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Lecture 5

Some overview
❏ Consider a linear regression model for repeated measurements within

(independent) subjects i ∈ {1, . . . , N} in a form

Yi = Xi β + εi

where Yi = (Yi1, . . . , Yini )⊤ is the subject specific response vector,
Xi = (Xi1, . . . , Xini )⊤ for Xij = (Xij1, . . . , Xijp)⊤ and j = 1, . . . , ni are the
subject (and time specific) explanatory vectors (of dimension p ∈ N) and
β = (β1, . . . , βp)⊤ is the unknown vector of the regression parameters
(mean structure) same for all subjects and time points ti = (ti1, . . . , tini )⊤

❏ the variance-covariance structure within each subject is modelled by the
vector parameters α ∈ Rq, such that εi ∼ Nni (0i ,Vi (ti , α))

❏ the stochastic (non-systematic) term of the model – random errors εij are
decomposed into three main parts: the random effects, the serial
correlation, and the measurement error

εij = z⊤
ij wi + Wi (tij) + ωij

for random vector wi , random process Wi (t), and random variable ωij
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Lecture 5

Stochastic properties of the error terms
❏ measurement errors ωij ∼ N(0, τ 2), mutually independent for i and j

❏ lets denote ωi = (ωi1, . . . , ωini )⊤ and ωi ∼ Nni (0, τ2Ii ), for Ii ∈ Rni ×ni

❏ serial correlation represented by random variables Wi (tij) sampled from
N ∈ N independent copies of a stationary Gaussian process
{W (t); t ∈ R}, with the zero mean, variance σ2 > 0 and the correlation
function ρ(u) = cor(W (t), W (t + u))

❏ random variables Wij ≡ Wi (tij ) are independent with respect to subjects
i ∈ {1, . . . , N} but dependent within subjects, i.e., for indexes j = 1, . . . , ni

❏ lets denote Hi = (hijk)ni
j,k=1, where hijk = ρ(|tij − tik |), i.e., the correlation

between Yij and Yik , taken at the time points tij and tik
❏ thus, for the vector Wi = (Wi1, . . . , Wini )⊤ we have VarWi = σ2Hi

❏ normally distributed random effects wi ∼ Nr (0,G), mutually independent
for i = 1, . . . , N, with the corresponding explanatory variables zij ∈ Rr

❏ the random effect wi is only subject specific (index i) but the explanatory
vectors zij related to this random effects are subject and time specific

❏ lets denote Zi = (zi1, . . . , zini )⊤ ∈ Rni ×r
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Lecture 5

Parametric models for variance/covariance

Variance/covariance of Yi ∈ Rni can be expressed as

❏ VarYi = Var(εi ) = Var
[
z⊤

ij wi + Wi (tij) + ωij

]
= ZiGZ⊤

i + σ2Hi + τ 2Ii︸ ︷︷ ︸
Ri in SAS

↪→ because random quantities wi , Wi , and ωi are mutually independent

❏ Thus, the mean structure is fully modelled by the specification of the
model matrix Xi and the vector of parameters β ∈ Rp but the
variance-covariance structure is more complex and it is fully specified by
matrices G,Zi and Hi and, in addition, two parameters σ2, τ 2 > 0

❏ As the subjects i ∈ {1, . . . , N} are independent, we will only investigate
different forms for the variance structure in VarYi , or Var(εi ) respectively,
for some generic subject Y ∈ Rn, with n ∈ N repeated measurements
taken at the time points at t = (t1, . . . , tn)⊤ ∈ Rn

❏ the overall variance-covariance structure for VarYi will be a block-diagonal
matrix with squared matrices of the types ni × ni in the diagonal
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Lecture 5

Example: correlation & variogram
❏ Consider two different (theoretical) correlation functions ρ and the
corresponding variogram functions γ(x) = σ2(1 − ρ(x)), for σ2 = 1

ρ(x) = exp{−ϕ|x |}, ϕ = 1 ρ(x) = exp{−ϕx2}, ϕ = 1
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Lecture 5

Serial correlation (only) model
❏ from the three possible variance/covariance terms in the expansion

VarY = Var(ε) = ZGZ⊤ + σ2H + τ 2I

there is only one that is indeed specified—the matrix H ∈ Rn×n

❏ this implies that Var(ε) = σ2H (respectively, Cov(εj , εk) = σ2ρ(|tj − tk |)
with the corresponding variogram of the form γ(u) = σ2(1 − ρ(u)))

❏ all variability is captured within σ2 > 0 and the correlation structure by H

ρ(x) = exp{−ϕx2}, ϕ = 1 γ(x) = σ2(1 − ρ(x)), σ2 = 2
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Lecture 5

Parametric models for variance/covariance
Considering both models—the exponential model and the Gaussian correlation model—the role of
the ϕ > 0 parameter is the same—as the value of ϕ increases, the variograms rises more sharply
and the simulated realizations are less smooth (Fig. 5.1., Diggle et al., 2002)

Gaussian correlation model: from top to bottom, ϕ = 0.1, ϕ = 0.25, and ϕ = 1.0
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Lecture 5

Ante-dependence model

❏ assuming a direct dependence on previous observations in a sense that εj
taken at the time point tj > tj−1 > tj−2 > . . . depends explicitly on some
previous k errors εj−1, . . . , εj−k (ante-dependence of order k)

❏ also well known as the k-order Markov model or an autoregressive
sequence of order k, AR(k)

❏ AR(1) model formally: εj = αεj−1 + ωj , for ωj being i .i .d . from N(0, σ2),
for ε0 ∼ N(0, σ2/(1 − α))

❏ the ante-dependence model can be problematic for situations with
unequally spaced repeated observations within the subject

❏ on the other hand, small orders k ∈ N can be suitable for the likelihood
estimation (straightforward to get the joint distribution/density of εi )

❏ the ante-dependence property is not preserved when incorporating, for
instance, the measurements errors
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Lecture 5

Serial correlation + measurement errors model
❏ models where there are no random effects present and the variance of εi

reduces to
Var(ε) = σ2H + τ 2I

❏ the variance of εj is captured by the sum τ 2 + σ2 with the corresponding
variogram function γ(u) = τ 2 + σ2(1 − ρ(u))

❏ the value of τ>0 can be typically estimated from the data that contains
duplicate measurements at the same time point

ρ(x) = exp{−ϕx2}, ϕ = 1 γ(x) = σ2(1 − ρ(x)), σ2 = 2, τ 2 = 0.5
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Lecture 5

Random intercept model
❏ the simplest example of a general model with three variance/covariance

terms in the decomposition where zij = 1 and wi ∼ N(0, ν2)
❏ the variance of εj is Varεj = ν2 + σ2 + τ 2 and the corelation within the

whole vector ε is captured by matrices H and J (Diggle, 1988)
❏ Var(ε) = ν2J + σ2H + τ 2I with the correlation function ρ(x) and the

variogram function γ(u) = τ 2 + σ2(1 − ρ(u))
❏ in this case, however, γ(u) does not tend to Varεj as u → ∞

ρ(x) = exp{−ϕx2}, ϕ = 1 γ(x), σ2 = 2, τ 2 = 0.5, ν2 = 0.3
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Lecture 5

Random intercept and slope model

❏ more general model allows for some form of nonstationarity—the
variability within the subject now depends on the time

❏ the random effects are now wi ∼ N2(0,G) and for simplicity we assume
that G = ν2I, the covariates are zij = (1, tij)⊤

❏ the variance of εj is ν2(1 + t2
j ) + σ2 + τ 2 and the whole

variance/covariance structure of ε is Varε = ZGZ⊤ + σ2H + τ 2I, where
the matrix ZGZ⊤ is a n × n matrix with elements tjtk , for j, k = 1, . . . , n

❏ how can by this structure revealed with the sample variogram?

γ̂i (u) = 1
2(n − u)

n∑
j=u+1

[
εij − εi(j−u)

]2
, for u ∈ {0, . . . , n − 1}
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Lecture 5

Random effects and measurement error

❏ serial correlation appear to be quite natural feature for the longitudinal
data analysis but in some applications the effects of the serial correlation
may be dominated by the random effects and measurement errors

❏ particularly, if σ2 > 0 is small compared to ν2 + τ 2

❏ the model error εij reduces to εz⊤
ij wi + ωij and the corresponding

variance/covariance structure is of the form Varε = ZGZ⊤ + τ 2I
❏ the simplest scenario involves the random intercept only, meaning that

ZGZ reduces to the matrix J and Varε = ν2J + τ 2I
❏ also called a “split-plot” model (because it is equivalent with the

correlation induced by the randomization for a classical split-plot
experiment)
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Lecture 5

Model selection & model building

❏ Practical utilization of the model
❏ firstly, it is important to be able to validly answer the question of interest
❏ statistical inference—statistical tests and confidence intervals/regions

❏ Conditional mean structure
❏ exploratory in terms of some visualization tools (plots, graphs, etc.)
❏ modeling in terms of the model matrix X

❏ Designe of experiment
❏ many existing problems could be avoided by a proper experiment planning
❏ balanced data, proper randomization, treatment assignments, etc.

❏ Variace/covariance structure
❏ exploratory in terms of some residuals inspection
❏ effects of unobserved covariates,
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Lecture 5

Different covariance structures in SAS

See, for instance, the implementation of PROC MIXED in SAS and the
corresponding SAS help/tutorial

❏ variance components
❏ compound symmetry
❏ unstructured
❏ autoregressive
❏ spatial
❏ ...

SAS Documentation at https://documentation.sas.com
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Lecture 5

Model diagnostics

The main idea of the statistical modeling process:
model formulation → model estimation → statistical inference → model diagnostics

❏ The mean structure
❏ simple empirical characteristics, data scatterplots
❏ simple summary plots/graphs (e.g., boxplots)
❏ ...

❏ The variance/covariance structure
❏ residual inspection and various residual plots
❏ sample variogram function and its alternatives
❏ empirical variogram vs. fitted variogram (model based)
❏ ...
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Lecture 5

Summary

❏ exploratory analysis
❏ model building
❏ model diagnostics
❏ confirmatory analysis
❏ model interpretation
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