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Statistical inference
in a multivariate model for Y
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Lecture 4

Two step estimation – overview

❏ Motivation for a simple model of the form model Yij = a + bXij + εij with
no distributional assumption for correlated errors ε = (ε11, . . . , εNn)⊤

❏ Stage 1: OLS for each subject’s specific profile individually (i.e, fixed i)

Yij = Ai + Bi Xij + Wij , j = 1, . . . , n, and Wij ∼ (0, τ 2), i .i .d .

to obtain Âi = Ai + Zai and B̂i = Bi + Zbi , for Zai ∼ (0, v 2
ai ), Zbi ∼ (0, v 2

bi )
❏ Stage 2: OLS for the estimated subject’s specific parameters (estimates)

Ai = a + δai and Bi = b + δbi

for errors δai ∼ (0, σ2
a) and δbi ∼ (0, σ2

b) (ie., subject’s specific variability)

❏ Thus, we obtain Âi = a + (δai + Zai ) and B̂i = b + (δbi + Zbi )
with the error term decomposed into 2 parts (within/between variability)
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Lecture 4

Weighted least-squares estimation
❏ Note, that in Âi = a + (δai + Zai ) the errors δai for i = 1, . . . , N have all

the same variance σ2
a but Zai have different variances v 2

ai > 0
Similarly also holds for B̂i = B + (δbi + Zbi )

❏ Therefore, proper estimates for a, b ∈ R should be the weighted averages
of the subject’s specific parameter estimates Âi and B̂i

❏ Consider again the multivariate model Y = Xβ + ε and some symmetric
weighted matrix W =⇒ the weighted LS estimate of β is defined as

β̂w =
(
X⊤WX

)−1
X⊤WY

↪→ which is an unbiased (linear) estimate whatever the choice of W
❏ For the variance of β̂w it holds that

Var(β̂w ) = σ2
[(

X⊤WX
)−1

X⊤WVWX
(
X⊤WX

)−1]
Var(β̂w ) = σ2

(
X⊤V−1X

)−1
for W = V−1

↪→ can we choose W such that W = V−1? How important is it?
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Lecture 4

Estimation under the normal model
❏ Using an additional assumption of a normal multivariate model i.e.,

Y ∼ NNn(Xβ, σ2V) (or ε ∼ NNn(0, σ2V) alternatively) we can use
the maximum likelihood estimation approach instead

❏ The log-likelihood for the observed data in DS takes the form

ℓ(β, σ2,V0, DS) = −
1
2

[
Nn log(πσ2) + N log |V0| +

(Y − Xβ)⊤V−1(Y − Xβ)
σ2

]
❏ For a particular choice of V0 ∈ Rn×n the MLE of β is given by the expression

β̂(V0) =
(
X⊤V−1X

)−1
X⊤V−1Y

❏ Substituting the estimate β̂(V0) into the likelihood form we obtain

ℓ(β̂(V0), σ
2
, V0, DS ) = −

1
2

[
Nn log(πσ

2) + N log |V0| +
(Y − Xβ̂(V0))⊤V−1(Y − Xβ̂(V0))

σ2

]
❏ Partial derivative with respect to σ2 gives the MLE of σ2 as

σ̂2(V0) =
(Y − Xβ̂(V0))⊤V−1(Y − Xβ̂(V0))

Nn
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Lecture 4

Estimation of the covariance structure
❏ The covariance structure in V0 must be still estimated – can be done

using the reduced log-likelihood for the estimated β̂(V0) and σ̂2(V0)

❏ The reduced log-likelihood (proportional) for V0 can be expressed as

ℓ(V0) ≡ ℓ(β̂(V0), σ̂2(V0),V0, DS) =

= −
N
2

[
n log

(
(Y − Xβ̂(V0))⊤V−1(Y − Xβ̂(V0))

)
+ log |V0|

]
❏ Finally, the ML estimate V̂0 is used to obtain the estimates for the

mean and variance, i.e.,

β̂ = β̂(V̂0) and σ̂2 = σ̂2(V̂0)

(however, the minimization of ℓ(V0) with respect to the parameters in V0 required not trivial
optimization techniques and algorithms – generally, the dimensionality of the optimization
problem for V0 is n(n−1)

2 – calculation of the determinant and inverse of a n × n matrix)
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Lecture 4

Consistency of the estimates

❏ Note, that in the simultaneous estimation of mean, variance, and
covariance parameters (β, σ2, and V0) the design/model matrix X is
explicitly involved in the estimate for σ2 as well as V0

❏ If the matrix X is specified incorrectly, the estimates for σ2 and V0 are not
even consistent =⇒ using a full saturated model for the mean structure
can offer a possible solution (large number of the estimated parameters)

❏ Saturated model for the conditional mean structure guarantees consistent
estimates of the variance-covariance structure which can be further used
to do inference about the mean structure (to reduce its complexity)

❏ Good strategy but very often not feasible!

❏ The maximum likelihood estimation works relatively well if the model
matrix X is well specified... otherwise, it can be more appropriate to
use the restricted maximum likelihood (REML) approach
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Lecture 4

Restricted maximum likelihood
The main idea is to somehow restrict the dependency of the
estimates σ̂2 and V̂0 on the mean structure postulated by the
design/model matrix X... (Patterrson and Thompson, 1971)

❏ standard maximum likelihood typically gives biased variance estimate
(even in classical regression, compare RSS/n versus RSS/(n − p))

❏ the principal idea is to perform standard MLE for transformed data Y ∗

such that the distribution of Y ∗ = AY does not depend on β ∈ Rp

❏ one possible option for A is a transformation of Y into OLS residuals
which means that the matrix A takes the form A = I − X(X−1X)−1X

❏ however, any (full-rank) matrix which satisfies EY ∗ = 0, ∀β ∈ Rp

will give unbiased estimates for the variance-covariance parameters

❏ nevertheless, both methods (maximim likelihood and REML) are
asymptotically equivalent whenever the sample size tends to infinity and
p ∈ N is fixed (for p → ∞ the problem is more complex, REML)
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Lecture 4

REML – some calculation details

❏ let’s assume that Y ∼ NNn(Xβ,H(α)) for α ∈ Rq where H(α) fully
captures the variance-covariance structure (i.e., including the variance σ2)

❏ for the projection matrix A = I − X(X−1X)−1X, let B ∈ RNn×(Nn−p) is a
matrix which satisfies BB⊤ = A and B⊤B = I(Nn−p)×(Nn−p)

❏ let Z = B⊤Y be the vector of transformed response vector Y where, from
the normality property, we have Z ∼ N(Nn−p)(B⊤Xβ,B⊤H(α)B)

❏ the corresponding maximum likelihood estimate of β based on Y (fixed
α) is the generalized least-squares estimator β̂ = (X⊤H−1X)−1X⊤H−1Y

❏ random vector Z and β are independent – whatever the true value of
β ∈ Rp and, moreover, it holds that EZ = 0

❏ thus, we have that Z ∼ NNn−p(B⊤Xβ,B⊤H(α)B), which is independent
of β̂ thus, the inference for α ∈ Rq can be performed independently of β
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Lecture 4

REML – overview
❏ the maximum likelihood estimate of α ∈ Rq maximizes the log-likelihood

ℓ(α) = 1
2 log |H| − 1

2 (Y − Xβ̂)⊤H−1(Y − Xβ̂)

❏ the restricted maximum likelihood estimate of α ∈ Rq maximizes

ℓ∗(α) = 1
2 log |H| − 1

2 log |X⊤H−1X| − 1
2 (Y − Xβ̂)⊤H−1(Y − Xβ̂)

❏ Thus, the (REML) of the variance parameter σ2 > 0 is

σ̂2(V0) = 1
Nn − p (Y − Xβ̂(V0))⊤V−1(Y − Xβ̂(V0))

and the REML estimate of V0 maximizes the reduced log-likelihood

ℓ∗(V0) = −
1
2

N
[
n log(Y − Xβ̂(V0))⊤V−1(Y − Xβ̂(V0)) + log |V0|

]
−

1
2

log |X⊤V−1X|
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Lecture 4

Robust estimation of standard errors
❏ the idea is to allow for a robust inference for β ∈ Rp by using a

generalized least-squares estimator β̂W = (X⊤WX)−1X⊤WY and the
variance-covariance R̂W =

[
(X⊤WX)−1X⊤W

]
V̂

[
WX(X⊤WX)−1

]
❏ statistical inference for β is based on the assumption that

β̂W ∼ Np(β, R̂W )

❏ Matrix W−1 is called the working correlation matrix (qualitative)
❏ Matrix V is the unknown true variance-covariance matrix

↪→ however, poor choice of W will only effect the efficiency of the inference about
β ∈ Rp but not the its validity =⇒ confidence intervals and statistical tests will be
asymptotically correct whatever the true form of V

↪→ typically, it is either common to use W−1 = I or, for smoothly decaying
autocorrelation, a block-diagonal matrix W−1 with elements exp{−c|tj − tk |}, c > 0
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Lecture 4

Example: Designed experiment

❏ measurements Yijg , for i = 1, . . . , Ng , g = 1, . . . , G , and j = 1, . . . , n
❏ saturated model for the response EYijg = µjg

❏ variance-covariance VarY = V with diagonal blocks V0 ∈ Rn×n

❏ REML estimate for X using a specific form of the model matrix X

X =


I O
I O
O I
O I
O I


for a particular choice of G = 2, N1 = 2, and N2 = 3 (and n ∈ N)
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Lecture 4

Example: Designed experiment – estimates

❏ Mean estimates

µ̂jg = 1
Ng

Ng∑
i=1

Yijg

❏ REML estimate for V0

V̂0 =
( G∑

g=1

Ng − G
)−1 G∑

g=1

Ng∑
i=1

(Yig − µ̂g )(Yig − µ̂g )⊤

❏ REML estimate for V
is a block-diagonal matrix with blocks formed by the estimate V̂0

↪→ the saturated model for the mean structure may not be useful in practice – its only
purpose is to provide a consistent estimate of V0... for observational studies with
continuously varying covariates it is no longer applicable...

However, the principal idea remains the same...
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Summary

❏ weighted least-squares estimation vs. maximum likelihood estimation
(with or without the assumption of the normal model)

❏ maximum likelihood vs. restricted maximum likelihood estimation
(robust estimates for β - limiting the dependence on X)

❏ inference about the mean structure based on β̂W ∼ Np(β, R̂W )
(using the assumption of the multivariate normal model for the response )

❏ special attention given to a consistent estimation of V
(saturated or most elaborated model is used to get the estimate V̂)
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