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Statistical inference
in a linear model (asymptotics)
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Motivation

Overview
❏ Normal linear regression model

❏ Assumptions: random sample (Yi , Xi ) for i = 1, . . . , n from the joint
distribution F(Y ,X) such that Yi |Xi ∼ N(X⊤

i β, σ2)
❏ Inference: confidence intervals for βj , confidence regions for β and linear

combinations of the form Lβ (corresponding statistical tests)

❏ Linear regression model without normality
Assumptions (A1):

❏ random sample (Yi , Xi ) for i = 1, . . . , n from the joint distribution F(Y ,X)
❏ mean specification E [Yi |Xi ] = X⊤

i β, respectively E [Y |X] = Xβ

❏ thus, for errors εi = Yi − X⊤
i β we have E [εi |Xi ] = E [Yi − X⊤

i β|Xi ] = 0
and Var(εi |Xi ) = Var [Yi − X⊤

i β|Xi ] = Var [Yi |Xi ] = σ2(Xi )

❏ and for unconditional expectations, E [εi ] = E [E [εi |Xi ]] = 0 and
Var(εi ) = Var(E [εi |Xi ])+E [Var(εi |Xi )] = Var(0)+E [σ2(Xi )] = E [σ2(Xi )]

Inference:
❏ confidence intervals, hypothesis tests
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Motivation

Parameter estimation without normality
❏ in the normal regression model Y = Xβ + ε one can simply use the

distributional specification to formulate the likelihood (loglikelihood)
❏ in a general regression model Y = Xβ + ε where ε ∼ (0, Σ) the likelihood

(loglikelihood resp.) can not be formulated (the distribution is missing)
❏ the most common approach in this case is based on the method of least

squares (LSE), thus, the vector of the estimated parameters is given as

β̂n = Arg max
β∈Rp

n∑
i=1

[
Yi − X⊤

i β
]2

❏ the estimated vector of paramters can be given explicitly as

β̂n ≡ β̂ =
(
X⊤X

)−1X⊤Y

which is the BLUE estimate for β ∈ Rp but for the statistical inference we
need to know its (asymptotic) distributional properties (how does this
random quantity behave when n ∈ N tends to infinity, n → ∞)
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Motivation

Some additional assumptions

The random sample {(Yi , Xi); i = 1, . . . , n} drawn from some joint
distribution F(Y ,X) of a generic (p + 1)-dimensional random vector
(Y , X). Let X = (X1, . . . , Xp)⊤. Let the following holds:

Assumptions (A2):
❏ E |XjXk | < ∞ for j, k ∈ {1, . . . , p}
❏ E

(
XX⊤)

= W ∈ Rp×p is a positive definite matrix

❏ V = W−1

Note, that the assumptions stated above refer to the population
model—the population properties
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Motivation

Empirical counterparts for W and V
❏ Both matrices, W ∈ Rp×p and V ∈ Rp×p are theoretical (population)

characteristics, the dimensions are fixed for any n ∈ N, and they are
typically not known in practical applications

❏ Both matrices can be however estimated using the empirical data—the
observed random sample {(Yi , Xi ); i = 1, . . . , n}

❏ Define the following:
❏ Wn = X⊤X =

∑n
i=1 Xi X⊤

i

❏ Vn = W−1
n if it exists

❏ Under the assumptions in A1 and A2
❏ 1

nWn −→ W a.s. (in P) as n → ∞

❏ nVn −→ V a.s. (in P) as n → ∞

It is also good to realize that
(
X⊤X

)−1 may not exist for any n ∈ N but as far as
1
n

(
X⊤X

)
converges almost surely (in probability) to the matrix W (positive definite)

we also have that P(rank(X⊤X) = p) → 1, for n → ∞

5 / 11
NMFM 334 | Lecture 8

▲



Motivation

Empirical counterparts for W and V
❏ Both matrices, W ∈ Rp×p and V ∈ Rp×p are theoretical (population)

characteristics, the dimensions are fixed for any n ∈ N, and they are
typically not known in practical applications

❏ Both matrices can be however estimated using the empirical data—the
observed random sample {(Yi , Xi ); i = 1, . . . , n}

❏ Define the following:
❏ Wn = X⊤X =

∑n
i=1 Xi X⊤

i

❏ Vn = W−1
n if it exists

❏ Under the assumptions in A1 and A2
❏ 1

nWn −→ W a.s. (in P) as n → ∞

❏ nVn −→ V a.s. (in P) as n → ∞

It is also good to realize that
(
X⊤X

)−1 may not exist for any n ∈ N but as far as
1
n

(
X⊤X

)
converges almost surely (in probability) to the matrix W (positive definite)

we also have that P(rank(X⊤X) = p) → 1, for n → ∞

5 / 11
NMFM 334 | Lecture 8

▲



Motivation

Empirical counterparts for W and V
❏ Both matrices, W ∈ Rp×p and V ∈ Rp×p are theoretical (population)

characteristics, the dimensions are fixed for any n ∈ N, and they are
typically not known in practical applications

❏ Both matrices can be however estimated using the empirical data—the
observed random sample {(Yi , Xi ); i = 1, . . . , n}

❏ Define the following:
❏ Wn = X⊤X =

∑n
i=1 Xi X⊤

i

❏ Vn = W−1
n if it exists

❏ Under the assumptions in A1 and A2
❏ 1

nWn −→ W a.s. (in P) as n → ∞

❏ nVn −→ V a.s. (in P) as n → ∞

It is also good to realize that
(
X⊤X

)−1 may not exist for any n ∈ N but as far as
1
n

(
X⊤X

)
converges almost surely (in probability) to the matrix W (positive definite)

we also have that P(rank(X⊤X) = p) → 1, for n → ∞

5 / 11
NMFM 334 | Lecture 8

▲



Motivation

Empirical counterparts for W and V
❏ Both matrices, W ∈ Rp×p and V ∈ Rp×p are theoretical (population)

characteristics, the dimensions are fixed for any n ∈ N, and they are
typically not known in practical applications

❏ Both matrices can be however estimated using the empirical data—the
observed random sample {(Yi , Xi ); i = 1, . . . , n}

❏ Define the following:
❏ Wn = X⊤X =

∑n
i=1 Xi X⊤

i

❏ Vn = W−1
n if it exists

❏ Under the assumptions in A1 and A2
❏ 1

nWn −→ W a.s. (in P) as n → ∞

❏ nVn −→ V a.s. (in P) as n → ∞

It is also good to realize that
(
X⊤X

)−1 may not exist for any n ∈ N but as far as
1
n

(
X⊤X

)
converges almost surely (in probability) to the matrix W (positive definite)

we also have that P(rank(X⊤X) = p) → 1, for n → ∞

5 / 11
NMFM 334 | Lecture 8

▲



Motivation

Problems of the statistical inference
Analogously as in the normal linear model, the statistical inference concerns
confidence sets and statistical tests about β ∈ Rp and its linear combinations

❏ statistical inference can be performed with respect to the parameters β
and σ2 but, it can be also of some interest to do inference about some
(appropriate) linear combination(s) of β

❏ from the practical point of view, we are interested in the parameter vector
β itself but also linear combinations of the form l⊤β or Lβ

The estimates for the unknown parameters β ∈ Rp and σ2 > 0 are

❏ β̂n = (X⊤X)−1XY =
( ∑n

i=1 Xi X⊤
i

)−1( ∑n
i=1 Xi Yi

)
(LSE)

❏ σ̂2
n = 1

n−p
∑n

i=1(Yi − Ŷi )2 = 1
n−p ∥Y − Xβ̂∥2

2, where Ŷi = X⊤
i β̂ (MSe)

Both estimates—quantities β̂n and σ̂2
n—are random quantities (random

vector and random variable) and, therefore, it is reasonable to investigate
their statistical properties (e.g., mean, variance, distribution, etc.)
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Motivation

Homoscedastic vs. heteroscedastic model

Recall, that in the assumption in (A1) the conditional variance of εi
depends on Xi , which is reflected by the notation Var(εi |Xi) = σ2(Xi)

Two situations are typically distinguished:
❏ Homoscedastic model) (Assumption A3a)

σ2(X) = Var(Y |X) = σ2 > 0

❏ Heteroscedastic model (Assumption A3b)
σ2(X) = Var(Y |X) such that E [σ2(X)] < ∞ and moreover, it also holds
that E [σ2(X)XjXk ] < ∞ for j, k ∈ {1, . . . , p}
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Motivation

Consistency of the LSE estimates

❏ In particular, we are interested in the following parameters:
❏ β ∈ Rp

❏ σ2 > 0
❏ θ = l⊤β ∈ R, for some nonzero vector l ∈ Rp

❏ Θ = Lβ ∈ Rm, for some matrix L ∈ Rm×p with linearly independent rows

❏ The corresponding estmates are defined straightforwardly and it holds
(under (A1), (A2), and (A3a/A3b)) that

❏ β̂n −→ β a.s. (in P), for n → ∞
❏ θ̂n = l⊤β̂n −→ θ a.s. (in P), for n → ∞
❏ Θ̂n = Lβ̂n −→ Θ, a.s. (in P), for n → ∞

❏ Under the homoscedastic model ((A1), (A2), and (A3a)) it also holds

❏ σ̂2
n −→ σ2, a.s. (in P), for n → ∞
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Motivation

Assymptotic normality

Under the assumptions stated in (A1), (A2), and (A3a) and, additionally,
for E [ε2XjXk ] < ∞ for j , k = 1, . . . , p the following holds:

❏
√

n(β̂n − β) D−→ Np(β, σ2V) for n → ∞

❏
√

n(θ̂n − θ) D−→ N(0, σ2l⊤Vl), as n → ∞

❏
√

n(Θ̂n − Θ) D−→ Nm(0, σ2LVL⊤), as n → ∞
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Motivation

Statistical inference based on asymptotics

❏ Define the random variable

Tn = l⊤β̂n − l⊤β√
MSe · l⊤(X⊤X)−1l

❏ and the random variable

Qn = 1
m

(Lβ̂n − Lβ)⊤[
L(X⊤X)−1L⊤]−1(Lβ̂n − Lβ)

MSe

Then it holds that Tn
D−→ N(0, 1) and mQn

D−→ χ2
m (both for n → ∞)
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Motivation

Standard inference tools – summary

❏ Confidence intervals
❏ normal linear regression model (exact coverage)
❏ linear regression model without normlity (assymptotic coverage)

❏ Statistical tests
❏ normal linear regression model (based on the exact distribution)
❏ linear regression model without normlity (assymptotic validity)
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