Lecture 4 | 18.03.2024

Statistical inference
in a multivariate model for Y
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Two step estimation — overview

[d Motivation for a simple model of the form model Yj; = a + bXj + € with
no distributional assumption for correlated errors & = (e11,...,enn) "

(1 Stage 1: OLS for each subject’s specific profile individually (i.e, fixed i)
Yy =A+BX;+W;, j=1,....n, and W;~ (0,7°), i.i.d.

to obtain A; = A; + Z.; and B; = B; + Zu;, for Zs ~ (0, v2), Zsi ~ (0, vZ)
[ Stage 2: OLS for the estimated subject’s specific parameters (estimates)

A= a+ 0. and Bi = b+ 0

for errors 0, ~ (0,02) and s ~ (0, 02) (ie., subject’s specific variability)

O Thus, we obtain A; = a+ (6, + Zu) and B; = b+ (64 + Zsi)
with the error term decomposed into 2 parts (within/between variability)
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Weighted least-squares estimation

O Note, that in A; = a + (8ai + Zai) the errors 6, for i =1,..., N have all
the same variance o2 but Z.; have different variances vi>0
Similarly also holds for B; = B + (0pi + Zbi)

[ Therefore, proper estimates for a, b € R should be the weighted averages
of the subject’s specific parameter estimates A; and B;

[d Consider again the multivariate model Y = X3 + € and some symmetric
weighted matrix W = the weighted LS estimate of § is defined as

. -1
Bw = (XTWX> X'wy
< which is an unbiased (linear) estimate whatever the choice of W

1 For the variance of EW it holds that
-~ -1 -1
Var(Bw) = o° [(XTWX> XTWYWX (XTWX> ]

~ —1
Var(Bu) = o° (XTV*X) for W = V1
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Weighted least-squares estimation

O Note, that in A; = a + (8ai + Zai) the errors 6, for i =1,..., N have all
the same variance o2 but Z.; have different variances vi>0
Similarly also holds for B; = B + (0pi + Zbi)

[ Therefore, proper estimates for a, b € R should be the weighted averages
of the subject’s specific parameter estimates A; and B;

[d Consider again the multivariate model Y = X3 + € and some symmetric
weighted matrix W = the weighted LS estimate of § is defined as

. -1
Bw = (XTWX> X'wy
< which is an unbiased (linear) estimate whatever the choice of W

1 For the variance of EW it holds that
~ —1 —1
Var(Bw) = o [(XTWX> X WVWX (XTWX> ]
~ —1
Var(Bu) = o° (XTV*X) for W = V1

< can we choose W such that W = V~1? How important is it?
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Estimation under the normal model

4 Using an additional assumption of a normal multivariate model i.e.,
Y ~ Nun(XB,0?V) (or € ~ Npn(0,0%V) alternatively) we can use
the maximum likelihood estimation approach instead

[ The log-likelihood for the observed data in Ds takes the form

(Y =XB) TV I(Y — XB)
2

1
£(B,02%,Vy,Ds) = -5 [anog(mz) + Nlog |Vo| +

o
[d For a particular choice of Vo € R"*" the MLE of 3 is given by the expression
N -1
B(Vo) = (XTV—lx) xTv-ly

(1 Substituting the estimate B\(Vo) into the likelihood form we obtain
(¥ = XB(Ve) TV (Y — xﬁ(vo))}

2

~ 1
£(B(Vo), 0%, Vo, Ds) = -5 |:Nn log(ro?) + Nlog [Vo| +
o

[ Partial derivative with respect to o2 gives the MLE of o2 as

(Y — XB(Vo)) TV=1(Y — XB(V0))

o?(Vo) = Nn
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Estimation of the covariance structure

[ The covariance structure in Vg must be still estimated — can b/e\done
using the reduced log-likelihood for the estimated B(Vg) and 02(Vy)

[d The reduced log-likelihood (proportional) for Vy can be expressed as
(Vo) = £(B(Vo),02(Vo), Vo, Ds) =

=~ [mrog (1~ 5B VA v — xBvo)) ) + 1og Vol

a Finally, the ML estimate @0 is used to obtain the estimates for the
mean and variance, i.e.,

—

B=B(",) and o2 =02(Vy)
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Estimation of the covariance structure

[ The covariance structure in Vg must be still estimated — can b/e\done

using the reduced log-likelihood for the estimated B(Vg) and 02(Vy)

[d The reduced log-likelihood (proportional) for Vy can be expressed as
(Vo) = £(B(Vo),02(Vo), Vo, Ds) =

=~ [mrog (1~ 5B VA v — xBvo)) ) + 1og Vol

a Finally, the ML estimate @0 is used to obtain the estimates for the
mean and variance, i.e.,

—

B=B"o) and o2 =0%Vp)

(however, the minimization of £(Vj) with respect to the parameters in Vj required not trivial
optimization techniques and algorithms — generally, the dimensionality of the optimization
problem for Vy is M — calculation of the determinant and inverse of a n X n matrix)
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Consistency of the estimates

1 Note, that in the simultaneous estimation of mean, variance, and
covariance parameters (8,02, and V) the design/model matrix X is
explicitly involved in the estimate for 0% as well as Vj

([ If the matrix X is specified incorrectly, the estimates for o2 and Vj are not
even consistent = using a full saturated model for the mean structure
can offer a possible solution (large number of the estimated parameters)

[ Saturated model for the conditional mean structure guarantees consistent
estimates of the variance-covariance structure which can be further used
to do inference about the mean structure (to reduce its complexity)
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Consistency of the estimates

1 Note, that in the simultaneous estimation of mean, variance, and
covariance parameters (8,02, and Vo) the design/model matrix X is
explicitly involved in the estimate for 0% as well as Vj

([ If the matrix X is specified incorrectly, the estimates for o2 and Vj are not
even consistent = using a full saturated model for the mean structure
can offer a possible solution (large number of the estimated parameters)

[ Saturated model for the conditional mean structure guarantees consistent
estimates of the variance-covariance structure which can be further used
to do inference about the mean structure (to reduce its complexity)

[J Good strategy but very often not feasible!
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Consistency of the estimates

1 Note, that in the simultaneous estimation of mean, variance, and
covariance parameters (8,02, and V) the design/model matrix X is
explicitly involved in the estimate for 0% as well as Vj

[ If the matrix X is specified incorrectly, the estimates for o2 and Vy are not
even consistent = using a full saturated model for the mean structure
can offer a possible solution (large number of the estimated parameters)

[ Saturated model for the conditional mean structure guarantees consistent
estimates of the variance-covariance structure which can be further used
to do inference about the mean structure (to reduce its complexity)

[J Good strategy but very often not feasible!

(1 The maximum likelihood estimation works relatively well if the model
matrix X is well specified... otherwise, it can be more appropriate to
use the restricted maximum likelihood (REML) approach
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Restricted maximum likelihood

The main |dea is to somehow restrict the dependency of the

estimates o2 and Vo on the mean structure postulated by the
design/model matrix X... (Patterrson and Thompson, 1971)

[ standard maximum likelihood typically gives biased variance estimate
(even in classical regression, compare RSS/n versus RSS/(n — p))

[ the principal idea is to perform standard MLE for transformed data Y™
such that the distribution of Y* = AY does not depend on 8 € R?

[ one possible option for A is a transformation of Y into OLS residuals
which means that the matrix A takes the form A =T — X(X7'X) !X

[ however, any (full-rank) matrix which satisfies EY* =0, V3 € R
will give unbiased estimates for the variance-covariance parameters
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Restricted maximum likelihood

The main |dea is to somehow restrict the dependency of the

estimates o2 and Vo on the mean structure postulated by the
design/model matrix X... (Patterrson and Thompson, 1971)

[ standard maximum likelihood typically gives biased variance estimate
(even in classical regression, compare RSS/n versus RSS/(n — p))

[ the principal idea is to perform standard MLE for transformed data Y™
such that the distribution of Y* = AY does not depend on 8 € R?

[ one possible option for A is a transformation of Y into OLS residuals
which means that the matrix A takes the form A =T — X(X7'X) !X

[ however, any (full-rank) matrix which satisfies EY* =0, V3 € R
will give unbiased estimates for the variance-covariance parameters

[ nevertheless, both methods (maximim likelihood and REML) are
asymptotically equivalent whenever the sample size tends to infinity and
p € N is fixed (for p — oo the problem is more complex, REML)

ongitudinal and Panel data | (NMST 422)




Lecture 4

REML — some calculation details

[ let's assume that Y ~ Ny,(X3, H(ax)) for a € R where H(ax) fully
captures the variance-covariance structure (i.e., including the variance )

O for the projection matrix A = I — X(X'X)7'X, let B € RV (Nn=P) js 3
matrix which satisfies BB" = A and B"B = Ijny—p)x (nn—p)

[ let Z=B"Y be the vector of transformed response vector Y where, from
the normality property, we have Z ~ N(N,,_p)(IBTX,B,IB%TH(a)B)

[ the corresponding maximum likelihood estimate of B based on Y (fixed
) is the generalized least-squares estimator 8 = (X' H'X)"!XTH 'Y

A random vector Z and 3 are independent — whatever the true value of
B € RP and, moreover, it holds that EZ =0

[ thus, we have that Z ~ Ny, ,(B"X3, B H(c)B), which is independent
of B thus, the inference for a € R? can be performed independently of 3
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REML - overview

1 the maximum likelihood estimate of & € RY maximizes the log-likelihood

(e) = 5 log | — (¥ —XB)TH\(Y — %B)

[ the restricted maximum likelihood estimate of & € R maximizes

(o) = % log [H| — % log [ X TH'X] — %(Y —xB)THY(Y - XB)
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REML - overview

1 the maximum likelihood estimate of & € RY maximizes the log-likelihood

(e) = 5 log | — (¥ —XB)TH\(Y — %B)

[ the restricted maximum likelihood estimate of & € R maximizes

(o) = % log [H| — % log [ X TH'X] — %(Y —XB)TH (Y — XB)

O Thus, the (REML) of the variance parameter o2 > 0 is

1
Nn—p

a2(Vo) = (Y = XB(Vo)) V(Y — XB(V0))

and the REML estimate of Vy; maximizes the reduced log-likelihood

£ (Vo) = — 3 [nlog(¥ = XB(V0)) V(Y — XB(Vo) + log [Vol] — log %V %]
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Robust estimation of standard errors

[0 the idea is to allow for a robust inference for 8 € R” by using a
generalized least-squares estimator By = (X' WX)'XTWY and the

variance-covariance Ry = [(XTWX)’IXTW]@[WX(XTWX)’I]
[ statistical inference for 3 is based on the assumption that

Za\W ~ NP(B? /"%W)
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Robust estimation of standard errors

[0 the idea is to allow for a robust inference for 8 € R” by using a
generalized least-squares estimator By = (X' WX)'XTWY and the

variance-covariance Ry = [(XTWX)’IXTW]@[WX(XTWX)’I]
[ statistical inference for 3 is based on the assumption that

Bw ~ Ny(8, Rw)

O Matrix W™ is called the working correlation matrix (qualitative)

[ Matrix V is the unknown true variance-covariance matrix

— however, poor choice of W will only effect the efficiency of the inference about
B € RP but not the its validity = confidence intervals and statistical tests will be
asymptotically correct whatever the true form of V

< typically, it is either common to use W~ = I or, for smoothly decaying
autocorrelation, a block-diagonal matrix W1 with elements exp{—c|t; — tx|}, ¢ > 0
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Example: Designed experiment

[d measurements Yj,, fori=1,...,N;, g=1,...,G,and j=1,...,n
[J saturated model for the response EYjz = pjg
[ variance-covariance VarY =V with diagonal blocks Vo € R"*"

1 REML estimate for X using a specific form of the model matrix X

00 =~

for a particular choice of G =2, N; =2, and N, = 3 (and n € N)
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Example: Designed experiment — estimates

1 Mean estimates M
. 1 —
Hjg = N Z Yig
g
i=1

d REML estimate for V,

N G 1 G Ng
VO:(ZNg_G) ZZ(ng_ﬂg)(Yig_ﬂg)T
g=1 g=1 i=1

1 REML estimate for V N
is a block-diagonal matrix with blocks formed by the estimate Vj
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Example: Designed experiment — estimates

1 Mean estimates M
g
~ 1
Mig = 7 Z Yig
g
i=1

d REML estimate for V,

= (Y- G)_lii(ng (Y - i)

g=1 i=1

1 REML estimate for V R
is a block-diagonal matrix with blocks formed by the estimate Vj,

— the saturated model for the mean structure may not be useful in practice — its only
purpose is to provide a consistent estimate of V... for observational studies with
continuously varying covariates it is no longer applicable...

However, the principal idea remains the same...
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Summary

[ weighted least-squares estimation vs. maximum likelihood estimation
(with or without the assumption of the normal model)

1 maximum likelihood vs. restricted maximum likelihood estimation
(robust estimates for 3 - limiting the dependence on X)

(1 inference about the mean structure based on 8w ~ N,(8, Rw)
(using the assumption of the multivariate normal model for the response )

[ special attention given to a consistent estimation of V N
(saturated or most elaborated model is used to get the estimate V)
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