Lecture 7 | 22.04.2024

Linear mixed effects model (theoretical and empirical issues)

A brief overview

□ Simple linear regression model for repeated measurements within (independent) subjects $i \in \{1, ..., N\}$ in a form

$$\mathbf{Y}_i = \mathbb{X}_i \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i$$

for the response vector $\mathbf{Y}_i \in \mathbb{R}^{n_i}$ where $\mathbb{X}_i = (\mathbf{X}_{i1}, \dots, \mathbf{X}_{in_i})^{\top}$, $\mathbf{X}_{ij} \in \mathbb{R}^p$ for $j = 1, \dots, n_i$ are the explanatory vectors and $\beta \in \mathbb{R}^p$ is the unknown vector of parameters—measurements taken at times $\mathbf{t}_i = (t_{i1}, \dots, t_{in_i})^{\top}$

□ The variance-covariance structure within each subject is modelled by the vector parameters $\alpha \in \mathbb{R}^{q}$, such that $\varepsilon_{i} \sim N_{n_{i}}(\mathbf{0}_{i}, \mathbb{V}_{i}(\mathbf{t}_{i}, \alpha))$, where

$$\varepsilon_{ij} = \mathbf{z}_{ij}^{\top} \mathbf{w}_i + W_i(t_{ij}) + \omega_{ij}$$

for random vector \boldsymbol{w}_i , random process $W_i(t)$, and random variable ω_{ij}

A brief overview

□ Simple linear regression model for repeated measurements within (independent) subjects $i \in \{1, ..., N\}$ in a form

 $\mathbf{Y}_i = \mathbb{X}_i \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i$

for the response vector $\mathbf{Y}_i \in \mathbb{R}^{n_i}$ where $\mathbb{X}_i = (\mathbf{X}_{i1}, \dots, \mathbf{X}_{in_i})^{\top}$, $\mathbf{X}_{ij} \in \mathbb{R}^p$ for $j = 1, \dots, n_i$ are the explanatory vectors and $\beta \in \mathbb{R}^p$ is the unknown vector of parameters—measurements taken at times $\mathbf{t}_i = (t_{i1}, \dots, t_{in_i})^{\top}$

□ The variance-covariance structure within each subject is modelled by the vector parameters $\alpha \in \mathbb{R}^{q}$, such that $\varepsilon_{i} \sim N_{n_{i}}(\mathbf{0}_{i}, \mathbb{V}_{i}(\boldsymbol{t}_{i}, \alpha))$, where

$$\varepsilon_{ij} = \mathbf{z}_{ij}^{\top} \mathbf{w}_i + W_i(t_{ij}) + \omega_{ij}$$

for random vector \boldsymbol{w}_i , random process $W_i(t)$, and random variable ω_{ij}

This can be rewritten as a linear mixed (effects) model (LMM) with fixed effects, random effects, and the error terms

$$\boldsymbol{Y}_{\boldsymbol{i}} = \mathbb{X}_{\boldsymbol{i}}\boldsymbol{\beta} + \mathbb{Z}_{\boldsymbol{i}}\boldsymbol{w}_{\boldsymbol{i}} + \boldsymbol{R}_{\boldsymbol{i}},$$

where $\mathbf{R}_i = (R_{i1}, \dots, R_{in_i})^\top = (W_i(t_{i1}) + \omega_{i1}, \dots, W_i(t_{in_i}) + \omega_{in_1})^\top$

(different formulations of the same model depending on which part of the model is emphasized)

Two stage approach vs. LMM formulation

□ Considering the longitudinal data $\{(Y_{ij}, X_{ij}); i = 1, ..., N; j = 1, ..., n_i\}$ the statistical analysis can be either performed in a two stage process

- (1) separate models $\mathbf{Y}_i = \mathbb{X}_i^{(1)} \beta_i + \varepsilon_i$ for each subject $i = 1, \dots, N$
- (2) and the overall model for regression parameters $\beta_i = \mathbb{X}_i^{(2)}\beta + \boldsymbol{b}_i$

Two stage approach vs. LMM formulation

- □ Considering the longitudinal data $\{(Y_{ij}, X_{ij}); i = 1, ..., N; j = 1, ..., n_i\}$ the statistical analysis can be either performed in a two stage process
 - (1) separate models $\mathbf{Y}_i = \mathbb{X}_i^{(1)} \beta_i + \varepsilon_i$ for each subject $i = 1, \dots, N$
 - (2) and the overall model for regression parameters $\beta_i = \mathbb{X}_i^{(2)} \beta + \boldsymbol{b}_i$
- □ Alternatively (but not equivalently), one common model with mixed effects (LMM) can be used instead where

$$egin{aligned} m{Y}_i &= \mathbb{X}_i^{(1)}m{eta}_i + m{arepsilon}_i \ m{eta}_i &= \mathbb{X}_i^{(2)}m{eta} + m{b}_i \ m{eta}_i &= \mathbb{X}_i^{(2)}m{eta} + m{b}_i \ m{eta}_i &= \mathbb{X}_i^{(1)}\mathbb{X}_i^{(2)} \ m{eta}_i &= \mathbb{X}_i^{(1)}\mathbb{X}_i^{(2)} \ m{eta}_i &= \mathbb{X}_i^{(1)} \ m{eba}_i &= \mathbb{X}_i^{(1)} \ m{ba}_i &= \mathbb{X}_$$

Two stage approach vs. LMM formulation

□ Considering the longitudinal data $\{(Y_{ij}, X_{ij}); i = 1, ..., N; j = 1, ..., n_i\}$ the statistical analysis can be either performed in a two stage process

(1) separate models
$$\mathbf{Y}_i = \mathbb{X}_i^{(1)} \beta_i + \varepsilon_i$$
 for each subject $i = 1, \dots, N$

- (2) and the overall model for regression parameters $eta_i = \mathbb{X}_i^{(2)}eta + m{b}_i$
- □ Alternatively (but not equivalently), one common model with mixed effects (LMM) can be used instead where

What are common drawbacks of the two-stage model formulation that are overcome in the overall LMM formulation?

Consider, for instance, a linear regression line in the first stage and a subject with only one observations. Or, instead, a quadratic fit in the first stage and some subjects with only two measurements?

Components of the LMM

Fixed effects $X_i \beta$

- □ the same structure for all subjects (the population mean structure)
- \Box covariates X_{ij} are generally assumed to be random but the regression framework is typically considered conditionally on the model matrix X

A Random effects $\mathbb{Z}_i w_i$

- Let the subject-specific part of the model (the individual mean structure)
- □ describes how the mean parameters for one subject differ from the mean parameters for the other subject—resp. how the population mean (common) differs from the subject's specific mean (individual)

Non-systematic terms (error) R_i

- □ sometimes called the variance components model
- accounts for the between and withing subjects' variability
- partially modeled by the subject specific covariates...

4 / 17

Population vs. individual interpretation

Consider LMM of the form $\mathbf{Y}_i = \mathbb{X}_i \boldsymbol{\beta} + \mathbb{Z}_i \boldsymbol{w}_i + \boldsymbol{R}_i$ where, typically, $\boldsymbol{w}_i \sim N(0, \mathbb{G})$ and $\boldsymbol{R}_i \sim N(\mathbf{0}, \mathbb{R}_i)$ – alternatively $\mathbf{Y} = \mathbb{X} \boldsymbol{\beta} + \mathbb{Z} \boldsymbol{w} + \boldsymbol{R}$

$\square \text{ Marginal model } \boldsymbol{Y}_i \sim N(\mathbb{X}_i \boldsymbol{\beta}, \mathbb{Z}_i \mathbb{G} \mathbb{Z}_i^\top + \mathbb{R}_i)$

A population characterization and a population interpretation of the model—the model describes the conditional mean given a subset of specific (sub-population) characteristics. Inference with respect to the subpopulation differences

\square Hierarchical model $\mathbf{Y}_i | \mathbf{w}_i \sim N(\mathbb{X}_i \beta + \mathbb{Z}_i \mathbf{w}_i, \mathbb{R}_i)$ and $\mathbf{w}_i \sim N(0, \mathbb{G})$

Subject specific characterization and subject specific as well as population interpretation of the model—the model describes—in two levels (therefore hierarchical)—the conditional mean of a specific subject *i* but it can be integrated over the distribution of w_i to obtain the population characterization (similarly as in the marginal model)

Population vs. individual interpretation

Consider LMM of the form $\mathbf{Y}_i = \mathbb{X}_i \boldsymbol{\beta} + \mathbb{Z}_i \boldsymbol{w}_i + \boldsymbol{R}_i$ where, typically, $\boldsymbol{w}_i \sim N(0, \mathbb{G})$ and $\boldsymbol{R}_i \sim N(\mathbf{0}, \mathbb{R}_i)$ – alternatively $\mathbf{Y} = \mathbb{X} \boldsymbol{\beta} + \mathbb{Z} \boldsymbol{w} + \boldsymbol{R}$

$\square \text{ Marginal model } \boldsymbol{Y}_i \sim N(\mathbb{X}_i \boldsymbol{\beta}, \mathbb{Z}_i \mathbb{G} \mathbb{Z}_i^\top + \mathbb{R}_i)$

A population characterization and a population interpretation of the model—the model describes the conditional mean given a subset of specific (sub-population) characteristics. Inference with respect to the subpopulation differences

\square Hierarchical model $\mathbf{Y}_i | \mathbf{w}_i \sim N(\mathbb{X}_i \beta + \mathbb{Z}_i \mathbf{w}_i, \mathbb{R}_i)$ and $\mathbf{w}_i \sim N(0, \mathbb{G})$

Subject specific characterization and subject specific as well as population interpretation of the model—the model describes—in two levels (therefore hierarchical)—the conditional mean of a specific subject *i* but it can be integrated over the distribution of w_i to obtain the population characterization (similarly as in the marginal model)

 \hookrightarrow note, that the hierarchical model can be used to obtain the marginal model, but this does not hold in vise-versa manner. Also, different hierarchical models can produce the same marginal model

5 / 17

Examples

Example 1 Consider a simple linear mixed effect model for two repeated observations only (i.e., $n_i = 2$) with a random intercept term and uncorrelated heterogenous errors $\mathbf{R}_i = (R_{i1}, R_{i2})^{\top}$ where $R_{i1} \sim N(0, \tau_1^2)$ and $R_{i2} \sim N(0, \tau_2^2)$. What is the mean structure? What is the overall variance-covariance structure $\mathbb{Z}_i \mathbb{GZ}_i^{\top} + \mathbb{R}_i$?

Examples

- **Example 1** Consider a simple linear mixed effect model for two repeated observations only (i.e., $n_i = 2$) with a random intercept term and uncorrelated heterogenous errors $\mathbf{R}_i = (R_{i1}, R_{i2})^{\top}$ where $R_{i1} \sim N(0, \tau_1^2)$ and $R_{i2} \sim N(0, \tau_2^2)$. What is the mean structure? What is the overall variance-covariance structure $\mathbb{Z}_i \mathbb{G}\mathbb{Z}_i^{\top} + \mathbb{R}_i$?
- **Example 2** Consider a simple linear mixed effect model for two repeated observations only (i.e., $n_i = 2$) with (uncorrelated) random intercept and random slope terms and homoscedastic errors $\mathbf{R}_i \sim N_2(\mathbf{0}, \tau_2 \mathbb{I})$. What is the mean structure? What is the overall variance-covariance structure?

6 / 17

Examples

- **Example 1** Consider a simple linear mixed effect model for two repeated observations only (i.e., $n_i = 2$) with a random intercept term and uncorrelated heterogenous errors $\mathbf{R}_i = (R_{i1}, R_{i2})^{\top}$ where $R_{i1} \sim N(0, \tau_1^2)$ and $R_{i2} \sim N(0, \tau_2^2)$. What is the mean structure? What is the overall variance-covariance structure $\mathbb{Z}_i \mathbb{GZ}_i^{\top} + \mathbb{R}_i$?
- **Example 2** Consider a simple linear mixed effect model for two repeated observations only (i.e., $n_i = 2$) with (uncorrelated) random intercept and random slope terms and homoscedastic errors $\mathbf{R}_i \sim N_2(\mathbf{0}, \tau_2 \mathbb{I})$. What is the mean structure? What is the overall variance-covariance structure?

Thus, as a direct consequence, any good marginal model fit can not be used as an argument to justify also a good hierarchical model fit...

We can only contradict a wrong model... we can not prove a right model!

Inference in a marginal model

Basically, there are two parts of the model that we can be interested in when performing the statistical inference about the unknown parameters

 \Box Inference about the fixed effects (parameters $\beta \in \mathbb{R}^p$)

- Wald type tests
- t-tests and F-tests
- likelihood ratio tests
- □ robust (sandwich) inference

lacksquare Inference about variance/covariance components (parameters $lpha \in \mathbb{R}^q$)

- Wald type tests
- likelihood ratio tests

Inference in a marginal model

Basically, there are two parts of the model that we can be interested in when performing the statistical inference about the unknown parameters

 \Box Inference about the fixed effects (parameters $\beta \in \mathbb{R}^p$)

- Wald type tests
- t-tests and F-tests
- likelihood ratio tests
- □ robust (sandwich) inference

lacksquare Inference about variance/covariance components (parameters $lpha \in \mathbb{R}^q$)

- Wald type tests
- likelihood ratio tests

 \hookrightarrow in practical applications there are also various information criteria used (AIC, BIC, Hannan and Quinn (HQIC), Bozdogan (CAIC), etc.)

Inference – statistical properties (overview)

 \Box the estimate for $oldsymbol{eta} \in \mathbb{R}^p$

$$\widehat{oldsymbol{eta}}(\widehat{oldsymbol{lpha}}) = \left(\mathbb{X}^ op \mathbb{W} \mathbb{X}
ight)^{-1} \mathbb{X}^ op \mathbb{W} oldsymbol{Y}$$

where $\mathbb{W}^{-1} = \mathbb{V}(\alpha, t)$, and $\widehat{\alpha} \in \mathbb{R}^q$ is a REML (ML) estimate of $\alpha \in \mathbb{R}^q$ (an unbiased estimate whatever the value of $\widehat{\alpha} \in \mathbb{R}^q$ is plugged-in)

 $\hfill\square$ the variance of $\widehat{\beta}(\widehat{\alpha})$ is

$$Var[\widehat{\boldsymbol{\beta}}(\widehat{\boldsymbol{\alpha}})] = \left(\mathbb{X}^{\top}\mathbb{W}\mathbb{X}\right)^{-1} \left(\mathbb{X}^{\top}\mathbb{W}^{\top}[Var\,\boldsymbol{Y}]\mathbb{W}\mathbb{X}\right) \left(\mathbb{X}^{\top}\mathbb{W}\mathbb{X}\right)^{-1}$$

and for a correctly specified variance matrix $Var[\widehat{eta}(\widehat{lpha})] = \left(\mathbb{X}^{ op}\mathbb{W}\mathbb{X}
ight)^{-1}$

□ the distribution of $\widehat{\beta}(\widehat{\alpha})$ is (conditionally on $\widehat{\alpha}$) approximately normal, with the corresponding mean and variance structure

Inference for the mean structure

Consider the null hypothesis of the form $H_0: \mathbb{L}eta = \mathbf{0}$ vs. $H_A: \mathbb{L}eta \neq \mathbf{0}$

Wald tests (approximate)

$$\mathcal{T} = \widehat{eta}^{ op} \mathbb{L}^{ op} \left[\mathbb{L} \Big(\mathbb{X}^{ op} \mathbb{V}^{-1}(m{t}, \widehat{m{lpha}}) \mathbb{X} \Big)^{-1} \mathbb{L}^{ op}
ight]^{-1} \mathbb{L} \widehat{eta} \quad egin{array}{c} H_0 & H_0 & \ lpha_{s.} & \chi^2_{\mathit{rank}(\mathbb{L})} \end{pmatrix}$$

□ *t*-tests and *F*-tests (approximate)

$$F = \frac{\widehat{\beta}^{\top} \mathbb{L}^{\top} \left[\mathbb{L} \left(\mathbb{X}^{\top} \mathbb{V}^{-1}(\boldsymbol{t}, \widehat{\alpha}) \mathbb{X} \right)^{-1} \mathbb{L}^{\top} \right]^{-1} \mathbb{L} \widehat{\beta}}{\operatorname{rank}(\mathbb{L})} \quad \stackrel{H_{0}}{\underset{\operatorname{as.}}{\overset{H_{0}}{\overset{\operatorname{rank}(\mathbb{L}), M}{\overset{\operatorname{rank}(\mathbb{L}), M}{\overset{\operatorname{rannk}(\mathbb{L}), M}{\overset{\operatorname{rank}(\mathbb{L}), M}{\overset{\operatorname{rank}(\mathbb{L}), M}{\overset{\operatorname{rank}(\mathbb$$

where M needs to be approximated (containment method (SAS), Satterthwaite approximation, Kenward & Roger approximation)

likelihood ratio tests (approximate)

$$L = -2 \ln \lambda = -2 \ln \left[L(\text{model } H_0) / L(\text{model } H_A) \right] \quad \overset{H_0}{\underset{as.}{\sim}} \quad \chi^2_{dim(H_A) - dim(H_0)}$$

Inference for the variance structure

Both, ML and REML estimates of $\alpha \in \mathbb{R}^q$ are approximately normally distributed with the true value as the mean vector and the inverse Fisher information matrix as the variance-covariance matrix

approximate Wald type tests

(in SAS the option covtest in the proc mixed statement)

- □ however, some statistical tests may not have any reasonable interpretation under the hierarchical model (the tests are only meaningful under the marginal model) (Consider: $Var Y_i(t) = (1, t) \mathbb{G}(1, t)^\top + \sigma^2$)
- □ moreover, the quality of the normal approximation depends on the true value of $\alpha \in \mathbb{R}^q$ and the approximation completely fails when testing for boundary values (Again marginal vs. hierarchical model)

Inference for the variance structure

Both, ML and REML estimates of $\alpha \in \mathbb{R}^q$ are approximately normally distributed with the true value as the mean vector and the inverse Fisher information matrix as the variance-covariance matrix

approximate Wald type tests

(in SAS the option covtest in the proc mixed statement)

- □ however, some statistical tests may not have any reasonable interpretation under the hierarchical model (the tests are only meaningful under the marginal model) (Consider: $Var \mathbf{Y}_i(t)$) = $(1, t) \mathbb{G}(1, t)^\top + \sigma^2$)
- □ moreover, the quality of the normal approximation depends on the true value of $\alpha \in \mathbb{R}^q$ and the approximation completely fails when testing for boundary values (Again marginal vs. hierarchical model)

likelihood ratio tests

(also valid for REML if the same mean structure is used)

Individual profiles (hierarchical model)

The measurements of the dependent variable, $Y_{ij} \in \mathbb{R}$, for subjects i = 1, ..., N and repeated observations $j = 1, ..., n_i$ within the subject *i* (taken at the time-points $t_{i1} < t_{i2} < \cdots < t_{in_i}$) can be also expressed as

$$Y_i(t_{ij}) \equiv Y_{ij} = \mu(t_{ij}) + U_{ij} + W_i(t_{ij}) + \omega_{ij}$$

where

 $\square \mu(t_{ij}) \equiv \mathbf{X}_{ij}^{\top} \beta$ is the mean profile

- \Box $U_{ii} = \mathbf{z}_{ii}^{\top} \mathbf{w}_i$, where $U_{ii} \sim N(0, \mathbf{z}_{ii}^{\top} \mathbb{G} \mathbf{z}_{ii})$, independent in $i \in \{1, \ldots, N\}$
- \square $W_i(t_{ij})$ are realization of independent copies $\{W_i(t)\}$ of a zero mean Gaussian process with the covariance function $\sigma^2 \rho(u)$
- $\Box \omega_{ii} \sim N(0, \tau^2)$ are mutually independent measurement errors

Individual profiles (hierarchical model)

The measurements of the dependent variable, $Y_{ij} \in \mathbb{R}$, for subjects i = 1, ..., N and repeated observations $j = 1, ..., n_i$ within the subject *i* (taken at the time-points $t_{i1} < t_{i2} < \cdots < t_{in_i}$) can be also expressed as

$$Y_i(t_{ij}) \equiv Y_{ij} = \mu(t_{ij}) + U_{ij} + W_i(t_{ij}) + \omega_{ij}$$

where

 $\square \mu(t_{ij}) \equiv \mathbf{X}_{ij}^{\top} \beta$ is the mean profile

- \Box $U_{ii} = \mathbf{z}_{ii}^{\top} \mathbf{w}_i$, where $U_{ii} \sim N(0, \mathbf{z}_{ii}^{\top} \mathbb{G} \mathbf{z}_{ii})$, independent in $i \in \{1, \ldots, N\}$
- \square $W_i(t_{ij})$ are realization of independent copies $\{W_i(t)\}$ of a zero mean Gaussian process with the covariance function $\sigma^2 \rho(u)$
- \Box $\omega_{ii} \sim N(0, \tau^2)$ are mutually independent measurement errors

Goal: To construct an estimate (a prediction) for an individual *i* outcome at the time point t, meaning that we want to obtain the profile for $\widehat{Y}_i(t)$

Towards the individual's prediction

□ as far as $\omega_{ij} \sim N(0, \tau^2)$ are zero-mean (independent) measurement errors they do not contribute to the prediction/estimation of $Y_i(t)$

 \Box therefore, the prediction/estimate of $Y_i(t)$ can be expressed as

$$\widehat{Y}_i(t) = \widehat{\mu}(t) + \widehat{U} + \widehat{W}_i(t) = \widehat{\mu}(t) + \widehat{\Omega}_i(t)$$

where $\hat{\mu}(t)$ represents the estimate for the mean structure and $\hat{\Omega}_i(t)$ represents the estimate for the variance/covariance structure

Towards the individual's prediction

□ as far as $\omega_{ij} \sim N(0, \tau^2)$ are zero-mean (independent) measurement errors they do not contribute to the prediction/estimation of $Y_i(t)$

 \Box therefore, the prediction/estimate of $Y_i(t)$ can be expressed as

$$\widehat{Y}_i(t) = \widehat{\mu}(t) + \widehat{U} + \widehat{W}_i(t) = \widehat{\mu}(t) + \widehat{\Omega}_i(t)$$

where $\hat{\mu}(t)$ represents the estimate for the mean structure and $\hat{\Omega}_i(t)$ represents the estimate for the variance/covariance structure

- □ the mean structure can be estimated by standard techniques (e.g., by assuming a linear regression model)
- **U** How the estimate the variance/covariance structure $\Omega_i(t)$?

Continuous process vs. discrete realizations

- □ the subject specific profile $Y_i(t)$ is only observed at some finite number of time points $t_i = (t_{i1}, ..., t_{in_i})^\top \in \mathbb{R}^{n_i}$
- □ the same can be also said about the subject specific variance/covariance profile $\Omega_i(t)$ that is only observed at $t_i = (t_{i1}, \ldots, t_{in_i})^\top \in \mathbb{R}^{n_i}$

Continuous process vs. discrete realizations

- \Box the subject specific profile $Y_i(t)$ is only observed at some finite number of time points $\mathbf{t}_i = (t_{i1}, \ldots, t_{in})^\top \in \mathbb{R}^{n_i}$
- □ the same can be also said about the subject specific variance/covariance profile $\Omega_i(t)$ that is only observed at $\mathbf{t}_i = (t_{i1}, \ldots, t_{in_i})^\top \in \mathbb{R}^{n_i}$
- \Box Analogously, the estimate for $\Omega_i(t)$ will be only provided for some specific (finitely many) time points, lets say $\mathbf{t} = (t_1, \ldots, t_n)^\top \in \mathbb{R}^n$

Continuous process vs. discrete realizations

- □ the subject specific profile $Y_i(t)$ is only observed at some finite number of time points $t_i = (t_{i1}, ..., t_{in_i})^\top \in \mathbb{R}^{n_i}$
- \Box the same can be also said about the subject specific variance/covariance profile $\Omega_i(t)$ that is only observed at $t_i = (t_{i1}, \ldots, t_{in_i})^\top \in \mathbb{R}^{n_i}$
- □ Analogously, the estimate for $\Omega_i(t)$ will be only provided for some specific (finitely many) time points, lets say $\boldsymbol{t} = (t_1, \ldots, t_n)^\top \in \mathbb{R}^n$
- □ Under the assumed normality, we have $\mathbf{Y}_i \sim N(\mathbb{X}_i \beta, \mathbb{Z}_i \mathbb{G} \mathbb{Z}_i^\top + \sigma^2 \mathbb{H}_i + \tau^2 \mathbb{I}_i)$ and also $\mathbf{\Omega}_i = (\Omega_i(t_1), \dots, \Omega_i(t_n))^\top \sim N(\mathbf{0}, \mathbb{Z}_t \mathbb{G} \mathbb{Z}_t^\top + \sigma^2 \mathbb{H}_t)$ where \mathbb{Z}_t and \mathbb{H}_t correspond to the time points $\mathbf{t} = (t_1, \dots, t_n)^\top$

Continuous process vs. discrete realizations

- \Box the subject specific profile $Y_i(t)$ is only observed at some finite number of time points $\mathbf{t}_i = (t_{i1}, \ldots, t_{in_i})^\top \in \mathbb{R}^{n_i}$
- □ the same can be also said about the subject specific variance/covariance profile $\Omega_i(t)$ that is only observed at $\mathbf{t}_i = (t_{i1}, \ldots, t_{ini})^\top \in \mathbb{R}^{n_i}$
- \Box Analogously, the estimate for $\Omega_i(t)$ will be only provided for some specific (finitely many) time points, lets say $\mathbf{t} = (t_1, \ldots, t_n)^\top \in \mathbb{R}^n$
- **U**nder the assumed normality, we have $\mathbf{Y}_i \sim N(\mathbb{X}_i \beta, \mathbb{Z}_i \mathbb{G} \mathbb{Z}_i^\top + \sigma^2 \mathbb{H}_i + \tau^2 \mathbb{I}_i)$ and also $\Omega_i = (\Omega_i(t_1), \dots, \Omega_i(t_n))^\top \sim N(\mathbf{0}, \mathbb{Z}_t \mathbb{G} \mathbb{Z}_t^\top + \sigma^2 \mathbb{H}_t)$ where \mathbb{Z}_t and \mathbb{H}_t correspond to the time points $\mathbf{t} = (t_1, \ldots, t_n)^{\top}$
- Thus, it also holds that

$$\left(\begin{array}{c} \boldsymbol{\Omega}_i\\ \boldsymbol{Y}_i\end{array}\right) \sim N_{n+n_i}\left(\left(\begin{array}{c} \boldsymbol{0}\\ \mathbb{X}_i\boldsymbol{\beta}\end{array}\right), \left(\begin{array}{c} \boldsymbol{\Sigma}(\boldsymbol{t},\boldsymbol{t}) & \boldsymbol{\Sigma}(\boldsymbol{t},\boldsymbol{t}_i)\\ \boldsymbol{\Sigma}(\boldsymbol{t}_i,\boldsymbol{t}) & \boldsymbol{\Sigma}(\boldsymbol{t}_i,\boldsymbol{t}_i)\end{array}\right)\right)$$

where $\Sigma(\cdot, \cdot)$ represent the corresponding covariance matrix

Conditional normal distribution

\Box A natural estimate for Ω_i would the the conditional expectation, i.e.

 $\widehat{\mathbf{\Omega}}_i = E[\mathbf{\Omega}_i | \mathbf{Y}_i]$

Conditional normal distribution

□ A natural estimate for Ω_i would the the conditional expectation, i.e. $\widehat{\Omega}_i = E[\Omega_i | \mathbf{Y}_i]$

Using standard properties of a multivariate normal distribution, where

$$\left(\begin{array}{c} \boldsymbol{X} \\ \boldsymbol{Y} \end{array}\right) \sim N_{p+q} \left(\left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right), \left(\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array}\right) \right)$$

it holds that

 \Box conditional expectation of X given Y is

$$E[\boldsymbol{X}|\boldsymbol{Y} = \boldsymbol{y}] = \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\boldsymbol{y} - \boldsymbol{\mu}_2)$$

 $(\mu_{X|Y})$

 \Box conditional variance of **X** given **Y** is

Var
$$[m{X}|m{Y}=m{y}]=\Sigma_{11}-\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$$

 $(\Sigma_{X|Y})$

 \Box conditional variance of **X** given **Y** is

$$oldsymbol{X}|oldsymbol{Y}=oldsymbol{y}\sim oldsymbol{N}_{
ho}(\mu_{X|Y}, \Sigma_{X|Y})$$

Estimate for the subject's profile

Using now the properties of the multivariate normal distribution we finally obtain

$$\widehat{\Omega}_{i} = E[\Omega_{i}|\mathbf{Y}_{i}] = \Sigma(\mathbf{t}, \mathbf{t}_{i}) \Big[\Sigma(\mathbf{t}_{i}, \mathbf{t}_{i}) \Big]^{-1} (\mathbf{Y}_{i} - \mathbb{X}_{i}\beta)$$
$$\square Var[\widehat{\Omega}_{i}|\mathbf{Y}_{i}] = \Sigma(\mathbf{t}, \mathbf{t}) - \Sigma(\mathbf{t}, \mathbf{t}_{i}) \Big[\Sigma(\mathbf{t}_{i}, \mathbf{t}_{i}) \Big]^{-1} \Sigma(\mathbf{t}_{i}, \mathbf{t})$$

Estimate for the subject's profile

Using now the properties of the multivariate normal distribution we finally obtain

$$\widehat{\Omega}_{i} = E[\Omega_{i}|\mathbf{Y}_{i}] = \Sigma(\mathbf{t},\mathbf{t}_{i}) \Big[\Sigma(\mathbf{t}_{i},\mathbf{t}_{i}) \Big]^{-1} (\mathbf{Y}_{i} - \mathbb{X}_{i}\beta)$$
$$\nabla ar[\widehat{\Omega}_{i}|\mathbf{Y}_{i}] = \Sigma(\mathbf{t},\mathbf{t}) - \Sigma(\mathbf{t},\mathbf{t}_{i}) \Big[\Sigma(\mathbf{t}_{i},\mathbf{t}_{i}) \Big]^{-1} \Sigma(\mathbf{t}_{i},\mathbf{t})$$

□ in the expressions above there are still some quantities that are unknown (the vector of the regression parameters $\beta \in \mathbb{R}^p$ or the parameters $\alpha \in \mathbb{R}^q$ that specifies the variance/covariance structure)

 \Box plug-in techniques are typically used to obtain the final estimate for Ω_i

- □ note, that for $\tau^2 = 0$ and $t \equiv t_i$, the estimator/predictor $\widehat{\Omega}_i$ reduces to $(\mathbf{Y}_i \mathbb{X}_i \widehat{\beta})$ with zero variance (meaning that if there is no measurement error than the data are perfect estimate/prediction for the true outcome at the existing observation time points)
- \square when $\tau^2 > 0$, than $\widehat{\Omega}_i$ reflects some compromise between $(\mathbf{Y}_i \mathbb{X}_i \widehat{\beta})$ and zero tending to zero when τ^2 increases

Examples

Lecture 7

Example 1 Assume a simple linear (regression) model with a random intercept term (i.e., $z_{ij} = 1$ and $w_i \sim N(0, \nu^2)$)

• observations
$$Y_i(t_{ij}) \equiv Y_{ij} = \mu(t_{ij}) + U_i + W_i(t)_{ij} + \omega_{ij}$$

$$\Box$$
 thus, $\boldsymbol{Y}_i \sim N(\mathbb{X}_i eta,
u^2 \mathbb{J}_i + \sigma^2 \mathbb{H}_i + au^2 \mathbb{I}_i)$

$$\square$$
 and, also, $\Omega_i \sim N(\mathbf{0}, \nu^2 \mathbb{J}_t + \sigma^2 \mathbb{H}_t)$

□ Example 2 Assume a simple linear (regression) model with a random intercept and random slope (i.e., $z_{ij} = (1, t_{ij})^{\top}$ and $w_i \sim N_2(\mathbf{0}, \nu^2 \mathbb{I})$), where $\mathbb{I} \in \mathbb{R}^{2 \times 2}$ is a unit matrix and $w_i = (w_{i1}, w_{i2})^{\top}$

□ observations
$$Y_i(t_{ij}) \equiv Y_{ij} = \mu(t_{ij}) + (w_{i1} + w_{i2}t_{ij}) + W_i(t)_{ij} + \omega_{ij}$$

□ thus, $Y_i \sim N(\mathbb{X}_i\beta, \nu^2 \mathbb{M}_i + \sigma^2 \mathbb{H}_i + \tau^2 \mathbb{I}_i)$, where $\mathbb{M}_i = (1 + t_{ij}t_{ik})_{j,k=1}^{n_i}$
□ and, also, $\Omega_i \sim N(\mathbf{0}, \nu^2 \mathbb{M}_t + \sigma^2 \mathbb{H}_t)$, where $\mathbb{M}_t = (1 + t_jt_k)_{j,k=1}^n$

Bayesian interpretation

- \Box prior density for the random effects: $w_i \sim g(w)$
- \Box conditional density of the data: $\mathbf{Y}_i | \mathbf{w}_i \sim f(\mathbf{y} | \mathbf{w})$
- posterior density for the random effects

$$g(\boldsymbol{w}|\boldsymbol{y}) = \frac{f(\boldsymbol{y}|\boldsymbol{w})g(\boldsymbol{w})}{\int f(\boldsymbol{y}|\boldsymbol{w})g(\boldsymbol{w})}$$

□ posterior mean of g(w|y) used as an estimate for w_i (still depends on the estimated parameters in $\hat{\alpha} \in \mathbb{R}^q$)