Lecture 3 | 11.03.2024
Statistical inference in a multivariate regression model

Notation overview

\square balanced longitudinal profiles $\mathcal{D}_{B} \equiv\left\{\left(\boldsymbol{Y}_{i}, \boldsymbol{X}_{i 1}^{\top}, \ldots, \boldsymbol{X}_{i n}^{\top}\right)^{\top} ; i=1, \ldots, N\right\}$
\square for $n_{i}=n \in \mathbb{N}$ for all $i=1, \ldots, N$
random vectors $\left(\boldsymbol{Y}_{i}, \boldsymbol{X}_{i 1}^{\top}, \ldots, \boldsymbol{X}_{i n}^{\top}\right)^{\top}$ are independent with the same length
\square for longitudinal data we do not assume that subject specific measurements are taken at the same time $\Rightarrow \mathcal{D}_{B}$ generally not a random sample!
\square for multivariate regression model we already assume that the observations in \mathcal{D}_{B} form a random sample \Rightarrow notation \mathcal{D}_{S}
\square population and data model formulation (theoretical vs. empirical)

$$
\boldsymbol{Y}=\boldsymbol{X}^{\top} \mathbb{B}+\varepsilon \quad \mathbb{Y}=\mathbb{X} \mathbb{B}+\mathbb{U}
$$

for generic random vectors $\boldsymbol{Y} \in \mathbb{R}^{n}$ and $\boldsymbol{X} \in \mathbb{R}^{p}$ and some matrix of the unknown parameters $\mathbb{B} \in \mathbb{R}^{p \times n}$

The corresponding data: $\mathbb{Y}=\left(\boldsymbol{Y}_{1}^{\top}, \ldots, \boldsymbol{Y}_{N}^{\top}\right)^{\top}, \mathbb{X}=\left(\boldsymbol{X}_{1}^{\top}, \ldots, \boldsymbol{X}_{N}^{\top}\right)^{\top}$, and $\mathbb{U}=\left(\boldsymbol{u}_{1}^{\top}, \ldots, \boldsymbol{u}_{N}^{\top}\right)^{\top} \equiv\left(\varepsilon_{1}^{\top}, \ldots, \varepsilon_{N}^{\top}\right)^{\top}$

Statistical inference: Likelihood ratio test

\square Inference in terms of confidence intervals/regions and hypothesis tests
\square General form of the null hypothesis:

$$
H_{0}: \mathbb{C}_{1} \mathbb{B M}_{1}=\mathbb{D}
$$

where $\mathbb{C}_{1}, \mathbb{M}_{1}$, and \mathbb{D} are some (suitable) matrices
\square The rows of \mathbb{C}_{1} do inference on the effects of independent variables while the columns of \mathbb{M}_{1} do inference on particular linear combinations of dependent variables
\square In practical applications it is common that \mathbb{D} is a zero matrix (all elements are zeros) and $\mathbb{M}_{1}=\mathbb{I}$ (i.e. a unit matrix with ones on the main diagonal) \hookrightarrow alternatively, the model of the form $\mathbb{Y M}_{1}=\mathbb{X} \mathbb{B M}_{1}+\mathbb{U M}_{1}$
\square Thus, the null hypothesis reduces to

$$
H_{0}: \mathbb{C}_{1} \mathbb{B}=\mathbf{0}
$$

against a general alternative hypothesis of the form $H_{A}: \mathbb{C}_{1} \mathbb{B} \neq \mathbf{0} \in \mathbb{R}^{q \times n}$ (with the rank of the matrix \mathbb{C}_{1} being equal to $q \in \mathbb{N}$)

Inference: Likelihood ratio test

\square consider the null hypothesis of the form $H_{0}: \mathbb{C}_{1} \mathbb{B}=\mathbb{D}$
\square the model $\mathbb{Y}=\mathbb{X} \mathbb{B}+\mathbb{U}$ can be equivalently expressed as

$$
\widetilde{\mathbb{Y}}=\widetilde{\mathbb{Z}} \widetilde{\mathbb{B}}+\mathbb{U}
$$

for $\widetilde{\mathbb{Y}}=\mathbb{Y}-\mathbb{X} \mathbb{B}_{0}$, where $\mathbb{C}_{1} \mathbb{B}_{0}=\mathbb{D}$ (satisfies the null hypothesis),
$\mathbb{Z}=\mathbb{X} \mathbb{C}^{-1}$ where $\mathbb{C}^{\top}=\left(\mathbb{C}_{1}^{\top}, \mathbb{C}_{2}^{\top}\right)$ and $\widetilde{\mathbb{B}}=\left(\widetilde{\mathbb{B}}_{1}^{\top}, \widetilde{\mathbb{B}}_{2}^{\top}\right)^{\top}=\mathbb{C}\left(\mathbb{B}-\mathbb{B}_{0}\right)$
\square the null hypothesis $\mathbb{C}_{1} \mathbb{B}=\mathbb{D}$ gives that $\widetilde{\mathbb{B}}_{1}=\mathbf{0}$ and for the matrix partition $\mathbb{C}^{-1}=\left(\mathbb{C}^{(1)}, \mathbb{C}^{(2)}\right)$ the projection matrix

$$
\mathbb{P}_{1}=\mathbb{I}-\mathbb{X} \mathbb{C}^{(2)}\left(\mathbb{C}^{(2) \top} \mathbb{X}^{\top} \mathbb{X} \mathbb{C}^{(2)}\right)^{-1} \mathbb{C}^{(2) \top} \mathbb{X}^{\top}
$$

defines the projection onto the linear subspace orthogonal to the columns of the matrix $\mathbb{X} \mathbb{C}^{(2)}$ (i.e., residuals for the regression onto $\mathbb{C}^{(2)}$ - under the null hypothesis, thus $\widetilde{\mathbb{B}}_{1}=\mathbf{0}$)

LRT: Likelihood under the null and alternative

\square maximized likelihood under the null hypothesis

$$
\ell_{0}=\left|2 \pi N^{-1} \widetilde{\mathbb{Y}}^{\top} \mathbb{P}_{1} \widetilde{\mathbb{Y}}\right|^{-N / 2} \cdot \exp \left\{-\frac{1}{2} N n\right\}
$$

\square maximized likelihood under the alternative hypothesis

$$
\ell_{1}=\left|2 \pi N^{-1} \widetilde{\mathbb{Y}}^{\top} \widetilde{\mathbb{P}} \widetilde{\mathbb{Y}}\right|^{-N / 2} \cdot \exp \left\{-\frac{1}{2} N n\right\}
$$

\square the likelihood ratio test statistic is given as

$$
\lambda^{2 / N}=\left|\widetilde{\mathbb{Y}}^{\top} \widetilde{\mathbb{P}} \widetilde{\mathbb{Y}}\right| /\left|\widetilde{\mathbb{Y}}^{\top} \mathbb{P}_{1} \widetilde{\mathbb{Y}}\right|=\left|\widetilde{\mathbb{Y}}^{\top} \widetilde{\mathbb{P}} \widetilde{\mathbb{Y}}\right| /\left|\widetilde{\mathbb{Y}}^{\top} \widetilde{\mathbb{P}} \widetilde{\mathbb{Y}}+\widetilde{\mathbb{Y}}^{\top} \mathbb{P}_{2} \widetilde{\mathbb{Y}}\right|
$$

and it follows the $\Lambda(n, N-p, q)$ distribution, where $q \in \mathbb{N}$ is the number of rows in \mathbb{C}_{1} (for $\mathbb{P}_{2}=\mathbb{P}_{1}-\widetilde{\mathbb{P}}$ - what does it mean geometrically?)

Examples

\square Repeated measurements for two groups (two-sample problems):

$$
\begin{array}{ll}
\boldsymbol{Y}_{i}^{(1)} \sim N_{n}\left(\boldsymbol{\mu}_{1}, \Sigma\right), & i=1, \ldots, N_{1} \\
\boldsymbol{Y}_{i}^{(2)} \sim N_{n}\left(\boldsymbol{\mu}_{2}, \Sigma\right), & i=1, \ldots, N_{2}
\end{array}
$$

- Typical testing problems:
\square parallel profiles of two groups

$$
\begin{array}{r}
H_{0}: \mathbb{C}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)=\mathbf{0} \\
H_{0}: \mathbf{1}^{\top}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)=0 \\
H_{0}: \mathbb{C}\left(\boldsymbol{\mu}_{1}+\boldsymbol{\mu}_{2}\right)=\mathbf{0}
\end{array}
$$

identical profiles for both groups

- treatment effect
\square Multiple testing problem: testing for identical profiles only makes sense if the profiles are parallel; Similarly, if the profiles are parallel, is there any treatment effect at all?

Two sample problems:

- Parallel profiles

$$
T=\frac{N_{1} N_{2}}{\left(N_{1}+N_{2}\right)^{2}}\left(N_{1}+N_{2}-2\right)\left[\mathbb{C}\left(\bar{Y}^{(1)}-\bar{Y}^{(2)}\right)\right]^{\top}\left(\mathbb{C} \mathcal{S} \mathbb{C}^{\top}\right)^{-1}\left[\mathbb{C}\left(\bar{Y}^{(1)}-\bar{Y}^{(2)}\right)\right]
$$

and (under the null hypothesis) $T \sim T^{2}\left(n-1, N_{1}+N_{2}-2\right)$
\square Equality of two levels

$$
T=\frac{N_{1} N_{2}}{\left(N_{1}+N_{2}\right)^{2}}\left(N_{1}+N_{2}-2\right) \frac{\left[\mathbf{1}^{\top}\left(\bar{Y}^{(1)}-\bar{Y}^{(2)}\right)\right]^{2}}{\mathbf{1}^{\top} \mathcal{S} \mathbf{1}}
$$

and (under the null hypothesis) $T \sim T^{2}\left(1, N_{1}+N_{2}-2\right)$

- Same treatment effect

$$
T=\left(N_{1}+N_{2}-2\right)(\mathbb{C} \bar{Y})^{\top}\left(\mathbb{C S} \mathbb{C}^{\top}\right)^{-1} \mathbb{C} \bar{Y}, \quad \text { for } \bar{Y}=\frac{N_{1} \bar{Y}^{(1)}+N_{2} \bar{Y}^{(2)}}{N_{1}+N_{2}}
$$

and (under the null hypothesis) $T \sim T^{2}\left(n-1, N_{1}+N_{2}-2\right)$

Overview

\square statistical test about some (multivariate) mean vector $\boldsymbol{\mu} \in \mathbb{R}^{n}$ can be often expressed in terms of the null hypothesis $H_{0}: \mathbb{A} \boldsymbol{\mu}=\boldsymbol{a}$ vs. $H_{A}: \mathbb{A} \boldsymbol{\mu} \neq \boldsymbol{a}$. where $\mathbb{A} \in \mathbb{R}^{q \times n}$ and $\boldsymbol{a} \in \mathbb{R}^{q}$
\square for $\boldsymbol{X}_{i} \sim N_{n}(\boldsymbol{\mu}, \Sigma)$ for $i=1, \ldots, N$, with Σ known, the log-likelihood based test statistic $-2 \log \lambda=N\left(\mathbb{A} \overline{\boldsymbol{X}}_{N}-\boldsymbol{a}\right)^{\top}\left(\mathbb{A} \Sigma \mathbb{A}^{\top}\right)^{-1}\left(\mathbb{A} \overline{\boldsymbol{X}}_{N}-\boldsymbol{a}\right)$ follows (exactly) the χ^{2} distribution with $q \in \mathbb{N}$ degrees of freedom
\square for $\boldsymbol{X}_{i} \sim N_{n}(\boldsymbol{\mu}, \Sigma)$ for $i=1, \ldots, N$, with Σ unknown, the log-likelihood test statistic $-2 \log \lambda=N \log \left\{1+\left(\mathbb{A} \overline{\boldsymbol{X}}_{N}-\boldsymbol{a}\right)^{\top}\left(\mathbb{A} \widehat{\Sigma}_{N} \mathbb{A}^{\top}\right)^{-1}\left(\mathbb{A} \overline{\boldsymbol{X}}_{N}-\boldsymbol{a}\right)\right\}$ follows asymptotically the χ^{2} distribution with $q \in \mathbb{N}$ degrees of freedom and the exact Hotelling test is based on the test statistic

$$
(N-1)\left(\mathbb{A} \overline{\boldsymbol{X}}_{N}-\boldsymbol{a}\right)^{\top}\left(\mathbb{A} \widehat{\Sigma}_{N} \mathbb{A}^{\top}\right)^{-1}\left(\mathbb{A} \overline{\boldsymbol{X}}_{N}-\boldsymbol{a}\right) \sim T^{2}(\boldsymbol{q}, N-1)
$$

\square for $Y_{i} \sim N\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$, for $i=1, \ldots, N$, with $\sigma^{2}>0$ unknown, the test of the null hypothesis $H_{0}: \mathbb{A} \boldsymbol{\beta}=\boldsymbol{a}$, for $\boldsymbol{a} \in \mathbb{R}^{q}$, leads to the test statistic

$$
\frac{N-n}{q} \cdot \frac{(\mathbb{A} \widehat{\boldsymbol{\beta}}-\boldsymbol{a})^{\top}\left[\mathbb{A}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{A}\right]^{-1}(\mathbb{A} \widehat{\boldsymbol{\beta}}-\boldsymbol{a})}{(\boldsymbol{Y}-\mathbb{X} \widehat{\boldsymbol{\beta}})^{\top}(\boldsymbol{Y}-\mathbb{X} \widehat{\boldsymbol{\beta}})} \sim F_{q, N-n}
$$

Multivariate model vs. general linear model

\square Multivariate regression model $\mathbb{Y}=\mathbb{X} \mathbb{B}+\mathbb{U}$
$\square n \in \mathbb{N}$ repeated measurements within $N \in \mathbb{N}$ subjects (random sample)
\square repeated measurements taken at the same time-points across subjects
\square time evolution modeled by the set of $\boldsymbol{\beta}_{j} \in \mathbb{R}^{p}$ parameters $(j=1, \ldots, n)$
\square the vector of subject's specific covariates $\boldsymbol{X}_{i} \in \mathbb{R}^{p}$ fixed over time
\square covariance structure modeled by the matrix Σ, where $\boldsymbol{u}_{i} \sim N_{n}(\mathbf{0}, \Sigma)$
\square the data usually form a random sample from the joint distribution $F_{\boldsymbol{Y}, \boldsymbol{X}}$
\square General linear model for correlated errors $\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\varepsilon$
$\square n \in \mathbb{N}$ repeated measurements within $N \in \mathbb{N}$ subjects (balanced data)
\square the vector of unknown parameters $\beta \in \mathbb{R}^{p}$ is fixed over time
\square subject's specific covariates $X_{i j} \in \mathbb{R}^{p}$ may vary with $j \in\{1, \ldots, n\}$
\square subjects' independence and within subject's covariance modeled by the variance covariance Σ, where $\varepsilon \sim N(\mathbf{0}, \Sigma)$ (overall dimensionality: $N n$)
\square the model can be further generalized for unbalanced data ($n_{i} \in \mathbb{N}$)

General linear model with correlated errors

\square instead of time-varying $\boldsymbol{\beta}_{j}$ and fixed $\boldsymbol{X}_{j} \in \mathbb{R}^{p}$ the time evolution can be modeled in terms of time-varying covariates $\boldsymbol{X}_{i j} \in \mathbb{R}^{p}$ and fixed $\beta \in \mathbb{R}^{p}$
\square Simplification in terms of the vectors of unknown parameters $\beta_{j} \in \mathbb{R}^{p}$ for $j=1, \ldots, n$ (in the matrix $\mathbb{B} \in \mathbb{R}^{p \times n}$): $\Rightarrow \beta=\beta_{1}=\cdots=\beta_{n}$
\square Relaxation in terms of the subject's specific covariates $\boldsymbol{X}_{i j} \in \mathbb{R}^{p}$ that are now allowed to change with $j \in\{1, \ldots, n\}: \Rightarrow \boldsymbol{X}_{i j}=\left(X_{i j 1}, \ldots, X_{i j p}\right)^{\top} \in \mathbb{R}^{p}$
\square this allows for an alternative formulation of the multivariate (data) model (where $\mathbb{Y}=\mathbb{X} \mathbb{B}+\mathbb{U}$ follows as a special case) in a form

$$
\left(\begin{array}{c}
Y_{11} \\
\vdots \\
Y_{1 n} \\
Y_{21} \\
\vdots \\
Y_{N n}
\end{array}\right)=\left(\begin{array}{ccc}
X_{111} & \ldots & X_{11 p} \\
\vdots & \ddots & \vdots \\
X_{1 n 1} & \ldots & X_{1 n p} \\
X_{211} & \ldots & X_{21 p} \\
\vdots & \ddots & \vdots \\
X_{N n 1} & \ldots & X_{N n p}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{p}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{11} \\
\vdots \\
\varepsilon_{1 n} \\
\varepsilon_{21} \\
\vdots \\
\varepsilon_{N n}
\end{array}\right)
$$

General linear model with correlated errors

\square instead of time-varying $\boldsymbol{\beta}_{j}$ and fixed $\boldsymbol{X}_{j} \in \mathbb{R}^{p}$ the time evolution can be modeled in terms of time-varying covariates $\boldsymbol{X}_{i j} \in \mathbb{R}^{p}$ and fixed $\beta \in \mathbb{R}^{p}$
\square Simplification in terms of the vectors of unknown parameters $\beta_{j} \in \mathbb{R}^{p}$ for $j=1, \ldots, n$ (in the matrix $\mathbb{B} \in \mathbb{R}^{p \times n}$): $\Rightarrow \beta=\beta_{1}=\cdots=\beta_{n}$
\square Relaxation in terms of the subject's specific covariates $\boldsymbol{X}_{i j} \in \mathbb{R}^{p}$ that are now allowed to change with $j \in\{1, \ldots, n\}: \Rightarrow \boldsymbol{X}_{i j}=\left(X_{i j 1}, \ldots, X_{i j p}\right)^{\top} \in \mathbb{R}^{p}$
\square this allows for an alternative formulation of the multivariate (data) model (where $\mathbb{Y}=\mathbb{X} \mathbb{B}+\mathbb{U}$ follows as a special case) in a form

$$
\left(\begin{array}{c}
Y_{11} \\
\vdots \\
Y_{1 n} \\
Y_{21} \\
\vdots \\
Y_{N n}
\end{array}\right)=\left(\begin{array}{ccc}
X_{111} & \ldots & X_{11 p} \\
\vdots & \ddots & \vdots \\
X_{1 n 1} & \ldots & X_{1 n p} \\
X_{211} & \ldots & X_{21 p} \\
\vdots & \ddots & \vdots \\
X_{N n 1} & \ldots & X_{N n p}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{p}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{11} \\
\vdots \\
\varepsilon_{1 n} \\
\varepsilon_{21} \\
\vdots \\
\varepsilon_{N n}
\end{array}\right)
$$

\square What are the advantages and disadvantages of both model formulations?

Matrix formulation

\square typically we use the notation (under multivariate normal assumption)

$$
\boldsymbol{Y} \sim N_{N n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{V}\right)
$$

where \mathbb{V} is a block-diagonal matrix with non-zero blocks of size $n \times n$ (each block $\sigma^{2} \mathbb{V}_{0}$ represents the variance-covariance of repeated measurements within a single subject)
\square the variance covariance matrix $\sigma^{2} \mathbb{V}$ is estimated by borrowing power across subject (i.e., replication of $\sigma^{2} \mathbb{V}_{0}$ across the units)
\square there can be no specific (parametric) structure assumed for \mathbb{V}_{0} but it is common to postulate some parametric form of \mathbb{V}_{0}
\square the correlation structure within $\sigma^{2} \mathbb{V}$ is crucial for a proper inference

Uniform correlation model

\square Assumption: positive correlation $\rho \in(0,1)$ between any two repeated observations within a given subject
\square Matrix notation: $\mathbb{V}_{0}=(1-\rho) \mathbb{I}_{n \times n}+\rho \mathbf{1}_{n \times n}$
\square Motivation: the response (random) variable $Y_{i j}$ can be decomposed as

$$
Y_{i j}=\mu_{i j}+Z_{i}+V_{i j}
$$

where $\mu_{i j}=E Y_{i j}$ and $Z_{i} \sim N\left(0, \nu^{2}\right)$ independent of $V_{i j} \sim N\left(0, \tau^{2}\right)$ and it holds that $\rho=\nu^{2} /\left(\nu^{2}+\tau^{2}\right)$ and $\sigma^{2}=\nu^{2}+\tau^{2}\left(\right.$ for $\left.\varepsilon_{i j}=Z_{i}+V_{i j}\right)$
\square Interpretation: linear model for the mean of the response with a random intercept (with the variance between subjects $\nu^{2}>0$)

Exponential correlation model

\square Assumption: covariance between $Y_{i j}$ and $Y_{i k}$ for $i \neq k$ is of the form

$$
v_{j k}=\sigma^{2} \exp \left\{-\phi\left|t_{j}-t_{k}\right|\right\}
$$

and it decays towards zero as the time separation between repeated observations increases (with the rate of decay given by $\phi>0$)
\square Matrix notation: $\mathbb{V}_{0}=\left(v_{j k}\right)_{j, k=1}^{n}$
\square Motivation: the response (random) variable $Y_{i j}$ can be decomposed as

$$
Y_{i j}=\mu_{i j}+W_{i j}
$$

where $W_{i j}=\rho W_{i(j-1)}+Z_{i j}$ for $Z_{i j} \sim N\left(0, \sigma^{2}\left(1-\rho^{2}\right)\right)$ independent (verify, that it holds that $\operatorname{Var} Y_{i j}=\operatorname{VarW}_{i j}=\sigma^{2}$)
\square Interpretation: linear model for the mean of the response with with the first order autoregressive correlation structure
\square Generalization: $Y_{i j}=\mu_{i j}+W_{i}\left(t_{j}\right)$ for continuous time Gaussian processes $\left\{X_{i}(t) ; t \in \mathbb{R}\right\}$ independent for $i=1, \ldots, N$ and general time points $t_{1}<\cdots<t_{n i}$

Towards least squares - two step estimation

\square For simplification assume the model $Y_{i j}=a+b X_{i j}+\varepsilon_{i j}$ and no distributional assumption for the error vector $\varepsilon=\left(\varepsilon_{11}, \ldots, \varepsilon_{N_{n}}\right)^{\top}$
\square Two-stage least squares as a simple estimation method for models where it is needed to distinguish the variance sources (within/between subjects)

Towards least squares - two step estimation

\square For simplification assume the model $Y_{i j}=a+b X_{i j}+\varepsilon_{i j}$ and no distributional assumption for the error vector $\varepsilon=\left(\varepsilon_{11}, \ldots, \varepsilon_{N_{n}}\right)^{\top}$
\square Two-stage least squares as a simple estimation method for models where it is needed to distinguish the variance sources (within/between subjects)
\square Stage 1: longitudinal profiles for each subject $i \in\{1, \ldots, N\}$ individually

$$
Y_{i j}=A_{i}+B_{i} X_{i j}+W_{i j}, \quad j=1, \ldots, n, \quad \text { and } W_{i j} \sim\left(0, \tau^{2}\right), \quad i . i . d
$$

to obtain $\widehat{A}_{i}=A_{i}+Z_{a i}$ and $\widehat{B}_{i}=B_{i}+Z_{b i}$, for $Z_{a i} \sim\left(0, v_{a i}^{2}\right), Z_{b i} \sim\left(0, v_{b i}^{2}\right)$
\square Stage 2: OLS analysis of the subject's specific parameter estimates

$$
A_{i}=a+\delta_{a i} \quad \text { and } \quad B_{i}=b+\delta_{b i}
$$

for independent errors $\delta_{a i} \sim\left(0, \sigma_{a}^{2}\right)$ and $\delta_{b i} \sim\left(0, \sigma_{b}^{2}\right)$
Therefore: $\widehat{A}_{i}=a+\left(\delta_{a i}+Z_{a i}\right)$ and $\widehat{B}_{i}=b+\left(\delta_{b i}+Z_{b i}\right)$

Summary

\square Two alternative but not equivalent multivariate model formulations

$$
\mathbb{Y}=\mathbb{X} \mathbb{B}+\mathbb{U} \quad \text { versus } \quad \boldsymbol{Y}=X \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

\square Estimation of the unknown parameters in $\mathbb{B} \in \mathbb{R}^{p \times n}$ or $\beta \in \mathbb{R}^{p}$ (either in terms of the least squares or the maximum likelihood estimation)
\square Decomposition of the overall data variability into two different sources (the within subject's variability and the between subjects' variability)
\square Marginal or hierarchical inference (in terms of the confidence intervals/regions or the statistical tests)
\square Two stage estimation approach in the model $\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\boldsymbol{\beta}$ (towards the mixed effect model with fixed and random effects)

