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Lecture 5

Multivariate normal models – overview
❏ Response vectors Yi = (Yi1, . . . , Yin)⊤, subject’s specific covariance

vectors Xi = (Xi1, . . . , Xip)⊤ and time specific parameters
βj = (βj1, . . . , βjp)⊤ for i = 1, . . . , N and j = 1, . . . , n

Y = XB + U

❏ Response vectors Yi = (Yi1, . . . , Yin), subject and time specific covariance
vectors Xij = (Xij1, . . . , Xijp)⊤ and parameters β = (β1, . . . , βp)⊤ for
i = 1, . . . , N and j = 1, . . . , n

Y = Xβ + ε

❏ Response vectors Yi = (Yi1, . . . , Yini ), subject and time specific covariance
vectors Xij = (Xij1, . . . , Xijp)⊤ and parameters β = (β1, . . . , βp)⊤ for
i = 1, . . . , N and j = 1, . . . , ni , with measurements at ti = (ti1, . . . , tini )⊤

Y = Xβ + ε
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Lecture 5

Mean and covariance structure
For simplicity, consider the model of the form Y = Xβ + ε, such that
Y ∼ N(Xβ,V(α)), or, alternatively and equivalently, ε ∼ N(0,V(α))

❏ The mean structure and the variance structure are both modelled
separately, however, in terms of some set of parametres

❏ Natural requirement for the longitudinal analysis: continuous time
structure with different times points for different subjects

❏ The mean structure
❏ parametrized by the time independent parameters β ∈ Rp

❏ The covariance structure
❏ could be parametrized generally, for V ∈ RM×M , where M =

∑N
i=1 ni , but

typically parametrized by the time independent parameters α ∈ Rq

and,
possibly, also by the time-specific parameters t = (t⊤

1 , . . . , t⊤
N )⊤, for

t1 = (ti1, . . . , tini )⊤

↪→ Formally, the dependent variables Yij could be assumed to be sampled from
independent copies (for i = 1, . . . , N) of some underlying continuous-time stochastic
process {Y (t); t ∈ R}, respectively, Yij = Yi (tij ), where j = 1, . . . , ni
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Lecture 5

REML based estimation of β and α

❏ parameters β ∈ Rp typically estimated by the maximum likelihood
approach (under the assumption of some distributional model)

❏ variance-covariance structure estimated by ML is typically underestimated
and the restricted (or residual) maximum likelihood (REML) is used to
correct for this type of bias

❏ this has serious consequences and produces invalid statistical inference
(e.g., confidence interval coverages are typically smaller than reported)

❏ the variance structure in Y ∼ N(Xβ, σ2V) can be modelled differently
(particularly, assuming different structures on V,, for instance, V(α))

❏ however, different approaches were were proposed to define REML
(frequentists appraoches, Bayessian methods, empirical Bayes techniques)
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Lecture 5

REML estimation – frequentist approach

❏ Considering a normal multivariate model i.e., Y ∼ NNn(Xβ, σ2V(α))
(or ε ∼ NNn(0, σ2V(α)) alternatively) the likelihood is

ℓ(β, σ
2
, α, DS ) = −

1
2

[
Nn log(πσ

2) + N log |V0(α)| +
(Y − Xβ)⊤[V(α)]−1(Y − Xβ)

σ2

]
❏ Thus, for a particular choice of α ∈ Rq the MLE of β is

β̂(V0(α)) =
(
X⊤[V(α)]−1X

)−1
X⊤[V(α)]−1Y

❏ Considering a normal multivariate model of the form
Y ∼ NNn(Xβ,H(α)), the REML of α ∈ Rq maximizes

ℓ∗(α) = 1
2 log |H| − 1

2 log |X⊤H−1X| − 1
2(Y − Xβ̂)⊤H−1(Y − Xβ̂)
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Lecture 5

ML vs. REML

❏ On contrary, the maximum likelihood estimate of α ∈ Rq would maximize

ℓ(α) = 1
2 log |H| − 1

2(Y − Xβ̂)⊤H−1(Y − Xβ̂)

❏ Alternatives
❏ Bayesian motivation (Laird and Ware, 1982)

The main difference between ML and REML is the fact that ML is invariant wrt.
one-to-one transformations of the covariates (change of X) while REML is not. Thus,
as a consequence, models with different structures of the fixed effects fitted by REML
can not be compared on the basis of their restricted likelihoods!

For instance, the likelihood ratio test are not valid for REML.
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Lecture 5

REML estimation – Bayessian approach
❏ particularly convenient from the computational point of view
❏ parameters responsible for the mean structure (i.e., β ∈ Rp) are assumed

to be random with some prior distribution (typically some locally uniform
distribution on C ⊂ Rp)

❏ the restricted likelihood is defined by integrating the likelihood with
respect to C, obtaining

L(σ2, α, DS) =
∫

C
L(β, σ2, α, DS)dβ

❏ loglikelihood defined in a straightforward way from the likelihood

ℓ(σ2, α, DS) = log L(σ2, α, DS)

❏ for given α ∈ Rq a conditional estimate of σ2 is obtained and using the
profile (restricted) log-likelihood the estimate for α ∈ R1 is finally obtained
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Lecture 5

ML vs. REML – practical points of view
The main difference between ML and REML is in the estimation of the fixed and
random effects of the model. ML estimates both the fixed and random effects
simultaneously, whereas REML estimates only the variance components of the random
effects, assuming that the fixed effects are known.

❏ specific choice of the model matrix (parametrization of the fixed effects)
plays the role in the estimation of variance/covariance structure

❏ likelihood based inference (e.g., statistical tests based on the likelihood
ratio) is not applicable for REML

❏ REML estimation (computationally more effective) is usually the default
choice for statistical software packages

❏ REML should be used when were are interested in variance estimates
(inference) and N is not big enough when compared to p

❏ ML is more appropriate for simple models, while REML is more
appropriate for complex models with many random effects .

https://www.sciencedirect.com/science/article/pii/S0378375804001788
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Lecture 5

Variability within longitudinal data
❏ Random effects

individuals sampled randomly from the population with different levels of
their response (some are high responders, others are low responders)

❏ Serial correlation
variability due to a variation of the underlying stochastic process running
within each subject – typically the correlation becomes weaker as the time
separation between two observations of the same unit increases

❏ Measurement error
randomness due to imprecise – especially when the measurements involve
some assay technique with a component of random variation

❏ Mean – Variance separation in terms of the model formulation

Y = Xβ + ε, for ε ∼ N(0,V(t, α))

where ε = (ε11, ε12, . . . , ε1n1 , . . . , εNnN )⊤, such that (variance separation)

εij = z⊤
ij wi + Wi(tij) + ωij
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Lecture 5

Different variability sources – notation

❏ measurement errors ωij ∼ N(0, τ 2), mutually independent for i and j
❏ lets denote εi = (εi1, . . . , εini )⊤ and Ii ∈ Rni ×ni the identity matrix

❏ serial correlation, random variables Wi (tij) sampled from N ∈ N
independent copies of a stationary Gaussian process {W (t); t ∈ R}, with
zero mean, variance σ2 > 0 and the correlation function
ρ(u) = cor(W (t), W (t + u))

❏ lets denote Hi = (hijk)ni
j,k=1, where hijk = ρ(|tij − tik |), i.d., the correlation

between Yij and Yik , for i = 1, . . . , N and j, k = 1, . . . , ni

❏ random effects wi ∼ Nr (0,G), mutually independent for i = 1, . . . , N,
with the corresponding explanatory variables zij ∈ Rr

❏ lets denote Zi = (zi1, . . . , zini )⊤ ∈ Rni ×r

10 / 14
Longitudinal and Panel data | (NMST 422)

▲



Lecture 5

Different variability sources – notation

❏ measurement errors ωij ∼ N(0, τ 2), mutually independent for i and j
❏ lets denote εi = (εi1, . . . , εini )⊤ and Ii ∈ Rni ×ni the identity matrix

❏ serial correlation, random variables Wi (tij) sampled from N ∈ N
independent copies of a stationary Gaussian process {W (t); t ∈ R}, with
zero mean, variance σ2 > 0 and the correlation function
ρ(u) = cor(W (t), W (t + u))

❏ lets denote Hi = (hijk)ni
j,k=1, where hijk = ρ(|tij − tik |), i.d., the correlation

between Yij and Yik , for i = 1, . . . , N and j, k = 1, . . . , ni

❏ random effects wi ∼ Nr (0,G), mutually independent for i = 1, . . . , N,
with the corresponding explanatory variables zij ∈ Rr

❏ lets denote Zi = (zi1, . . . , zini )⊤ ∈ Rni ×r

10 / 14
Longitudinal and Panel data | (NMST 422)

▲



Lecture 5

Different variability sources – notation

❏ measurement errors ωij ∼ N(0, τ 2), mutually independent for i and j
❏ lets denote εi = (εi1, . . . , εini )⊤ and Ii ∈ Rni ×ni the identity matrix

❏ serial correlation, random variables Wi (tij) sampled from N ∈ N
independent copies of a stationary Gaussian process {W (t); t ∈ R}, with
zero mean, variance σ2 > 0 and the correlation function
ρ(u) = cor(W (t), W (t + u))

❏ lets denote Hi = (hijk)ni
j,k=1, where hijk = ρ(|tij − tik |), i.d., the correlation

between Yij and Yik , for i = 1, . . . , N and j, k = 1, . . . , ni

❏ random effects wi ∼ Nr (0,G), mutually independent for i = 1, . . . , N,
with the corresponding explanatory variables zij ∈ Rr

❏ lets denote Zi = (zi1, . . . , zini )⊤ ∈ Rni ×r

10 / 14
Longitudinal and Panel data | (NMST 422)

▲



Lecture 5

Covariance/correlation/variogram
For a stationary stochastic process {W (t); t ∈ R}, with σ2 = Var(W (t),
we can define the following quantitative (functional) characteristics

❏ Autocovariance function

ξ(u) = Cov(W (t), W (t − u)), for any u ∈ R

❏ Autocorrelation function

ρ(u) = Cor(W (t), W (t − u)), for any u ∈ R

❏ Variogram function

γ(u) = 1
2E

[
(W (t) − W (t − u))2

]
= σ2[1 − ρ(u)] for u ≥ 0
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Lecture 5

Sample versions
For an observed times series W1, . . . , WN , with σ̂2 = 1

N

∑N
t=1

(Wt − W N )2 and W N =
∑N

t=1
Wt

we define the sample version of the autocovariance/autocorrelation/variogram functions as

❏ Sample autocovariance function

ξ̂(u) = 1
N

N−|u|∑
t=1

(Wt+|u| − W N)(Wt − W N), for u ∈ {−N + 1, . . . , N − 1}

❏ Sample autocorrelation function

ρ̂(u) = ξ̂(u)
ξ̂(0)

, for ξ̂(0) = σ̂2 and u ∈ {−N + 1, . . . , N − 1}

❏ Sample variogram function

γ̂(u) = 1
2(N − u)

N∑
t=u+1

[
Wt − Wt−u

]2
, for u ∈ {0, . . . , N − 1}

Both, the variogram and the correlogram are closely related measures applied to a
one-dimensional time series. They are different measures for nearly the same thing.
However, the variogram can be applied relaxing the need of equally spaced data, and
can be extended to higher dimensions.
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Lecture 5

Parametric models for variance/covariance

Variance/covariance decomposition can be expressed as
❏ VarYi = Var(εi ) = ZiGZ⊤

i + σ2Hi + τ 2Ii︸ ︷︷ ︸
Ri

❏ as the subjects i ∈ {1, . . . , N} are independent, we will investigate
different forms for the variance structure in VarYi , or Var(εi ) respectively,
for some generic subject Y ∈ Rn, with n ∈ N repeated measurements
taken at the time points at t = (t1, . . . , tn)⊤ ∈ Rn

❏ the overall variance-covariance structure for VarYi will be a block-diagonal
matrix with squared matrices of the types ni × ni in the diagonal

❏ there are of course many different (and practically motivated) examples for
certain specifications of the variance/covariance decomposition above...

13 / 14
Longitudinal and Panel data | (NMST 422)

▲



Lecture 5

Parametric models for variance/covariance

Variance/covariance decomposition can be expressed as
❏ VarYi = Var(εi ) = ZiGZ⊤

i + σ2Hi + τ 2Ii︸ ︷︷ ︸
Ri

❏ as the subjects i ∈ {1, . . . , N} are independent, we will investigate
different forms for the variance structure in VarYi , or Var(εi ) respectively,
for some generic subject Y ∈ Rn, with n ∈ N repeated measurements
taken at the time points at t = (t1, . . . , tn)⊤ ∈ Rn

❏ the overall variance-covariance structure for VarYi will be a block-diagonal
matrix with squared matrices of the types ni × ni in the diagonal

❏ there are of course many different (and practically motivated) examples for
certain specifications of the variance/covariance decomposition above...

13 / 14
Longitudinal and Panel data | (NMST 422)

▲



Lecture 5

Parametric models for variance/covariance

Variance/covariance decomposition can be expressed as
❏ VarYi = Var(εi ) = ZiGZ⊤

i + σ2Hi + τ 2Ii︸ ︷︷ ︸
Ri

❏ as the subjects i ∈ {1, . . . , N} are independent, we will investigate
different forms for the variance structure in VarYi , or Var(εi ) respectively,
for some generic subject Y ∈ Rn, with n ∈ N repeated measurements
taken at the time points at t = (t1, . . . , tn)⊤ ∈ Rn

❏ the overall variance-covariance structure for VarYi will be a block-diagonal
matrix with squared matrices of the types ni × ni in the diagonal

❏ there are of course many different (and practically motivated) examples for
certain specifications of the variance/covariance decomposition above...
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Summary

❏ Theoretical and practical differences between ML and REML
❏ biased vs. unbiased estimates of the variance
❏ efficiency and differences with respect to N, n, and p

❏ Different variability sources for the repeated measurements
❏ typically distinguishing for the within and between subjects variability
❏ more formally: measurements errors, serial correlation, and random effects

❏ Various parametrizations of the variance/covariance structure
❏ unstructured variance matrix with an increasing number of parameters
❏ or the variance-covariance matrix modeled by a fixed number of parameters

❏ Autocorrelation and variogram as useful exploratory tools
❏ theoretical as well as sample version meant for the exploratory analysis
❏ variogram particularly suitable also for unequally spaced observations
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