expressed as
Yi(t) = () + U+ Wi(t) = fi(t) + (1)
where i(t) represents the estimate for the mean structure and SAZ,-(t)

represents the estimate for the variance/covariance structure

(1 the mean structure can be estimated by standard techniques (e.g., by
assuming a linear regression model)
1 How the estimate the variance/covariance structure Q;(t)?
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Continuous process vs. discrete realizations

[ the subject specific profile Yi(t) is only observed at some finite number of
time points t; = (ti, ..., tin,) € R"

[ the same can be also said about the subject specific variance/covariance
profile Q;(t) that is only observed at t; = (ti, ..., tin)' € R"
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Continuous process vs. discrete realizations

[ the subject specific profile Yi(t) is only observed at some finite number of
time points t; = (ti, ..., tin,) € R"

[ the same can be also said about the subject specific variance/covariance
profile Q;(t) that is only observed at t; = (ti, ..., tin)' € R"

[ Analogously, the estimate for Q;(t) will be only provided for some specific
(finitely many) time points, lets say t = (ti,...,t,) € R"
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Continuous process vs. discrete realizations

[ the subject specific profile Yi(t) is only observed at some finite number of
time points t; = (ti, ..., tin,) € R"

[ the same can be also said about the subject specific variance/covariance
profile Q;(t) that is only observed at t; = (ti, ..., tin)' € R"

[ Analogously, the estimate for Q;(t) will be only provided for some specific
(finitely many) time points, lets say t = (ti,...,t,) € R"

(3 Under the assumed normality, we have Y; ~ N(X;8, Z:GZ; + o°H; + 72I;)
and also ©; = (Qi(t1), ..., Qi(ta))" ~ N(0,Z.GZ; +02Ht) where Z,
and H; correspond to the time points t = (t1,...,t,)"
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Continuous process vs. discrete realizations

[ the subject specific profile Yi(t) is only observed at some finite number of
time points t; = (ti, ..., tin,) € R"

[ the same can be also said about the subject specific variance/covariance
profile Q;(t) that is only observed at t; = (ti, ..., tin)' € R"

[ Analogously, the estimate for Q;(t) will be only provided for some specific
(finitely many) time points, lets say t = (ti,...,t,) € R"

(3 Under the assumed normality, we have Y; ~ N(X;8, Z:GZ; + o°H; + 72I;)
and also Q; = (Qi(t1), ..., Qi(ts))" ~ N(0,Z:GZ] + JZHt) where Z,
and H; correspond to the time points t = (t1,...,t,)"

[ Thus, it also holds that

(n,) N (( 0 ) (E(t,t) S(t, t) ))
y, ) P Xig )\ Z(ti,t) X(ti,t;)

where (-, -) represent the corresponding covariance matrix
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Conditional normal distribution
1 A natural estimate for (2; would the the conditional expectation, i.e.

Qi = E[Q]Y]
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Conditional normal distribution
1 A natural estimate for (2; would the the conditional expectation, i.e.

Q: = E[]Y]]

[ Using standard properties of a multivariate normal distribution, where
X N H1 Y X
Y pta n2 )0\ B X
it holds that

[ conditional expectation of X given Y is
EX|Y =yl = p1 + T1255,' (y — p2)
(kxv)
1 conditional variance of X given Y is
Var[X|Y = y] = ¥11 — 1035, Ty
(Zxv)
[ conditional variance of X given Y is

X|Y =y ~ Np(px|y, Zx|v)
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Estimate for the subject’s profile

Using now the properties of the multivariate normal distribution we
finally obtain

a0 = E[Q)]Y] = (¢, t) [2(:,-, t,-)} v - x.8)

O Var[Q4] Y] = B(t, t) — 3(t, t;) [E(t,-, t,-)] _lz(t,-, t)
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Estimate for the subject’s profile

Using now the properties of the multivariate normal distribution we
finally obtain

0 Q= E[Q]Y] = 3(¢, ;) [E(t,-, t,-)} _1(Y,- - Xip)
O Var[Q4] Y] = B(t, t) — 3(t, t;) [E(t,-, t,-)} _IE(t,», t)

[ in the expressions above there are still some quantities that are unknown
(the vector of the regression parameters 3 € R” or the parameters a € RY
that specifies the variance/covariance structure)

[ plug-in techniques are typically used to obtain the final estimate for ;

[0 note, that for 72 = 0 and t = t;, the estimator/predictor ﬁ,- reduces to
(Yi — X,-B\) with zero variance (meaning that if there is no measurement
error than the data are perfect estimate/prediction for the true outcome
at the existing observation time points)

O when 72 > 0, than Q; reflects some compromise between (Y; — X;3) and
zero tending to zero when 72 increases
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Examples

1 Example 1 Assume a simple linear (regression) model with a random
intercept term (i.e., z; = 1 and w; ~ N(0,2?))
1 observations Yj(t;) = Y = u(ty) + Ui + Wi(t)j + wij
0 thus, Y; ~ N(X;8,02]; + o?H; + 721;)
O and, also, ; ~ N(0,22]; + o2H;)

(1 Example 2 Assume a simple linear (regression) model with a random
intercept and random slope (i.e., z; = (1,t;) " and w; ~ N>(0,°T)),
where T € R**? is a unit matrix and w; = (w1, wi2)

[0 observations Y;(t;) = Y = u(ty) + (wir + winty) + Wi(t)j + wij
O thus, Y; ~ N(X;B8,v*M; + 0°H; + 7°1;), where M; = (1 + tyty)[",
0 and, also, ©; ~ N(0, v*M¢ + 0”H), where M = (1 + tjt¢)?,_,
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Bayesian interpretation

[ prior density for the random effects: w; ~ g(w)
[ conditional density of the data: Y;|w; ~ f(y|w)
[ posterior density for the random effects

_ flyiwg(w)

) = Ty w)e(w)

[ posterior mean of g(w|y) used as an estimate for w;
(still depends on the estimated parameters in a € RY)
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