
Lecture 2 | 04.03.2024

Multivariate regression model
(likelihood estimation & statistical properties)
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Lecture 2

Standard notation

❏ longitudinal observations DL ≡ {(Yij , X⊤
ij )⊤; i = 1, . . . , N; j = 1, . . . , ni }

❏ for N ∈ N independent subjects observed repeatedly ni ∈ N times
❏ for Yij ∈ R and Xij ∈ Rp , for some p ∈ N
❏ however, the data (random vectors) is DL does not form a random sample!

❏ independent observations DI ≡ {(Y ⊤
i , X⊤

i1 , . . . , X⊤
ini )

⊤; i = 1, . . . , N}
❏ alternative notation for Yi ∈ Rni and (X⊤

i1 , . . . , X⊤
ini

)⊤ ∈ Rp×ni

❏ random vectors (Y ⊤
i , X⊤

i1 , . . . , X⊤
ini

)⊤ are independent with variable lengths
❏ random vectors in DI are independent but still not identically distributed!

❏ balanced longitudinal profiles DB ≡ {(Y ⊤
i , X⊤

i1 , . . . , X⊤
in )⊤; i = 1, . . . , N}

❏ with the same number ni = n ∈ N of repeated observations for i = 1, . . . , N
❏ random vectors (Y ⊤

i , X⊤
i1 , . . . , X⊤

in )⊤ are independent with the same length
❏ however, the vectors in DB generally still do not form a random sample!

↪→ what should be postulated in addition to be able to say that the data in DB already
form a random sample (independent and identically distributed random vectors)?
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Lecture 2

The main aims of longitudinal analysis

❏ Estimation of the cross-sectional dependence structure (between subjects)
❏ Estimation of the time/spatial dependence structure (within subjects)

❏ Inference on marginal vs. hierarchical means
❏ Inference on subject-specific profiles and their developments

↪→ the estimation and the following inference can be performed in terms of various
characteristics and different inference tools

↪→ the main interest will be given to the conditional distribution characterized by the
conditional expectation in particular
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Lecture 2

Common approaches to longitudinal data
❏ Naive methods

The longitudinal structure within a subject is firstly summarized into one
(or more) characteristics and independent characteristics are regressed
over independent subjects (e.g., separate time points analysis, area under
the curve, analysis of endpoints, increments, covariance)

❏ Simple methods
Marginal models similar to a standard cross-sectional study, however, with
an additional assumption on the variance – generally EYi = X⊤

i β and
VarYi = Vi (α), where α ∈ Rq and β ∈ Rp must be estimated

❏ Radom effects models
Allow for marginal as well as hierarchical interpretation – the regression
coefficients may vary across subjects (modifications due to random
effects) and the models apriori assume a specific correlation structure
among repeated observations within the subjects

❏ Transition models
Modelling the conditional expectation of Yij given past observations
within the same subject and the explanatory variables Xij
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Lecture 2

More general: multivariate regression
❏ multivariate linear regression as an extension of ordinary linear regression

(multivariate linear regression vs. multiple (multi-variable) regression)

❏ general model formulation for Y ∈ RN×n and X ∈ RN×p

(N ∈ N and n ∈ N repeated measurements within each subject)

Y = XB + U | Yij = X⊤
i βj + εij

where Y = (Yij)N,n
i,j=1, X = (Xij)N,p

i,j=1, B = (βij)p,n
i,j=1, and U = (εij)N,n

i,j=1

❏ What are the corresponding data (let’s denote the data as DS)?
(recall, that the vector of the explanatory covariates is subject specific)

❏ What is the meaning of the formulae above?
(note, that the time dependence is only reflected within βj ∈ Rp)

❏ What are the objects appearing in the expression?
❏ What are typical assumptions for such linear model?

Question: What are the advantages or disadvantages of the longitudinal model
formulation and the multivariate model formulation?
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Lecture 2

Parameter estimation
The main goal:
Estimation of the unknown parameters in B ∈ Rp×n and the
variance-covariance matrix of the random (row) vectors in U (error terms)

In general:
Under different assumptions ⇒ different estimation approaches
⇒ different statistical properties of the estimates

❏ least squares
❏ maximum likelihood
❏ generalized method of moments
❏ likelihood-based estimation
❏ ...

↪→ specific set of the postulated assumptions implies certain statistical properties

(in most applications it is assumed that U has uncorrelated, normally distributed rows
with a zero mean vector and some specific variance-covariance matrix Σ)
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Lecture 2

Multivariate normal distribution
❏ Multivariate normal model: ui ∼ Nn(0, Σ) where U = (u1, . . . , uN)⊤

↪→ where subject specific error vectors in U are ui = (εi1, . . . , εin)⊤

❏ starting with the multivariate normal regression model the unknown
parameters can be estimated by the method of the maximum likelihood

❏ general form of the density of the multivariate normal distribution

f (x) = (2π)−n/2|Σ|−1/2 exp
{

−1
2 (x − µ)⊤Σ−1(x − µ)

}
, x ∈ Rn

❏ random sample DS = {(Y ⊤
i , X⊤

i )⊤; i = 1, . . . , N}, Yi ∈ Rn and Xi ∈ Rp

❏ the joint distribution of the random vectors (Y ⊤
i , X⊤

i )⊤ can be
expressed/factorized as

F(Y ,X)(y , x) = FY |X(y |x) · FX(x) ∀y ∈ Rn ∀x ∈ Rp
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Lecture 2

Likelihood and log-likelihood functions

❏ likelihood function for the data in DS and unknown means µij = X⊤
i βj

↪→ thus, the mean vector in the conditional distribution FY |X is µ = X⊤
i B

L(B, Σ, DS) =

[
|2πΣ|−N/2 · exp

{
−1

2

N∑
i=1

(Yi − X⊤
i B)⊤Σ−1(Yi − X⊤

i B)

}]

❏ hence, the log-likelihood function can be expressed as

l(B, Σ, DS) = −N
2 log |2πΣ| − 1

2 trace
[
(Y − XB)Σ−1(Y − XB)⊤

]

8 / 12
Longitudinal and Panel data | (NMST 422)

▲



Lecture 2

The empirical estimation of B

↪→ under the assumption that the matrix X⊤X has a full rank (p ∈ N),
the maximum likelihood estimates of the mean parameters in B ∈ Rp×n

are given by the expression

B̂N =
(
X⊤X

)−1
X⊤Y

❏ denote the fitted values as Ŷ = XB̂N

❏ denote the residuals as Û = Y − Ŷ = Y − XB̂N

❏ denote the corresponding (regression) projection matrix as
H = X(X⊤X)−1X⊤ and the residual projection matrix as P = (I − H)
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Lecture 2

Estimation of variance-covariance matrix

↪→ under the assumption that the matrix X⊤X has a full rank (p ∈ N),
the maximum likelihood estimate of the variance-covariance matrix
Σ ∈ Rn×n is given by the expression

Σ̂N = 1
N Y⊤(I − H)Y = 1

N Û⊤Û,

↪→ the projection matrix H is also called the hat matrix and it projects from the
N-dimensional real space RN into a p-dimensional linear subspace. Alternatively, the
matrix (I − H) is the projection matrix of the orthogonal projection into the residual
subspace (the (N − p)-dimensional subspace of RN)
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Lecture 2

Useful formulae for derivations

❏ Linear form for a ∈ Rp and x ∈ Rp

∂a⊤x
∂x = ∂x⊤a

∂x = a

❏ Quadratic form for A ∈ Rp×p (symmetric matrix)

∂x⊤Ax
∂x = 2Ax and ∂2x⊤Ax

∂x∂x⊤ = 2A

❏ Trace of a matrix X

∂traceXA
∂X

=
{

A⊤ for general X
A + A⊤ − diag(A) for X symmetric
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Lecture 2

Statistical properties B̂N and Σ̂N

❏ the estimates in B̂N are unbiased estimates for B
❏ for Û = Y − XB̂N it holds that E Û = 0
❏ B̂N and Û are multivariate normal
❏ B̂N and Û are statistically independent
❏ covariance between β̂ij and β̂kl is equal to σjl · (X⊤X)−1

(ik)

❏ NΣ̂N ∼ Wn(Σ, N − p)
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