Lecture 8 | 16.04.2024

Statistical inference in a linear model (asymptotics)

Overview

\square Normal linear regression model
\square Assumptions: random sample $\left(Y_{i}, \boldsymbol{X}_{i}\right)$ for $i=1, \ldots, n$ from the joint distribution $F_{(Y, \boldsymbol{X})}$ such that $Y_{i} \mid \boldsymbol{X}_{i} \sim N\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$

- Inference: confidence intervals for β_{j}, confidence regions for β and linear combinations of the form $\mathbb{L} \beta$ (corresponding statistical tests)

Overview

\square Normal linear regression model

- Assumptions: random sample $\left(Y_{i}, \boldsymbol{X}_{i}\right)$ for $i=1, \ldots, n$ from the joint distribution $F_{(Y, \boldsymbol{X})}$ such that $Y_{i} \mid \boldsymbol{X}_{i} \sim N\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$
\square Inference: confidence intervals for β_{j}, confidence regions for β and linear combinations of the form $\mathbb{L} \beta$ (corresponding statistical tests)
\square Linear regression model without normality

Assumptions (A1):

\square random sample $\left(Y_{i}, \boldsymbol{X}_{i}\right)$ for $i=1, \ldots, n$ from the joint distribution $F_{(Y, \boldsymbol{X})}$
\square mean specification $E\left[Y_{i} \mid \boldsymbol{X}_{i}\right]=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}$, respectively $E[\boldsymbol{Y} \mid \mathbb{X}]=\mathbb{X} \boldsymbol{\beta}$
\square thus, for errors $\varepsilon_{i}=Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}$ we have $E\left[\varepsilon_{i} \mid \boldsymbol{X}_{i}\right]=E\left[Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta} \mid \boldsymbol{X}_{i}\right]=0$ and $\operatorname{Var}\left(\varepsilon_{i} \mid \boldsymbol{X}_{i}\right)=\operatorname{Var}\left[Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta} \mid \boldsymbol{X}_{i}\right]=\operatorname{Var}\left[Y_{i} \mid \boldsymbol{X}_{i}\right]=\sigma^{2}\left(\boldsymbol{X}_{i}\right)$

Overview

\square Normal linear regression model

- Assumptions: random sample $\left(Y_{i}, \boldsymbol{X}_{i}\right)$ for $i=1, \ldots, n$ from the joint distribution $F_{(Y, \boldsymbol{X})}$ such that $Y_{i} \mid \boldsymbol{X}_{i} \sim N\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$
Inference: confidence intervals for β_{j}, confidence regions for β and linear combinations of the form $\mathbb{L} \beta$ (corresponding statistical tests)
\square Linear regression model without normality

Assumptions (A1):

random sample $\left(Y_{i}, \boldsymbol{X}_{i}\right)$ for $i=1, \ldots, n$ from the joint distribution $F_{(Y, \boldsymbol{X})}$
\square mean specification $E\left[Y_{i} \mid \boldsymbol{X}_{i}\right]=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}$, respectively $E[\boldsymbol{Y} \mid \mathbb{X}]=\mathbb{X} \boldsymbol{\beta}$
\square thus, for errors $\varepsilon_{i}=Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}$ we have $E\left[\varepsilon_{i} \mid \boldsymbol{X}_{i}\right]=E\left[Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta} \mid \boldsymbol{X}_{i}\right]=0$ and $\operatorname{Var}\left(\varepsilon_{i} \mid \boldsymbol{X}_{i}\right)=\operatorname{Var}\left[Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta} \mid \boldsymbol{X}_{i}\right]=\operatorname{Var}\left[Y_{i} \mid \boldsymbol{X}_{i}\right]=\sigma^{2}\left(\boldsymbol{X}_{i}\right)$
\square and for unconditional expectations, $E\left[\varepsilon_{i}\right]=E\left[E\left[\varepsilon_{i} \mid \boldsymbol{X}_{i}\right]\right]=0$ and $\operatorname{Var}\left(\varepsilon_{i}\right)=\operatorname{Var}\left(E\left[\varepsilon_{i} \mid \boldsymbol{X}_{i}\right]\right)+E\left[\operatorname{Var}\left(\varepsilon_{i} \mid \boldsymbol{X}_{i}\right)\right]=\operatorname{Var}(0)+E\left[\sigma^{2}\left(\boldsymbol{X}_{i}\right)\right]=E\left[\sigma^{2}\left(\boldsymbol{X}_{i}\right)\right]$

Overview

\square Normal linear regression model

- Assumptions: random sample $\left(Y_{i}, \boldsymbol{X}_{i}\right)$ for $i=1, \ldots, n$ from the joint distribution $F_{(Y, \boldsymbol{X})}$ such that $Y_{i} \mid \boldsymbol{X}_{i} \sim N\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$
- Inference: confidence intervals for β_{j}, confidence regions for β and linear combinations of the form $\mathbb{L} \beta$ (corresponding statistical tests)
\square Linear regression model without normality

Assumptions (A1):

\square random sample $\left(Y_{i}, \boldsymbol{X}_{i}\right)$ for $i=1, \ldots, n$ from the joint distribution $F_{(Y, \boldsymbol{X})}$
mean specification $E\left[Y_{i} \mid \boldsymbol{X}_{i}\right]=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}$, respectively $E[\boldsymbol{Y} \mid \mathbb{X}]=\mathbb{X} \boldsymbol{\beta}$
\square thus, for errors $\varepsilon_{i}=Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}$ we have $E\left[\varepsilon_{i} \mid \boldsymbol{X}_{i}\right]=E\left[Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta} \mid \boldsymbol{X}_{i}\right]=0$ and $\operatorname{Var}\left(\varepsilon_{i} \mid \boldsymbol{X}_{i}\right)=\operatorname{Var}\left[Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta} \mid \boldsymbol{X}_{i}\right]=\operatorname{Var}\left[Y_{i} \mid \boldsymbol{X}_{i}\right]=\sigma^{2}\left(\boldsymbol{X}_{i}\right)$
\square and for unconditional expectations, $E\left[\varepsilon_{i}\right]=E\left[E\left[\varepsilon_{i} \mid \boldsymbol{X}_{i}\right]\right]=0$ and

$$
\operatorname{Var}\left(\varepsilon_{i}\right)=\operatorname{Var}\left(E\left[\varepsilon_{i} \mid \boldsymbol{X}_{i}\right]\right)+E\left[\operatorname{Var}\left(\varepsilon_{i} \mid \boldsymbol{X}_{i}\right)\right]=\operatorname{Var}(0)+E\left[\sigma^{2}\left(\boldsymbol{X}_{i}\right)\right]=E\left[\sigma^{2}\left(\boldsymbol{X}_{i}\right)\right]
$$

Inference:

\square confidence intervals, hypothesis tests

Parameter estimation without normality

\square in the normal regression model $\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ one can simply use the distributional specification to formulate the likelihood (loglikelihood)
\square in a general regression model $\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\varepsilon$ where $\varepsilon \sim(\mathbf{0}, \boldsymbol{\Sigma})$ the likelihood (loglikelihood resp.) can not be formulated (the distribution is missing)
\square the most common approach in this case is based on the method of least squares (LSE), thus, the vector of the estimated parameters is given as

$$
\widehat{\boldsymbol{\beta}}_{n}=\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{Arg} \max } \sum_{i=1}^{n}\left[Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right]^{2}
$$

Parameter estimation without normality

\square in the normal regression model $\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ one can simply use the distributional specification to formulate the likelihood (loglikelihood)
\square in a general regression model $\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\varepsilon$ where $\varepsilon \sim(\mathbf{0}, \boldsymbol{\Sigma})$ the likelihood (loglikelihood resp.) can not be formulated (the distribution is missing)
\square the most common approach in this case is based on the method of least squares (LSE), thus, the vector of the estimated parameters is given as

$$
\widehat{\boldsymbol{\beta}}_{n}=\underset{\boldsymbol{\beta} \in \mathbb{R}^{\rho}}{\operatorname{Arg} \max } \sum_{i=1}^{n}\left[Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right]^{2}
$$

\square the estimated vector of paramters can be given explicitly as

$$
\widehat{\boldsymbol{\beta}}_{n} \equiv \widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}
$$

Parameter estimation without normality

\square in the normal regression model $\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ one can simply use the distributional specification to formulate the likelihood (loglikelihood)
\square in a general regression model $\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\varepsilon$ where $\varepsilon \sim(\mathbf{0}, \boldsymbol{\Sigma})$ the likelihood (loglikelihood resp.) can not be formulated (the distribution is missing)
\square the most common approach in this case is based on the method of least squares (LSE), thus, the vector of the estimated parameters is given as

$$
\widehat{\boldsymbol{\beta}}_{n}=\underset{\boldsymbol{\beta} \in \mathbb{R}^{\rho}}{\operatorname{Arg} \max } \sum_{i=1}^{n}\left[Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right]^{2}
$$

\square the estimated vector of paramters can be given explicitly as

$$
\widehat{\boldsymbol{\beta}}_{n} \equiv \widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}
$$

which is the BLUE estimate for $\beta \in \mathbb{R}^{p}$ but for the statistical inference we need to know its (asymptotic) distributional properties (how does this random quantity behave when $n \in \mathbb{N}$ tends to infinity, $n \rightarrow \infty$)

Some additional assumptions

The random sample $\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$ drawn from some joint distribution $F_{(Y, \boldsymbol{X})}$ of a generic ($p+1$)-dimensional random vector (Y, \boldsymbol{X}). Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{p}\right)^{\top}$. Let the following holds:

Assumptions (A2):

- $E\left|X_{j} X_{k}\right|<\infty$ for $j, k \in\{1, \ldots, p\}$
- $E\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)=\mathbb{W} \in \mathbb{R}^{p \times p}$ is a positive definite matrix
$\square \mathbb{V}=\mathbb{W}^{-1}$

Some additional assumptions

The random sample $\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$ drawn from some joint distribution $F_{(Y, \boldsymbol{X})}$ of a generic ($p+1$)-dimensional random vector (Y, \boldsymbol{X}). Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{p}\right)^{\top}$. Let the following holds:

Assumptions (A2):

- $E\left|X_{j} X_{k}\right|<\infty$ for $j, k \in\{1, \ldots, p\}$
- $E\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)=\mathbb{W} \in \mathbb{R}^{p \times p}$ is a positive definite matrix
$\square \mathbb{V}=\mathbb{W}^{-1}$

Note, that the assumptions stated above refer to the population model-the population properties

Empirical counterparts for \mathbb{W} and \mathbb{V}

\square Both matrices, $\mathbb{W} \in \mathbb{R}^{p \times p}$ and $\mathbb{V} \in \mathbb{R}^{p \times p}$ are theoretical (population) characteristics, the dimensions are fixed for any $n \in \mathbb{N}$, and they are typically not known in practical applications
\square Both matrices can be however estimated using the empirical data-the observed random sample $\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$

Empirical counterparts for \mathbb{W} and \mathbb{V}

\square Both matrices, $\mathbb{W} \in \mathbb{R}^{p \times p}$ and $\mathbb{V} \in \mathbb{R}^{p \times p}$ are theoretical (population) characteristics, the dimensions are fixed for any $n \in \mathbb{N}$, and they are typically not known in practical applications
\square Both matrices can be however estimated using the empirical data-the observed random sample $\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$
\square Define the following:

- $\mathbb{W}_{n}=\mathbb{X}^{\top} \mathbb{X}=\sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}$
- $\mathbb{V}_{n}=\mathbb{W}_{n}^{-1} \quad$ if it exists

Empirical counterparts for \mathbb{W} and \mathbb{V}

\square Both matrices, $\mathbb{W} \in \mathbb{R}^{p \times p}$ and $\mathbb{V} \in \mathbb{R}^{p \times p}$ are theoretical (population) characteristics, the dimensions are fixed for any $n \in \mathbb{N}$, and they are typically not known in practical applications
\square Both matrices can be however estimated using the empirical data-the observed random sample $\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$
\square Define the following:
$\square \mathbb{W}_{n}=\mathbb{X}^{\top} \mathbb{X}=\sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}$

- $\mathbb{V}_{n}=\mathbb{W}_{n}^{-1} \quad$ if it exists
\square Under the assumptions in A1 and A2
$\square \frac{1}{n} \mathbb{W}_{n} \longrightarrow \mathbb{W}$ a.s. (in P) as $n \rightarrow \infty$
$\square \mathbb{V}_{n} \longrightarrow \mathbb{V}$ a.s. (in P) as $n \rightarrow \infty$

Empirical counterparts for \mathbb{W} and \mathbb{V}

\square Both matrices, $\mathbb{W} \in \mathbb{R}^{p \times p}$ and $\mathbb{V} \in \mathbb{R}^{p \times p}$ are theoretical (population) characteristics, the dimensions are fixed for any $n \in \mathbb{N}$, and they are typically not known in practical applications
\square Both matrices can be however estimated using the empirical data-the observed random sample $\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$
\square Define the following:
$\square \mathbb{W}_{n}=\mathbb{X}^{\top} \mathbb{X}=\sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}$

- $\mathbb{V}_{n}=\mathbb{W}_{n}^{-1} \quad$ if it exists
\square Under the assumptions in A1 and A2
$\square \frac{1}{n} \mathbb{W}_{n} \longrightarrow \mathbb{W}$ a.s. (in P) as $n \rightarrow \infty$
$\square \mathbb{V}_{n} \longrightarrow \mathbb{V}$ a.s. (in P) as $n \rightarrow \infty$
It is also good to realize that $\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$ may not exist for any $n \in \mathbb{N}$ but as far as $\frac{1}{n}\left(\mathbb{X}^{\top} \mathbb{X}\right)$ converges almost surely (in probability) to the matrix \mathbb{W} (positive definite) we also have that $P\left(\operatorname{rank}\left(\mathbb{X}^{\top} \mathbb{X}\right)=p\right) \rightarrow 1$, for $n \rightarrow \infty$

Problems of the statistical inference

Analogously as in the normal linear model, the statistical inference concerns confidence sets and statistical tests about $\beta \in \mathbb{R}^{p}$ and its linear combinations
\square statistical inference can be performed with respect to the parameters β and σ^{2} but, it can be also of some interest to do inference about some (appropriate) linear combination(s) of β
\square from the practical point of view, we are interested in the parameter vector β itself but also linear combinations of the form $\boldsymbol{I}^{\top} \boldsymbol{\beta}$ or $\mathbb{L} \beta$

Problems of the statistical inference

Analogously as in the normal linear model, the statistical inference concerns confidence sets and statistical tests about $\beta \in \mathbb{R}^{p}$ and its linear combinations
\square statistical inference can be performed with respect to the parameters β and σ^{2} but, it can be also of some interest to do inference about some (appropriate) linear combination(s) of β
\square from the practical point of view, we are interested in the parameter vector β itself but also linear combinations of the form $\boldsymbol{I}^{\top} \boldsymbol{\beta}$ or $\mathbb{L} \beta$

The estimates for the unknown parameters $\beta \in \mathbb{R}^{p}$ and $\sigma^{2}>0$ are

$$
\begin{align*}
& \widehat{\boldsymbol{\beta}}_{n}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X} \boldsymbol{Y}=\left(\sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\right)^{-1}\left(\sum_{i=1}^{n} \boldsymbol{X}_{i} Y_{i}\right) \tag{LSE}\\
& \widehat{\sigma_{n}^{2}}=\frac{1}{n-p} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}=\frac{1}{n-p}\|\boldsymbol{Y}-\mathbb{X} \widehat{\boldsymbol{\beta}}\|_{2}^{2}, \text { where } \widehat{Y}_{i}=\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}} \tag{MSe}
\end{align*}
$$

Motivation

Problems of the statistical inference

Analogously as in the normal linear model, the statistical inference concerns confidence sets and statistical tests about $\beta \in \mathbb{R}^{p}$ and its linear combinations
\square statistical inference can be performed with respect to the parameters β and σ^{2} but, it can be also of some interest to do inference about some (appropriate) linear combination(s) of β
\square from the practical point of view, we are interested in the parameter vector $\boldsymbol{\beta}$ itself but also linear combinations of the form $\boldsymbol{I}^{\top} \boldsymbol{\beta}$ or $\mathbb{L} \boldsymbol{\beta}$

The estimates for the unknown parameters $\beta \in \mathbb{R}^{p}$ and $\sigma^{2}>0$ are

$$
\begin{align*}
& \text { - } \widehat{\boldsymbol{\beta}}_{n}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X} \boldsymbol{Y}=\left(\sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\right)^{-1}\left(\sum_{i=1}^{n} \boldsymbol{X}_{i} Y_{i}\right) \tag{LSE}\\
& \widehat{\sigma_{n}^{2}}=\frac{1}{n-p} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}=\frac{1}{n-p}\|\boldsymbol{Y}-\mathbb{X} \widehat{\boldsymbol{\beta}}\|_{2}^{2}, \text { where } \widehat{Y}_{i}=\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}} \tag{MSe}
\end{align*}
$$

Both estimates-quantities $\widehat{\boldsymbol{\beta}}_{n}$ and $\widehat{\sigma_{n}^{2}}$-are random quantities (random vector and random variable) and, therefore, it is reasonable to investigate their statistical properties (e.g., mean, variance, distribution, etc.)

Homoscedastic vs. heteroscedastic model

Recall, that in the assumption in (A1) the conditional variance of ε_{i} depends on \boldsymbol{X}_{i}, which is reflected by the notation $\operatorname{Var}\left(\varepsilon_{i} \mid \boldsymbol{X}_{i}\right)=\sigma^{2}\left(\boldsymbol{X}_{i}\right)$

Homoscedastic vs. heteroscedastic model

Recall, that in the assumption in (A1) the conditional variance of ε_{i} depends on \boldsymbol{X}_{i}, which is reflected by the notation $\operatorname{Var}\left(\varepsilon_{i} \mid \boldsymbol{X}_{i}\right)=\sigma^{2}\left(\boldsymbol{X}_{i}\right)$

Two situations are typically distinguished:
\square Homoscedastic model)
(Assumption A3a)
$\sigma^{2}(\boldsymbol{X})=\operatorname{Var}(Y \mid \boldsymbol{X})=\sigma^{2}>0$

- Heteroscedastic model
(Assumption A3b)
$\sigma^{2}(\boldsymbol{X})=\operatorname{Var}(Y \mid \boldsymbol{X})$ such that $E\left[\sigma^{2}(\boldsymbol{X})\right]<\infty$ and moreover, it also holds that $E\left[\sigma^{2}(\boldsymbol{X}) X_{j} X_{k}\right]<\infty$ for $j, k \in\{1, \ldots, p\}$

Consistency of the LSE estimates

\square In particular, we are interested in the following parameters:

- $\beta \in \mathbb{R}^{p}$
- $\sigma^{2}>0$
- $\theta=\boldsymbol{I}^{\top} \boldsymbol{\beta} \in \mathbb{R}$, for some nonzero vector $\boldsymbol{I} \in \mathbb{R}^{p}$
$\square \Theta=\mathbb{L} \beta \in \mathbb{R}^{m}$, for some matrix $\mathbb{L} \in \mathbb{R}^{m \times p}$ with linearly independent rows

Consistency of the LSE estimates

\square In particular, we are interested in the following parameters:
$\square \beta \in \mathbb{R}^{p}$
$\square \sigma^{2}>0$
$\square \theta=\boldsymbol{I}^{\top} \boldsymbol{\beta} \in \mathbb{R}$, for some nonzero vector $\boldsymbol{I} \in \mathbb{R}^{p}$
$\square \Theta=\mathbb{L} \beta \in \mathbb{R}^{m}$, for some matrix $\mathbb{L} \in \mathbb{R}^{m \times p}$ with linearly independent rows
\square The corresponding estmates are defined straightforwardly and it holds (under (A1), (A2), and (A3a/A3b)) that

- $\widehat{\beta}_{n} \longrightarrow \beta$ a.s. (in P), for $n \rightarrow \infty$
- $\widehat{\theta}_{n}=\boldsymbol{I}^{\top} \widehat{\boldsymbol{\beta}}_{n} \longrightarrow \theta$ a.s. (in P), for $n \rightarrow \infty$
- $\widehat{\Theta}_{n}=\mathbb{L} \widehat{\boldsymbol{\beta}}_{n} \longrightarrow \Theta$, a.s. (in P), for $n \rightarrow \infty$

Consistency of the LSE estimates

\square In particular, we are interested in the following parameters:

- $\beta \in \mathbb{R}^{p}$
- $\sigma^{2}>0$
- $\theta=\boldsymbol{I}^{\top} \boldsymbol{\beta} \in \mathbb{R}$, for some nonzero vector $\boldsymbol{I} \in \mathbb{R}^{p}$
$\square \Theta=\mathbb{L} \beta \in \mathbb{R}^{m}$, for some matrix $\mathbb{L} \in \mathbb{R}^{m \times p}$ with linearly independent rows
\square The corresponding estmates are defined straightforwardly and it holds (under (A1), (A2), and (A3a/A3b)) that
- $\widehat{\boldsymbol{\beta}}_{n} \longrightarrow \beta$ a.s. (in P), for $n \rightarrow \infty$
- $\widehat{\theta}_{n}=\boldsymbol{I}^{\top} \widehat{\boldsymbol{\beta}}_{n} \longrightarrow \theta$ a.s. (in P), for $n \rightarrow \infty$
$\square \widehat{\Theta}_{n}=\mathbb{L} \widehat{\boldsymbol{\beta}}_{n} \longrightarrow \Theta$, a.s. (in P), for $n \rightarrow \infty$
\square Under the homoscedastic model ((A1), (A2), and (A3a)) it also holds
- $\widehat{\sigma_{n}^{2}} \longrightarrow \sigma^{2}$, a.s. (in P), for $n \rightarrow \infty$

Assymptotic normality

Under the assumptions stated in (A1), (A2), and (A3a) and, additionally, for $E\left[\varepsilon^{2} X_{j} X_{k}\right]<\infty$ for $j, k=1, \ldots, p$ the following holds:

Assymptotic normality

Under the assumptions stated in (A1), (A2), and (A3a) and, additionally, for $E\left[\varepsilon^{2} X_{j} X_{k}\right]<\infty$ for $j, k=1, \ldots, p$ the following holds:
$\square \sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{n}-\beta\right) \xrightarrow{\mathcal{D}} N_{p}\left(\beta, \sigma^{2} \mathbb{V}\right)$ for $n \rightarrow \infty$

- $\sqrt{n}\left(\widehat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{D}} N\left(0, \sigma^{2} \boldsymbol{I}^{\top} \mathbb{V} \boldsymbol{I}\right)$, as $n \rightarrow \infty$
$\square \sqrt{n}\left(\widehat{\Theta}_{n}-\Theta\right) \xrightarrow{\mathcal{D}} N_{m}\left(\mathbf{0}, \sigma^{2} \mathbb{L} \mathbb{V} \mathbb{L}^{\top}\right)$, as $n \rightarrow \infty$

Statistical inference based on asymptotics

- Define the random variable

$$
T_{n}=\frac{\boldsymbol{I}^{\top} \widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{I}^{\top} \boldsymbol{\beta}}{\sqrt{M S e \cdot \boldsymbol{I}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{I}}}
$$

Statistical inference based on asymptotics

- Define the random variable

$$
T_{n}=\frac{\boldsymbol{I}^{\top} \widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{I}^{\top} \boldsymbol{\beta}}{\sqrt{M S e \cdot \boldsymbol{I}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{I}}}
$$

\square and the random variable

$$
Q_{n}=\frac{1}{m} \frac{\left(\mathbb{L} \widehat{\boldsymbol{\beta}}_{n}-\mathbb{L} \boldsymbol{\beta}\right)^{\top}\left[\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right]^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}_{n}-\mathbb{L} \boldsymbol{\beta}\right)}{M S e}
$$

Statistical inference based on asymptotics

- Define the random variable

$$
T_{n}=\frac{\boldsymbol{I}^{\top} \widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{I}^{\top} \boldsymbol{\beta}}{\sqrt{M S e \cdot \boldsymbol{I}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{I}}}
$$

\square and the random variable

$$
Q_{n}=\frac{1}{m} \frac{\left(\mathbb{L} \widehat{\boldsymbol{\beta}}_{n}-\mathbb{L} \boldsymbol{\beta}\right)^{\top}\left[\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right]^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}_{n}-\mathbb{L} \boldsymbol{\beta}\right)}{M S e}
$$

Then it holds that $T_{n} \xrightarrow{\mathcal{D}} N(0,1)$ and $m Q_{n} \xrightarrow{\mathcal{D}} \chi_{m}^{2}$ (both for $\left.n \rightarrow \infty\right)$

Standard inference tools - summary

\square Confidence intervals
normal linear regression model (exact coverage)

- linear regression model without normlity (assymptotic coverage)
\square Statistical tests
normal linear regression model (based on the exact distribution)
- linear regression model without normlity (assymptotic validity)

