Lecture 4 | 18.03.2024

Statistical inference in a multivariate model for **Y**

Two step estimation – overview

- □ Motivation for a simple model of the form model $Y_{ij} = a + bX_{ij} + \varepsilon_{ij}$ with no distributional assumption for correlated errors $\varepsilon = (\varepsilon_{11}, \dots, \varepsilon_{Nn})^{\top}$
- □ Stage 1: OLS for each subject's specific profile individually (i.e, fixed i)

 $Y_{ij} = A_i + B_i X_{ij} + W_{ij}, \quad j = 1, \dots, n, \quad \text{and} \ W_{ij} \sim (0, \tau^2), \ i.i.d.$

to obtain $\widehat{A}_i = A_i + Z_{ai}$ and $\widehat{B}_i = B_i + Z_{bi}$, for $Z_{ai} \sim (0, v_{ai}^2)$, $Z_{bi} \sim (0, v_{bi}^2)$

Stage 2: OLS for the estimated subject's specific parameters (estimates)

 $A_i = a + \delta_{ai}$ and $B_i = b + \delta_{bi}$

for errors $\delta_{ai} \sim (0, \sigma_a^2)$ and $\delta_{bi} \sim (0, \sigma_b^2)$ (ie., subject's specific variability)

□ Thus, we obtain $\widehat{A}_i = a + (\delta_{ai} + Z_{ai})$ and $\widehat{B}_i = b + (\delta_{bi} + Z_{bi})$ with the error term decomposed into 2 parts (within/between variability)

Weighted least-squares estimation

- □ Note, that in $\widehat{A}_i = a + (\delta_{ai} + Z_{ai})$ the errors δ_{ai} for i = 1, ..., N have all the same variance σ_a^2 but Z_{ai} have different variances $v_{ai}^2 > 0$ Similarly also holds for $\widehat{B}_i = B + (\delta_{bi} + Z_{bi})$
- □ Therefore, proper estimates for $a, b \in \mathbb{R}$ should be the weighted averages of the subject's specific parameter estimates \widehat{A}_i and \widehat{B}_i
- □ Consider again the multivariate model $\mathbf{Y} = \mathbb{X}\beta + \varepsilon$ and some symmetric weighted matrix $\mathbb{W} \implies$ the weighted LS estimate of β is defined as

$$\widehat{oldsymbol{eta}}_{w} = \left(\mathbb{X}^{ op}\mathbb{W}\mathbb{X}
ight)^{-1}\mathbb{X}^{ op}\mathbb{W}oldsymbol{Y}$$

 \hookrightarrow which is an unbiased (linear) estimate whatever the choice of \mathbb{W} \Box For the variance of $\hat{\beta}_w$ it holds that

$$Var(\widehat{\beta}_{w}) = \sigma^{2} \left[\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X} \right)^{-1} \mathbb{X}^{\top} \mathbb{W} \mathbb{V} \mathbb{W} \mathbb{X} \left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X} \right)^{-1} \right]$$
$$Var(\widehat{\beta}_{w}) = \sigma^{2} \left(\mathbb{X}^{\top} \mathbb{V}^{-1} \mathbb{X} \right)^{-1} \quad \text{for } \mathbb{W} = \mathbb{V}^{-1}$$

Weighted least-squares estimation

- □ Note, that in $\widehat{A}_i = a + (\delta_{ai} + Z_{ai})$ the errors δ_{ai} for i = 1, ..., N have all the same variance σ_a^2 but Z_{ai} have different variances $v_{ai}^2 > 0$ Similarly also holds for $\widehat{B}_i = B + (\delta_{bi} + Z_{bi})$
- □ Therefore, proper estimates for $a, b \in \mathbb{R}$ should be the weighted averages of the subject's specific parameter estimates \widehat{A}_i and \widehat{B}_i
- □ Consider again the multivariate model $\mathbf{Y} = \mathbb{X}\beta + \varepsilon$ and some symmetric weighted matrix $\mathbb{W} \implies$ the weighted LS estimate of β is defined as

$$\widehat{oldsymbol{eta}}_{\mathsf{w}} = \left(\mathbb{X}^{ op}\mathbb{W}\mathbb{X}
ight)^{-1}\mathbb{X}^{ op}\mathbb{W}oldsymbol{Y}$$

 \hookrightarrow which is an unbiased (linear) estimate whatever the choice of \mathbb{W} \Box For the variance of $\hat{\beta}_w$ it holds that

$$Var(\widehat{\beta}_{w}) = \sigma^{2} \left[\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X} \right)^{-1} \mathbb{X}^{\top} \mathbb{W} \mathbb{V} \mathbb{W} \mathbb{X} \left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X} \right)^{-1} \right]$$
$$Var(\widehat{\beta}_{w}) = \sigma^{2} \left(\mathbb{X}^{\top} \mathbb{V}^{-1} \mathbb{X} \right)^{-1} \quad \text{for } \mathbb{W} = \mathbb{V}^{-1}$$

 \hookrightarrow can we choose $\mathbb W$ such that $\mathbb W=\mathbb V^{-1}?$ How important is it?

Estimation under the normal model

- □ Using an additional assumption of a normal multivariate model i.e., $\mathbf{Y} \sim N_{Nn}(\mathbb{X}\beta, \sigma^2\mathbb{V})$ (or $\varepsilon \sim N_{Nn}(\mathbf{0}, \sigma^2\mathbb{V})$ alternatively) we can use the maximum likelihood estimation approach instead
- $\hfill\square$ The log-likelihood for the observed data in \mathcal{D}_S takes the form

$$\ell(\beta, \sigma^2, \mathbb{V}_0, \mathcal{D}_S) = -\frac{1}{2} \left[Nn \log(\pi \sigma^2) + N \log|\mathbb{V}_0| + \frac{(\mathbf{Y} - \mathbb{X}\beta)^\top \mathbb{V}^{-1}(\mathbf{Y} - \mathbb{X}\beta)}{\sigma^2} \right]$$

 \square For a particular choice of $\mathbb{V}_0 \in \mathbb{R}^{n \times n}$ the MLE of β is given by the expression

$$\widehat{oldsymbol{eta}}(\mathbb{V}_0) = \left(\mathbb{X}^ op \mathbb{V}^{-1}\mathbb{X}
ight)^{-1}\mathbb{X}^ op \mathbb{V}^{-1}oldsymbol{Y}$$

 \square Substituting the estimate $\widehat{\beta}(\mathbb{V}_0)$ into the likelihood form we obtain

$$\ell(\widehat{\boldsymbol{\beta}}(\mathbb{V}_0), \sigma^2, \mathbb{V}_0, \mathcal{D}_S) = -\frac{1}{2} \left[\mathsf{Nn}\log(\pi\sigma^2) + \mathsf{N}\log|\mathbb{V}_0| + \frac{(\boldsymbol{Y} - \mathbb{X}\widehat{\boldsymbol{\beta}}(\mathbb{V}_0))^\top \mathbb{V}^{-1}(\boldsymbol{Y} - \mathbb{X}\widehat{\boldsymbol{\beta}}(\mathbb{V}_0))}{\sigma^2} \right]$$

 $\hfill\square$ Partial derivative with respect to σ^2 gives the MLE of σ^2 as

$$\widehat{\sigma^2}(\mathbb{V}_0) = \frac{(\boldsymbol{Y} - \mathbb{X}\widehat{\beta}(\mathbb{V}_0))^\top \mathbb{V}^{-1}(\boldsymbol{Y} - \mathbb{X}\widehat{\beta}(\mathbb{V}_0))}{Nn}$$

4 / 13

Estimation of the covariance structure

□ The covariance structure in \mathbb{V}_0 must be still estimated – can be done using the reduced log-likelihood for the estimated $\widehat{\beta}(\mathbb{V}_0)$ and $\widehat{\sigma^2}(\mathbb{V}_0)$

 $\hfill\square$ The reduced log-likelihood (proportional) for \mathbb{V}_0 can be expressed as

$$\begin{split} \ell(\mathbb{V}_0) &\equiv \ell(\widehat{\beta}(\mathbb{V}_0), \widehat{\sigma^2}(\mathbb{V}_0), \mathbb{V}_0, \mathcal{D}_S) = \\ &= -\frac{N}{2} \left[n \log \left((\boldsymbol{Y} - \mathbb{X} \widehat{\beta}(\mathbb{V}_0))^\top \mathbb{V}^{-1} (\boldsymbol{Y} - \mathbb{X} \widehat{\beta}(\mathbb{V}_0)) \right) + \log |\mathbb{V}_0| \right] \end{split}$$

 \square Finally, the ML estimate $\widehat{\mathbb{V}}_0$ is used to obtain the estimates for the mean and variance, i.e.,

$$\widehat{\beta} = \widehat{\beta}(\widehat{\mathbb{V}}_0)$$
 and $\widehat{\sigma^2} = \widehat{\sigma^2}(\widehat{\mathbb{V}}_0)$

ļ

Estimation of the covariance structure

□ The covariance structure in V₀ must be still estimated – can be done using the reduced log-likelihood for the estimated β̂(V₀) and σ²(V₀)

 \square The reduced log-likelihood (proportional) for \mathbb{V}_0 can be expressed as

$$\begin{split} \mathcal{P}(\mathbb{V}_0) &\equiv \ell(\widehat{eta}(\mathbb{V}_0), \widehat{\sigma^2}(\mathbb{V}_0), \mathbb{V}_0, \mathcal{D}_S) = \ &= - \frac{N}{2} \left[n \log \left((oldsymbol{Y} - \mathbb{X}\widehat{eta}(\mathbb{V}_0))^{ op} \mathbb{V}^{-1} (oldsymbol{Y} - \mathbb{X}\widehat{eta}(\mathbb{V}_0))
ight) + \log |\mathbb{V}_0|
ight] \end{split}$$

 \square Finally, the ML estimate $\widehat{\mathbb{V}}_0$ is used to obtain the estimates for the mean and variance, i.e.,

$$\widehat{\beta} = \widehat{\beta}(\widehat{\mathbb{V}}_0)$$
 and $\widehat{\sigma^2} = \widehat{\sigma^2}(\widehat{\mathbb{V}}_0)$

(however, the minimization of $\ell(\mathbb{V}_0)$ with respect to the parameters in \mathbb{V}_0 required not trivial optimization techniques and algorithms – generally, the dimensionality of the optimization problem for \mathbb{V}_0 is $\frac{n(n-1)}{2}$ – calculation of the determinant and inverse of a $n \times n$ matrix)

Consistency of the estimates

- □ Note, that in the simultaneous estimation of mean, variance, and covariance parameters (β , σ^2 , and \mathbb{V}_0) the design/model matrix \mathbb{X} is explicitly involved in the estimate for σ^2 as well as \mathbb{V}_0
- □ If the matrix X is specified incorrectly, the estimates for σ^2 and V_0 are not even consistent \implies using a full saturated model for the mean structure can offer a possible solution (large number of the estimated parameters)
- Saturated model for the conditional mean structure guarantees consistent estimates of the variance-covariance structure which can be further used to do inference about the mean structure (to reduce its complexity)

Consistency of the estimates

- □ Note, that in the simultaneous estimation of mean, variance, and covariance parameters (β , σ^2 , and \mathbb{V}_0) the design/model matrix \mathbb{X} is explicitly involved in the estimate for σ^2 as well as \mathbb{V}_0
- □ If the matrix X is specified incorrectly, the estimates for σ^2 and V_0 are not even consistent \implies using a full saturated model for the mean structure can offer a possible solution (large number of the estimated parameters)
- Saturated model for the conditional mean structure guarantees consistent estimates of the variance-covariance structure which can be further used to do inference about the mean structure (to reduce its complexity)
- Good strategy but very often not feasible!

Consistency of the estimates

- □ Note, that in the simultaneous estimation of mean, variance, and covariance parameters (β , σ^2 , and \mathbb{V}_0) the design/model matrix \mathbb{X} is explicitly involved in the estimate for σ^2 as well as \mathbb{V}_0
- □ If the matrix X is specified incorrectly, the estimates for σ^2 and V_0 are not even consistent \implies using a full saturated model for the mean structure can offer a possible solution (large number of the estimated parameters)
- □ Saturated model for the conditional mean structure guarantees consistent estimates of the variance-covariance structure which can be further used to do inference about the mean structure (to reduce its complexity)
- Good strategy but very often not feasible!
- □ The maximum likelihood estimation works relatively well if the model matrix X is well specified... otherwise, it can be more appropriate to use the restricted maximum likelihood (REML) approach

6 / 13

Restricted maximum likelihood

The main idea is to somehow restrict the dependency of the estimates $\widehat{\sigma^2}$ and $\widehat{\mathbb{V}_0}$ on the mean structure postulated by the design/model matrix X... (Patterrson and Thompson, 1971)

- □ standard maximum likelihood typically gives biased variance estimate (even in classical regression, compare RSS/n versus RSS/(n-p))
- □ the principal idea is to perform standard MLE for transformed data \mathbf{Y}^* such that the distribution of $\mathbf{Y}^* = \mathbb{A}\mathbf{Y}$ does not depend on $\beta \in \mathbb{R}^p$
- □ one possible option for A is a transformation of **Y** into OLS residuals which means that the matrix A takes the form $A = I X(X^{-1}X)^{-1}X$
- □ however, any (full-rank) matrix which satisfies $E \mathbf{Y}^* = \mathbf{0}$, $\forall \beta \in \mathbb{R}^p$ will give unbiased estimates for the variance-covariance parameters

Restricted maximum likelihood

The main idea is to somehow restrict the dependency of the estimates $\widehat{\sigma^2}$ and $\widehat{\mathbb{V}_0}$ on the mean structure postulated by the design/model matrix X... (Patterrson and Thompson, 1971)

- □ standard maximum likelihood typically gives biased variance estimate (even in classical regression, compare RSS/n versus RSS/(n-p))
- □ the principal idea is to perform standard MLE for transformed data \mathbf{Y}^* such that the distribution of $\mathbf{Y}^* = \mathbb{A}\mathbf{Y}$ does not depend on $\beta \in \mathbb{R}^p$
- □ one possible option for A is a transformation of **Y** into OLS residuals which means that the matrix A takes the form $A = I X(X^{-1}X)^{-1}X$
- □ however, any (full-rank) matrix which satisfies $E \mathbf{Y}^* = \mathbf{0}$, $\forall \beta \in \mathbb{R}^p$ will give unbiased estimates for the variance-covariance parameters
- □ nevertheless, both methods (maximim likelihood and REML) are asymptotically equivalent whenever the sample size tends to infinity and $p \in \mathbb{N}$ is fixed (for $p \to \infty$ the problem is more complex, REML)

REML – some calculation details

- □ let's assume that $\mathbf{Y} \sim N_{Nn}(\mathbb{X}\beta, \mathbb{H}(\alpha))$ for $\alpha \in \mathbb{R}^q$ where $\mathbb{H}(\alpha)$ fully captures the variance-covariance structure (i.e., including the variance σ^2)
- □ for the projection matrix $\mathbb{A} = \mathbb{I} \mathbb{X}(\mathbb{X}^{-1}\mathbb{X})^{-1}\mathbb{X}$, let $\mathbb{B} \in \mathbb{R}^{Nn \times (Nn-p)}$ is a matrix which satisfies $\mathbb{B}\mathbb{B}^{\top} = \mathbb{A}$ and $\mathbb{B}^{\top}\mathbb{B} = \mathbb{I}_{(Nn-p) \times (Nn-p)}$
- □ let $Z = \mathbb{B}^{\top} Y$ be the vector of transformed response vector Y where, from the normality property, we have $Z \sim N_{(Nn-p)}(\mathbb{B}^{\top} \mathbb{X}\beta, \mathbb{B}^{\top} \mathbb{H}(\alpha)\mathbb{B})$
- □ the corresponding maximum likelihood estimate of β based on **Y** (fixed α) is the generalized least-squares estimator $\hat{\beta} = (X^{\top} \mathbb{H}^{-1} X)^{-1} X^{\top} \mathbb{H}^{-1} Y$
- \Box random vector Z and β are independent whatever the true value of $\beta \in \mathbb{R}^{p}$ and, moreover, it holds that $EZ = \mathbf{0}$
- □ thus, we have that $Z \sim N_{Nn-p}(\mathbb{B}^{\top} \mathbb{X}\beta, \mathbb{B}^{\top} \mathbb{H}(\alpha)\mathbb{B})$, which is independent of $\hat{\beta}$ thus, the inference for $\alpha \in \mathbb{R}^{q}$ can be performed independently of β

REML – overview

 \square the maximum likelihood estimate of $lpha \in \mathbb{R}^q$ maximizes the log-likelihood

$$\ell(oldsymbol{lpha}) = rac{1}{2} \log |\mathbb{H}| - rac{1}{2} (oldsymbol{Y} - \mathbb{X}\widehat{eta})^{ op} \mathbb{H}^{-1} (oldsymbol{Y} - \mathbb{X}\widehat{eta})$$

 $lacksymbol{\square}$ the restricted maximum likelihood estimate of $oldsymbol{lpha} \in \mathbb{R}^q$ maximizes

$$\ell^*(oldsymbol{lpha}) = rac{1}{2} \log |\mathbb{H}| - rac{1}{2} \log |\mathbb{X}^ op \mathbb{H}^{-1} \mathbb{X}| - rac{1}{2} (oldsymbol{Y} - \mathbb{X} \widehat{eta})^ op \mathbb{H}^{-1} (oldsymbol{Y} - \mathbb{X} \widehat{eta})$$

REML – overview

 \square the maximum likelihood estimate of $lpha \in \mathbb{R}^q$ maximizes the log-likelihood

$$\ell(oldsymbol{lpha}) = rac{1}{2} \log |\mathbb{H}| - rac{1}{2} (oldsymbol{Y} - \mathbb{X}\widehat{eta})^{ op} \mathbb{H}^{-1} (oldsymbol{Y} - \mathbb{X}\widehat{eta})$$

 $lacksymbol{\square}$ the restricted maximum likelihood estimate of $oldsymbol{lpha} \in \mathbb{R}^q$ maximizes

$$\ell^*(oldsymbol{lpha}) = rac{1}{2} \log |\mathbb{H}| - rac{1}{2} \log |\mathbb{X}^ op \mathbb{H}^{-1} \mathbb{X}| - rac{1}{2} (oldsymbol{Y} - \mathbb{X} \widehat{eta})^ op \mathbb{H}^{-1} (oldsymbol{Y} - \mathbb{X} \widehat{eta})$$

 $\hfill\square$ Thus, the (REML) of the variance parameter $\sigma^2>0$ is

$$\widehat{\sigma^2}(\mathbb{V}_0) = \frac{1}{Nn - \rho} (\boldsymbol{Y} - \mathbb{X}\widehat{\beta}(\mathbb{V}_0))^\top \mathbb{V}^{-1} (\boldsymbol{Y} - \mathbb{X}\widehat{\beta}(\mathbb{V}_0))$$

and the REML estimate of \mathbb{V}_0 maximizes the reduced log-likelihood

$$\ell^*(\mathbb{V}_0) = -\frac{1}{2}N\left[n\log(\boldsymbol{Y} - \mathbb{X}\widehat{\beta}(\mathbb{V}_0))^\top \mathbb{V}^{-1}(\boldsymbol{Y} - \mathbb{X}\widehat{\beta}(\mathbb{V}_0)) + \log|\mathbb{V}_0|\right] - \frac{1}{2}\log|\mathbb{X}^\top \mathbb{V}^{-1}\mathbb{X}|$$

9 / 13

Robust estimation of standard errors

- □ the idea is to allow for a robust inference for $\beta \in \mathbb{R}^{p}$ by using a generalized least-squares estimator $\widehat{\beta}_{W} = (\mathbb{X}^{\top} \mathbb{W} \mathbb{X})^{-1} \mathbb{X}^{\top} \mathbb{W} \mathbb{Y}$ and the variance-covariance $\widehat{R}_{W} = \left[(\mathbb{X}^{\top} \mathbb{W} \mathbb{X})^{-1} \mathbb{X}^{\top} \mathbb{W} \right] \widehat{\mathbb{V}} \left[\mathbb{W} \mathbb{X} (\mathbb{X}^{\top} \mathbb{W} \mathbb{X})^{-1} \right]$
- $\hfill\square$ statistical inference for β is based on the assumption that

 $\widehat{eta}_W \sim N_p(eta, \widehat{R}_W)$

Robust estimation of standard errors

Lecture 4

- \Box the idea is to allow for a robust inference for $\beta \in \mathbb{R}^{p}$ by using a generalized least-squares estimator $\widehat{\beta}_W = (X^{\dagger}WX)^{-1}X^{\dagger}WY$ and the variance-covariance $\widehat{R}_{W} = \left[(\mathbb{X}^{\top} \mathbb{W} \mathbb{X})^{-1} \mathbb{X}^{\top} \mathbb{W} \right] \widehat{\mathbb{V}} \left[\mathbb{W} \mathbb{X} (\mathbb{X}^{\top} \mathbb{W} \mathbb{X})^{-1} \right]$
- \Box statistical inference for β is based on the assumption that

 $\widehat{\beta}_{W} \sim N_{p}(\beta, \widehat{R}_{W})$

 \square Matrix \mathbb{W}^{-1} is called the working correlation matrix (qualitative) Matrix \mathbb{V} is the unknown true variance-covariance matrix

 \hookrightarrow however, poor choice of \mathbb{W} will only effect the efficiency of the inference about $\beta \in \mathbb{R}^{p}$ but not the its validity \Longrightarrow confidence intervals and statistical tests will be asymptotically correct whatever the true form of $\mathbb V$

 \hookrightarrow typically, it is either common to use $\mathbb{W}^{-1} = \mathbb{I}$ or, for smoothly decaying autocorrelation, a block-diagonal matrix \mathbb{W}^{-1} with elements $\exp\{-c|t_j - t_k|\}, c > 0$

Example: Designed experiment

- $lacksymbol{\square}$ measurements Y_{ijg} , for $i=1,\ldots,N_g$, $g=1,\ldots,G$, and $j=1,\ldots,n$
- \Box saturated model for the response $EY_{ijg} = \mu_{jg}$
- □ variance-covariance $Var \mathbf{Y} = \mathbb{V}$ with diagonal blocks $\mathbb{V}_0 \in \mathbb{R}^{n \times n}$
- $\hfill\square$ REML estimate for ${\mathbb X}$ using a specific form of the model matrix ${\mathbb X}$

$$\mathbb{X} = \begin{pmatrix} \mathbb{I} & \mathbb{O} \\ \mathbb{I} & \mathbb{O} \\ \mathbb{O} & \mathbb{I} \\ \mathbb{O} & \mathbb{I} \\ \mathbb{O} & \mathbb{I} \end{pmatrix}$$

for a particular choice of G = 2, $N_1 = 2$, and $N_2 = 3$ (and $n \in \mathbb{N}$)

Example: Designed experiment – estimates

Mean estimates

$$\widehat{\mu}_{jg} = rac{1}{N_g}\sum_{i=1}^{N_g}Y_{ijg}$$

□ REML estimate for V₀

$$\widehat{\mathbb{V}}_{0} = \left(\sum_{g=1}^{G} N_{g} - G\right)^{-1} \sum_{g=1}^{G} \sum_{i=1}^{N_{g}} (\boldsymbol{Y}_{ig} - \widehat{\mu}_{g}) (\boldsymbol{Y}_{ig} - \widehat{\mu}_{g})^{\top}$$

□ REML estimate for V

is a block-diagonal matrix with blocks formed by the estimate $\widehat{\mathbb{V}}_0$

▲

Example: Designed experiment – estimates

Mean estimates

$$\widehat{\mu}_{jg} = rac{1}{N_g}\sum_{i=1}^{N_g}Y_{ijg}$$

□ REML estimate for V₀

$$\widehat{\mathbb{V}}_{0} = \left(\sum_{g=1}^{G} N_{g} - G\right)^{-1} \sum_{g=1}^{G} \sum_{i=1}^{N_{g}} (\boldsymbol{Y}_{ig} - \widehat{\mu}_{g}) (\boldsymbol{Y}_{ig} - \widehat{\mu}_{g})^{\top}$$

□ REML estimate for V

is a block-diagonal matrix with blocks formed by the estimate $\widehat{\mathbb{V}}_0$

 \hookrightarrow the saturated model for the mean structure may not be useful in practice – its only purpose is to provide a consistent estimate of $\mathbb{V}_{0}...$ for observational studies with continuously varying covariates it is no longer applicable...

However, the principal idea remains the same...

Summary

- weighted least-squares estimation vs. maximum likelihood estimation (with or without the assumption of the normal model)
- **u** maximum likelihood vs. restricted maximum likelihood estimation (robust estimates for β limiting the dependence on X)
- □ inference about the mean structure based on $\hat{\beta}_W \sim N_p(\beta, \hat{R}_W)$ (using the assumption of the multivariate normal model for the response)
- □ special attention given to a consistent estimation of \mathbb{V} (saturated or most elaborated model is used to get the estimate $\widehat{\mathbb{V}}$)