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Statistical inference
in a multivariate regression model
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Lecture 3

Notation overview

❏ balanced longitudinal profiles DB ≡ {(Yi , X⊤
i1 , . . . , X⊤

in )⊤; i = 1, . . . , N}
❏ for ni = n ∈ N for all i = 1, . . . , N
❏ random vectors (Yi , X⊤

i1 , . . . , X⊤
in )⊤ are independent with the same length

❏ for longitudinal data we do not assume that subject specific measurements
are taken at the same time ⇒ DB generally not a random sample!

❏ for multivariate regression model we already assume that the observations
in DB form a random sample ⇒ notation DS

❏ population and data model formulation (theoretical vs. empirical)

Y = X⊤B + ε Y = XB + U

for generic random vectors Y ∈ Rn and X ∈ Rp and some matrix of the
unknown parameters B ∈ Rp×n

The corresponding data: Y = (Y ⊤
1 , . . . , Y ⊤

N )⊤, X = (X⊤
1 , . . . , X⊤

N )⊤, and
U = (u⊤

1 , . . . , u⊤
N )⊤ ≡ (ε⊤

1 , . . . , ε⊤
N )⊤
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Lecture 3

Statistical inference: Likelihood ratio test
❏ Inference in terms of confidence intervals/regions and hypothesis tests
❏ General form of the null hypothesis:

H0 : C1BM1 = D

where C1,M1, and D are some (suitable) matrices
❏ The rows of C1 do inference on the effects of independent variables while

the columns of M1 do inference on particular linear combinations of
dependent variables

❏ In practical applications it is common that D is a zero matrix (all elements
are zeros) and M1 = I (i.e. a unit matrix with ones on the main diagonal)
↪→ alternatively, the model of the form YM1 = XBM1 + UM1

❏ Thus, the null hypothesis reduces to

H0 : C1B = 0

against a general alternative hypothesis of the form HA : C1B ̸= 0 ∈ Rq×n

(with the rank of the matrix C1 being equal to q ∈ N)
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Lecture 3

Inference: Likelihood ratio test

❏ consider the null hypothesis of the form H0 : C1B = D
❏ the model Y = XB + U can be equivalently expressed as

Ỹ = ZB̃ + U,

for Ỹ = Y − XB0, where C1B0 = D (satisfies the null hypothesis),
Z = XC−1 where C⊤ = (C⊤

1 ,C⊤
2 ) and B̃ = (B̃⊤

1 , B̃⊤
2 )⊤ = C(B − B0)

❏ the null hypothesis C1B = D gives that B̃1 = 0 and for the matrix
partition C−1 = (C(1),C(2)) the projection matrix

P1 = I − XC(2)(C(2)⊤X⊤XC(2))−1C(2)⊤X⊤

defines the projection onto the linear subspace orthogonal to the columns
of the matrix XC(2) (i.e., residuals for the regression onto C(2) – under the
null hypothesis, thus B̃1 = 0)
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Lecture 3

LRT: Likelihood under the null and alternative

❏ maximized likelihood under the null hypothesis

ℓ0 = |2πN−1Ỹ⊤P1Ỹ|−N/2 · exp{−1
2Nn}

❏ maximized likelihood under the alternative hypothesis

ℓ1 = |2πN−1Ỹ⊤P̃Ỹ|−N/2 · exp{−1
2Nn}

❏ the likelihood ratio test statistic is given as

λ2/N = |Ỹ⊤P̃Ỹ|/|Ỹ⊤P1Ỹ| = |Ỹ⊤P̃Ỹ|/|Ỹ⊤P̃Ỹ + Ỹ⊤P2Ỹ|

and it follows the Λ(n, N − p, q) distribution, where q ∈ N is the number
of rows in C1 (for P2 = P1 − P̃ – what does it mean geometrically?)
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Lecture 3

Examples

❏ Repeated measurements for two groups (two-sample problems):

Y (1)
i ∼ Nn(µ1, Σ), i = 1, . . . , N1

Y (2)
i ∼ Nn(µ2, Σ), i = 1, . . . , N2

❏ Typical testing problems:
❏ parallel profiles of two groups H0 : C(µ1 − µ2) = 0
❏ identical profiles for both groups H0 : 1⊤(µ1 − µ2) = 0
❏ treatment effect H0 : C(µ1 + µ2) = 0

❏ Multiple testing problem: testing for identical profiles only makes sense if
the profiles are parallel; Similarly, if the profiles are parallel, is there any
treatment effect at all?
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Lecture 3

Two sample problems:
❏ Parallel profiles

T =
N1N2

(N1 + N2)2 (N1 + N2 − 2)
[
C(Y (1) − Y (2))

]⊤(
CSC⊤

)−1[
C(Y (1) − Y (2))

]
and (under the null hypothesis) T ∼ T 2(n − 1, N1 + N2 − 2)

❏ Equality of two levels

T =
N1N2

(N1 + N2)2 (N1 + N2 − 2)

[
1⊤(Y (1) − Y (2))

]2

1⊤S1

and (under the null hypothesis) T ∼ T 2(1, N1 + N2 − 2)

❏ Same treatment effect

T = (N1 + N2 − 2)(CY )⊤
(
CSC⊤

)−1
CY , for Y =

N1Y (1) + N2Y (2)

N1 + N2

and (under the null hypothesis) T ∼ T 2(n − 1, N1 + N2 − 2)
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Lecture 3

Overview
❏ statistical test about some (multivariate) mean vector µ ∈ Rn can be often

expressed in terms of the null hypothesis H0 : Aµ = a vs. HA : Aµ ̸= a.
where A ∈ Rq×n and a ∈ Rq

❏ for Xi ∼ Nn(µ, Σ) for i = 1, . . . , N, with Σ known, the log-likelihood
based test statistic −2 log λ = N(AXN − a)⊤(AΣA⊤)−1(AXN − a)
follows (exactly) the χ2 distribution with q ∈ N degrees of freedom

❏ for Xi ∼ Nn(µ, Σ) for i = 1, . . . , N, with Σ unknown, the log-likelihood
test statistic −2 log λ = N log

{
1 + (AXN − a)⊤(AΣ̂NA⊤)−1(AXN − a)

}
follows asymptotically the χ2 distribution with q ∈ N degrees of freedom
and the exact Hotelling test is based on the test statistic

(N − 1)(AXN − a)⊤(AΣ̂NA⊤)−1(AXN − a) ∼ T 2(q, N − 1)

❏ for Yi ∼ N(X⊤
i β, σ2), for i = 1, . . . , N, with σ2 > 0 unknown, the test of

the null hypothesis H0 : Aβ = a, for a ∈ Rq, leads to the test statistic

N − n
q

·
(Aβ̂ − a)⊤

[
A(X⊤X)−1A

]−1
(Aβ̂ − a)

(Y − Xβ̂)⊤(Y − Xβ̂)
∼ Fq,N−n
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Lecture 3

Multivariate model vs. general linear model

❏ Multivariate regression model Y = XB + U
❏ n ∈ N repeated measurements within N ∈ N subjects (random sample)
❏ repeated measurements taken at the same time-points across subjects
❏ time evolution modeled by the set of βj ∈ Rp parameters (j = 1, . . . , n)
❏ the vector of subject’s specific covariates Xi ∈ Rp fixed over time
❏ covariance structure modeled by the matrix Σ, where ui ∼ Nn(0, Σ)
❏ the data usually form a random sample from the joint distribution FY ,X

❏ General linear model for correlated errors Y = Xβ + ε

❏ n ∈ N repeated measurements within N ∈ N subjects (balanced data)
❏ the vector of unknown parameters β ∈ Rp is fixed over time
❏ subject’s specific covariates Xij ∈ Rp may vary with j ∈ {1, . . . , n}
❏ subjects’ independence and within subject’s covariance modeled by the

variance covariance Σ, where ε ∼ N(0, Σ) (overall dimensionality: Nn)
❏ the model can be further generalized for unbalanced data (ni ∈ N)

9 / 15
Longitudinal and Panel data | (NMST 422)

▲



Lecture 3

General linear model with correlated errors
❏ instead of time-varying βj and fixed Xj ∈ Rp the time evolution can be

modeled in terms of time-varying covariates Xij ∈ Rp and fixed β ∈ Rp

❏ Simplification in terms of the vectors of unknown parameters βj ∈ Rp for
j = 1, . . . , n (in the matrix B ∈ Rp×n): ⇒ β = β1 = · · · = βn

❏ Relaxation in terms of the subject’s specific covariates Xij ∈ Rp that are
now allowed to change with j ∈ {1, . . . , n}: ⇒ Xij = (Xij1, . . . , Xijp)⊤ ∈ Rp

❏ this allows for an alternative formulation of the multivariate (data) model
(where Y = XB + U follows as a special case) in a form

Y11
...

Y1n
Y21

...
YNn


=



X111 . . . X11p
...

. . .
...

X1n1 . . . X1np
X211 . . . X21p

...
. . .

...
XNn1 . . . XNnp


 β1

...
βp

 +



ε11
...

ε1n
ε21
...

εNn



❏ What are the advantages and disadvantages of both model formulations?
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Lecture 3

Matrix formulation

❏ typically we use the notation (under multivariate normal assumption)

Y ∼ NNn(Xβ, σ2V),

where V is a block-diagonal matrix with non-zero blocks of size n × n
(each block σ2V0 represents the variance-covariance of repeated
measurements within a single subject)

❏ the variance covariance matrix σ2V is estimated by borrowing power
across subject (i.e., replication of σ2V0 across the units)

❏ there can be no specific (parametric) structure assumed for V0 but it is
common to postulate some parametric form of V0

❏ the correlation structure within σ2V is crucial for a proper inference
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Uniform correlation model

❏ Assumption: positive correlation ρ ∈ (0, 1) between any two repeated
observations within a given subject

❏ Matrix notation: V0 = (1 − ρ)In×n + ρ1n×n

❏ Motivation: the response (random) variable Yij can be decomposed as

Yij = µij + Zi + Vij ,

where µij = EYij and Zi ∼ N(0, ν2) independent of Vij ∼ N(0, τ 2) and it
holds that ρ = ν2/(ν2 + τ 2) and σ2 = ν2 + τ 2 (for εij = Zi + Vij)

❏ Interpretation: linear model for the mean of the response with a random
intercept (with the variance between subjects ν2 > 0)
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Exponential correlation model
❏ Assumption: covariance between Yij and Yik for i ̸= k is of the form

vjk = σ2 exp{−ϕ|tj − tk |}

and it decays towards zero as the time separation between repeated
observations increases (with the rate of decay given by ϕ > 0)

❏ Matrix notation: V0 = (vjk)n
j,k=1

❏ Motivation: the response (random) variable Yij can be decomposed as

Yij = µij + Wij ,

where Wij = ρWi(j−1) + Zij for Zij ∼ N(0, σ2(1 − ρ2)) independent
(verify, that it holds that VarYij = VarWij = σ2)

❏ Interpretation: linear model for the mean of the response with with the
first order autoregressive correlation structure

❏ Generalization: Yij = µij + Wi (tj) for continuous time Gaussian processes
{Xi (t); t ∈ R} independent for i = 1, . . . , N and general time points
t1 < · · · < tni
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Lecture 3

Towards least squares – two step estimation

❏ For simplification assume the model Yij = a + bXij + εij and no
distributional assumption for the error vector ε = (ε11, . . . , εNn)⊤

❏ Two-stage least squares as a simple estimation method for models where
it is needed to distinguish the variance sources (within/between subjects)

❏ Stage 1: longitudinal profiles for each subject i ∈ {1, . . . , N} individually

Yij = Ai + Bi Xij + Wij , j = 1, . . . , n, and Wij ∼ (0, τ 2), i .i .d .

to obtain Âi = Ai + Zai and B̂i = Bi + Zbi , for Zai ∼ (0, v 2
ai ), Zbi ∼ (0, v 2

bi )
❏ Stage 2: OLS analysis of the subject’s specific parameter estimates

Ai = a + δai and Bi = b + δbi

for independent errors δai ∼ (0, σ2
a) and δbi ∼ (0, σ2

b)

❏ Therefore: Âi = a + (δai + Zai ) and B̂i = b + (δbi + Zbi )
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Lecture 3

Summary

❏ Two alternative but not equivalent multivariate model formulations

Y = XB + U versus Y = Xβ + ε

❏ Estimation of the unknown parameters in B ∈ Rp×n or β ∈ Rp

(either in terms of the least squares or the maximum likelihood estimation)

❏ Decomposition of the overall data variability into two different sources
(the within subject’s variability and the between subjects’ variability)

❏ Marginal or hierarchical inference (in terms of the confidence
intervals/regions or the statistical tests)

❏ Two stage estimation approach in the model Y = Xβ + β
(towards the mixed effect model with fixed and random effects)
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