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Introduction

Topics to cover

❏ Linear regression overview and multivariate linear regression
❏ Longitudinal data and their representation
❏ Linear mixed effect models (marginal vs. hierarchical)
❏ GLM overview and generalized estimating equations (GEE)
❏ GLMM for binary and count data
❏ Missing data concepts
❏ Bayesian approaches
❏ Futher extensions & generalizations
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Introduction

General course information

❏ General conditions
enrollment into the corresponding SIS group
pre-requisite: Linear regression course (NMSA 407)

❏ Credit requirements
in-person lab session attendance
active participation
individual project assignment (more details at the first lab session)

❏ Final Course Exam
final exams at the end of the term (course credit required)
the exam is composed of two parts – written and oral
written part contains theory and examples from the lectures
oral part includes a discussion of the written part and the project solution
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Introduction

Lecture organization

❏ In-person teaching
❏ PDF slides (available apriori on the course web page)
❏ hand written notes (on the board in the class)
❏ additional literature to read/study

❏ Individual work
❏ some lectures (lab sessions respectively) not taking place in person
❏ individual assignment for styding/working given instead
❏ all necessary information will be given when needed

↪→ The PDF slides primarily serve as an extended (detailed) sylabus for the lecture.
Additional material and specific pieces of information (such as calculations and
derivations) will be given by hand.

The PDF slides do not comprehend all necessary information required for the exam!
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Lecture 1 | 19.02.2024

Linear regression overview
(i.i.d. and/vs. correlated data)
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Lecture 1

What is the linear regression in general?

❏ historically (Francis Galton)
❏ mathematically (functional relationship)
❏ geometrically (orthogonal projection)
❏ numerically (least squares/normal equations)
❏ probabilistically (conditioanl expectation)
❏ statistically (estimation of the expectation)
❏ computationaly (matrix QR decomposition)

Theoretical perspective: probabilistic model =⇒ model interpretation
Empirical perspective data =⇒ model =⇒ inference=⇒ interpretation
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Lecture 1

Linear regression model(s)
❏ ordinary linear regression (theoretical/generic model)

Y = α + βX + ε

❏ ordinary linear regression (theoretical/probabilistic model)

E [Y |X ] = α + βX

❏ ordinary linear regression (empirical/statistical model)

Yi = α + βXi + εi

↪→ recall the common notation, alternative model definitions, formulations for iid
errors (random sample respectively), typical assumptions, and the consequent
theoretical properties of the estimates α̂ and β̂ (respectively β̂ ).

8 / 18
Longitudinal and Panel data | (NMST 422)

▲



Lecture 1

Generalization for correlated data

❏ In practice: correlated observations (e.g., multiple observations)
(paired t-test and further generalizations, repeated measures in general)

❏ Example: X1, . . . , Xn (random sample) – estimate of the mean: X n
(what is the mean and the variance of the corresponding estimate?)

VarXn if cor(Xi , Xj ) = 0 (i.e., independence, random sample)
VarXn if cor(Xi , Xj ) = 1 (i.e., cov(Xi , Xj ) = σ2)
VarXn if cor(Xi , Xj ) = γ ∈ (0, 1) (i.e., cov(Xi , Xj ) = σ2)

Now, what if γ < 0?

↪→ the variance of a random variable X ∈ R is supposed to be always positive...
However, for the random vector X ∈ Rp the condition becomes more strict...

⇒ the variance-covariance matrix must be positive definite!
What kind of consequences does it imply? (curse of dimension problem)
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Lecture 1

Data structures beyond random samples...

❏ random sample (i.i.d. data)
❏ typical for many simple (but very practical) problems
❏ simple theory behind, straightforward proofs, easy implementation
❏ however, not always realistic ...

❏ correlated (i.e., dependent) data
❏ different forms of dependence (time/spatial)
❏ group dependent data (clustered/repeated/longitudinal/panel data)
❏ however, still i.i.d. in some (well-formlated) sense

❏ n.i.n.i.d. data
❏ generally not independent and not identically distributed observations
❏ complex and sophisticated data structures (occuring in practical situations)
❏ very typical for panel data with dependent panels for instance

Question: In which category would you expect the time series to appear?
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Lecture 1

Example: independent/paired/panel data
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Lecture 1

Cross-sectional vs. longitudinal model
❏ Observations (Yij , Xij1, . . . , Xijp)⊤, for i = 1, . . . , N ∈ N and ni , p ∈ N
❏ Cross-sectional model (ni = 1)

Yi1 = βCSXi1 + εi1 (1)

❏ Longitudinal model (ni ∈ N)

Yij = βCSXi1 + βL(Xij − Xi1) + εij (2)

→ for j = 1 the later model reduces to the former model, thus βCS has the same
interpretation in both models;

→ in addition, there is also βL (a longitudinal dependence structure) parameter – its
interpretation is quite straightforward when substracting (1) from (2):

(Yij − Yi1) = βL(Xij − Xi1) + (εij − εi1)
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Lecture 1

Cross-sectional vs. longitudinal interpretation

❏ Cross-sectional interpretation of βCS
(averaging over subpopulations with the same values of X)

To estimate how individuals change over time with the cross-sectional
data it needs to be assumed that the effects coincide ⇒ βCS = βL

❏ Longitudinal interpretation of βL
(change within a specific subject per unit change of X within the subject)

No restriction in the form βCS = βL is needed and longidutinal approaches
are usually more powerfull inven in situations when βCS = βL

❏ Population-specific interpretation vs. subject-specific interpretation
(two different sources of variability that can be properly distinguished)

❏ Associative vs. causal interpretation of the model
(however, this is not the causal inference)
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Lecture 1

Borrowing power

❏ Inference on βCS (marginal model)

❏ averaging individuals with one value of X and comparing with averaged
individuals with another value of X – the estimated parameter β̂CS stands
for the expected/estimated change between subpopulations which
corresponds to the unit change of X

❏ Inference on βL (hierarchical model)

❏ comparing a specific person’s response at two distinct time points while
X changes over time within the given subject – the estimated parameter
β̂L stands for the expected/estimated change (time development) within
the subject which corresponds to the unit change of X over time (within
the given subject)

Borrowing power across subjects (sometimes possible, sometimes not)
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Lecture 1

Exploration of the longitudinal data

❏ The first step when analyzing (any) data is to perform a proper
exploratory analysis...

❏ In case of longitudinal data structures, the exploratory becomes more
complex...

❏ exploratory of the mean structure
❏ exploratory of the variance-covariance structure
❏ exploratory of the between-subject dependence structure
❏ exploratory of the subject-specific dependence structure

Question: What are common empirical/graphical tools to perform an exploratory
analysis on longitudinal data (knowing or not knowing that the data are
group-dependent?
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