Lecture 8 | 16.04.2024

Statistical inference in a linear model (asymptotics)

Normal linear regression model

- □ Assumptions: random sample (Y_i, X_i) for i = 1, ..., n from the joint distribution $F_{(Y,X)}$ such that $Y_i | X_i \sim N(X_i^\top \beta, \sigma^2)$
- □ Inference: confidence intervals for β_j , confidence regions for β and linear combinations of the form $\mathbb{L}\beta$ (corresponding statistical tests)

Normal linear regression model

- **Assumptions:** random sample (Y_i, X_i) for i = 1, ..., n from the joint distribution $F_{(Y,X)}$ such that $Y_i | X_i \sim N(X_i^\top \beta, \sigma^2)$
- □ Inference: confidence intervals for β_j , confidence regions for β and linear combinations of the form $\mathbb{L}\beta$ (corresponding statistical tests)

Linear regression model without normality

Assumptions (A1):

- **u** random sample (Y_i, X_i) for i = 1, ..., n from the joint distribution $F_{(Y, X)}$
- \square mean specification $E[Y_i|X_i] = X_i^\top \beta$, respectively $E[Y|X] = X\beta$
- □ thus, for errors $\varepsilon_i = Y_i X_i^\top \beta$ we have $E[\varepsilon_i | X_i] = E[Y_i X_i^\top \beta | X_i] = 0$ and $Var(\varepsilon_i | X_i) = Var[Y_i - X_i^\top \beta | X_i] = Var[Y_i | X_i] = \sigma^2(X_i)$

Normal linear regression model

- □ Assumptions: random sample (Y_i, X_i) for i = 1, ..., n from the joint distribution $F_{(Y,X)}$ such that $Y_i | X_i \sim N(X_i^\top \beta, \sigma^2)$
- □ Inference: confidence intervals for β_j , confidence regions for β and linear combinations of the form $\mathbb{L}\beta$ (corresponding statistical tests)

Linear regression model without normality

Assumptions (A1):

- **u** random sample (Y_i, X_i) for i = 1, ..., n from the joint distribution $F_{(Y, X)}$
- \Box mean specification $E[Y_i|X_i] = X_i^\top \beta$, respectively $E[Y|X] = X\beta$
- □ thus, for errors $\varepsilon_i = Y_i X_i^\top \beta$ we have $E[\varepsilon_i | X_i] = E[Y_i X_i^\top \beta | X_i] = 0$ and $Var(\varepsilon_i | X_i) = Var[Y_i - X_i^\top \beta | X_i] = Var[Y_i | X_i] = \sigma^2(X_i)$
- □ and for unconditional expectations, $E[\varepsilon_i] = E[E[\varepsilon_i | \mathbf{X}_i]] = 0$ and $Var(\varepsilon_i) = Var(E[\varepsilon_i | \mathbf{X}_i]) + E[Var(\varepsilon_i | \mathbf{X}_i)] = Var(0) + E[\sigma^2(\mathbf{X}_i)] = E[\sigma^2(\mathbf{X}_i)]$

Normal linear regression model

- □ Assumptions: random sample (Y_i, X_i) for i = 1, ..., n from the joint distribution $F_{(Y,X)}$ such that $Y_i | X_i \sim N(X_i^\top \beta, \sigma^2)$
- □ Inference: confidence intervals for β_j , confidence regions for β and linear combinations of the form $\mathbb{L}\beta$ (corresponding statistical tests)

Linear regression model without normality

Assumptions (A1):

- **u** random sample (Y_i, X_i) for i = 1, ..., n from the joint distribution $F_{(Y, X)}$
- \Box mean specification $E[Y_i|X_i] = X_i^\top \beta$, respectively $E[Y|X] = X\beta$
- □ thus, for errors $\varepsilon_i = Y_i X_i^\top \beta$ we have $E[\varepsilon_i | X_i] = E[Y_i X_i^\top \beta | X_i] = 0$ and $Var(\varepsilon_i | X_i) = Var[Y_i - X_i^\top \beta | X_i] = Var[Y_i | X_i] = \sigma^2(X_i)$
- **and for unconditional expectations**, $E[\varepsilon_i] = E[E[\varepsilon_i | \mathbf{X}_i]] = 0$ and $Var(\varepsilon_i) = Var(E[\varepsilon_i | \mathbf{X}_i]) + E[Var(\varepsilon_i | \mathbf{X}_i)] = Var(0) + E[\sigma^2(\mathbf{X}_i)] = E[\sigma^2(\mathbf{X}_i)]$

Inference:

confidence intervals, hypothesis tests

Motivation

Parameter estimation without normality

- □ in the normal regression model $\mathbf{Y} = \mathbb{X}\beta + \epsilon$ one can simply use the distributional specification to formulate the likelihood (loglikelihood)
- □ in a general regression model $\mathbf{Y} = \mathbb{X}\beta + \varepsilon$ where $\varepsilon \sim (\mathbf{0}, \Sigma)$ the likelihood (loglikelihood resp.) can not be formulated (the distribution is missing)
- the most common approach in this case is based on the method of least squares (LSE), thus, the vector of the estimated parameters is given as

$$\widehat{eta}_n = \operatorname*{Arg\,max}_{eta \in \mathbb{R}^p} \quad \sum_{i=1}^n \left[Y_i - oldsymbol{X}_i^ op eta
ight]^2$$

Motivation

Parameter estimation without normality

- □ in the normal regression model $\mathbf{Y} = \mathbb{X}\beta + \epsilon$ one can simply use the distributional specification to formulate the likelihood (loglikelihood)
- □ in a general regression model $\mathbf{Y} = \mathbb{X}\beta + \varepsilon$ where $\varepsilon \sim (\mathbf{0}, \Sigma)$ the likelihood (loglikelihood resp.) can not be formulated (the distribution is missing)
- the most common approach in this case is based on the method of least squares (LSE), thus, the vector of the estimated parameters is given as

$$\widehat{oldsymbol{eta}}_n = \operatorname*{Arg\,max}_{oldsymbol{eta} \in \mathbb{R}^p} \quad \sum_{i=1}^n \left[Y_i - oldsymbol{X}_i^ op oldsymbol{eta}
ight]^2$$

the estimated vector of paramters can be given explicitly as

$$\widehat{oldsymbol{eta}}_n\equiv \widehat{oldsymbol{eta}}=\left(\mathbb{X}^{ op}\mathbb{X}
ight)^{-1}\mathbb{X}^{ op}oldsymbol{Y}$$

Motivation

Parameter estimation without normality

- □ in the normal regression model $\mathbf{Y} = \mathbb{X}\beta + \epsilon$ one can simply use the distributional specification to formulate the likelihood (loglikelihood)
- □ in a general regression model $\mathbf{Y} = \mathbb{X}\beta + \varepsilon$ where $\varepsilon \sim (\mathbf{0}, \Sigma)$ the likelihood (loglikelihood resp.) can not be formulated (the distribution is missing)
- □ the most common approach in this case is based on the method of least squares (LSE), thus, the vector of the estimated parameters is given as

$$\widehat{oldsymbol{eta}}_n = \operatorname*{Arg\,max}_{oldsymbol{eta} \in \mathbb{R}^p} \quad \sum_{i=1}^n \left[Y_i - oldsymbol{X}_i^ op oldsymbol{eta}
ight]^2$$

the estimated vector of paramters can be given explicitly as

$$\widehat{\boldsymbol{eta}}_n \equiv \widehat{\boldsymbol{eta}} = \left(\mathbb{X}^\top \mathbb{X} \right)^{-1} \mathbb{X}^\top \boldsymbol{Y}$$

which is the **BLUE** estimate for $\beta \in \mathbb{R}^p$ but for the statistical inference we need to know its (asymptotic) distributional properties (how does this random quantity behave when $n \in \mathbb{N}$ tends to infinity, $n \to \infty$)

Some additional assumptions

The random sample $\{(Y_i, X_i); i = 1, ..., n\}$ drawn from some joint distribution $F_{(Y,X)}$ of a generic (p + 1)-dimensional random vector (Y, X). Let $X = (X_1, ..., X_p)^{\top}$. Let the following holds:

Assumptions (A2):

□ $E|X_jX_k| < \infty$ for $j, k \in \{1, ..., p\}$ □ $E(XX^{\top}) = W \in \mathbb{R}^{p \times p}$ is a positive definite matrix □ $V = W^{-1}$

Some additional assumptions

The random sample $\{(Y_i, X_i); i = 1, ..., n\}$ drawn from some joint distribution $F_{(Y,X)}$ of a generic (p + 1)-dimensional random vector (Y, X). Let $X = (X_1, ..., X_p)^{\top}$. Let the following holds:

Assumptions (A2): $E|X_jX_k| < \infty \text{ for } j, k \in \{1, \dots, p\}$ $E(XX^{\top}) = \mathbb{W} \in \mathbb{R}^{p \times p} \text{ is a positive definite matrix}$ $\mathbb{W} = \mathbb{W}^{-1}$

Note, that the assumptions stated above refer to the population model—the population properties

- □ Both matrices, W ∈ ℝ^{p×p} and V ∈ ℝ^{p×p} are theoretical (population) characteristics, the dimensions are fixed for any n ∈ N, and they are typically not known in practical applications
- □ Both matrices can be however estimated using the empirical data—the observed random sample $\{(Y_i, X_i); i = 1, ..., n\}$

- □ Both matrices, W ∈ ℝ^{p×p} and V ∈ ℝ^{p×p} are theoretical (population) characteristics, the dimensions are fixed for any n ∈ N, and they are typically not known in practical applications
- □ Both matrices can be however estimated using the empirical data—the observed random sample $\{(Y_i, X_i); i = 1, ..., n\}$

Define the following:

- $\square W_n = \mathbb{X}^\top \mathbb{X} = \sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i^\top$
- \square $\mathbb{V}_n = \mathbb{W}_n^{-1}$ if it exists

- □ Both matrices, W ∈ ℝ^{p×p} and V ∈ ℝ^{p×p} are theoretical (population) characteristics, the dimensions are fixed for any n ∈ N, and they are typically not known in practical applications
- □ Both matrices can be however estimated using the empirical data—the observed random sample $\{(Y_i, X_i); i = 1, ..., n\}$

Define the following:

- $\square W_n = \mathbb{X}^\top \mathbb{X} = \sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i^\top$
- $\square \ \mathbb{V}_n = \mathbb{W}_n^{-1} \quad \text{ if it exists}$

□ Under the assumptions in A1 and A2 □ $\frac{1}{n} \mathbb{W}_n \longrightarrow \mathbb{W}$ a.s. (in P) as $n \to \infty$ □ $n \mathbb{V}_n \longrightarrow \mathbb{V}$ a.s. (in P) as $n \to \infty$

- □ Both matrices, W ∈ ℝ^{p×p} and V ∈ ℝ^{p×p} are theoretical (population) characteristics, the dimensions are fixed for any n ∈ N, and they are typically not known in practical applications
- □ Both matrices can be however estimated using the empirical data—the observed random sample $\{(Y_i, X_i); i = 1, ..., n\}$

Define the following:

- $\square W_n = \mathbb{X}^\top \mathbb{X} = \sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i^\top$
- \square $\mathbb{V}_n = \mathbb{W}_n^{-1}$ if it exists

□ Under the assumptions in A1 and A2 □ $\frac{1}{n} \mathbb{W}_n \longrightarrow \mathbb{W}$ a.s. (in P) as $n \to \infty$ □ $n \mathbb{V}_n \longrightarrow \mathbb{V}$ a.s. (in P) as $n \to \infty$

It is also good to realize that $(\mathbb{X}^{\top}\mathbb{X})^{-1}$ may not exist for any $n \in \mathbb{N}$ but as far as $\frac{1}{n}(\mathbb{X}^{\top}\mathbb{X})$ converges almost surely (in probability) to the matrix \mathbb{W} (positive definite) we also have that $P(\operatorname{rank}(\mathbb{X}^{\top}\mathbb{X}) = p) \to 1$, for $n \to \infty$

Problems of the statistical inference

Analogously as in the normal linear model, the statistical inference concerns confidence sets and statistical tests about $\beta \in \mathbb{R}^p$ and its linear combinations

- □ statistical inference can be performed with respect to the parameters β and σ^2 but, it can be also of some interest to do inference about some (appropriate) linear combination(s) of β
- \Box from the practical point of view, we are interested in the parameter vector β itself but also linear combinations of the form $I^{\top}\beta$ or $\mathbb{L}\beta$

Problems of the statistical inference

Analogously as in the normal linear model, the statistical inference concerns confidence sets and statistical tests about $\beta \in \mathbb{R}^p$ and its linear combinations

- □ statistical inference can be performed with respect to the parameters β and σ^2 but, it can be also of some interest to do inference about some (appropriate) linear combination(s) of β
- □ from the practical point of view, we are interested in the parameter vector β itself but also linear combinations of the form $I^{\top}\beta$ or $\mathbb{L}\beta$

The estimates for the unknown parameters $oldsymbol{eta} \in \mathbb{R}^p$ and $\sigma^2 > 0$ are

$$\square \ \widehat{\beta}_n = (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{X} \mathbf{Y} = \left(\sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i^\top \right)^{-1} \left(\sum_{i=1}^n \mathbf{X}_i \mathbf{Y}_i \right)$$
(LSE)

$$\square \ \widehat{\sigma_n^2} = \frac{1}{n-p} \sum_{i=1}^n (Y_i - \widehat{Y}_i)^2 = \frac{1}{n-p} \| \boldsymbol{Y} - \mathbb{X}\widehat{\beta} \|_2^2, \text{ where } \widehat{Y}_i = \boldsymbol{X}_i^\top \widehat{\boldsymbol{\beta}}$$
(MSe)

Problems of the statistical inference

Analogously as in the normal linear model, the statistical inference concerns confidence sets and statistical tests about $\beta \in \mathbb{R}^p$ and its linear combinations

- □ statistical inference can be performed with respect to the parameters β and σ^2 but, it can be also of some interest to do inference about some (appropriate) linear combination(s) of β
- □ from the practical point of view, we are interested in the parameter vector β itself but also linear combinations of the form $I^{\top}\beta$ or $\mathbb{L}\beta$

The estimates for the unknown parameters $oldsymbol{eta} \in \mathbb{R}^{p}$ and $\sigma^{2} > 0$ are

$$\square \ \widehat{\beta}_n = (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{X} \mathbf{Y} = \left(\sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i^\top \right)^{-1} \left(\sum_{i=1}^n \mathbf{X}_i \mathbf{Y}_i \right)$$
(LSE)

$$\square \ \widehat{\sigma_n^2} = \frac{1}{n-p} \sum_{i=1}^n (Y_i - \widehat{Y}_i)^2 = \frac{1}{n-p} \| \boldsymbol{Y} - \mathbb{X}\widehat{\beta} \|_2^2, \text{ where } \widehat{Y}_i = \boldsymbol{X}_i^\top \widehat{\boldsymbol{\beta}}$$
(MSe)

Both estimates—quantities $\hat{\beta}_n$ and $\hat{\sigma}_n^2$ —are random quantities (random vector and random variable) and, therefore, it is reasonable to investigate their statistical properties (e.g., mean, variance, distribution, etc.)

Homoscedastic vs. heteroscedastic model

Recall, that in the assumption in (A1) the conditional variance of ε_i depends on \mathbf{X}_i , which is reflected by the notation $Var(\varepsilon_i | \mathbf{X}_i) = \sigma^2(\mathbf{X}_i)$

Homoscedastic vs. heteroscedastic model

Recall, that in the assumption in (A1) the conditional variance of ε_i depends on \mathbf{X}_i , which is reflected by the notation $Var(\varepsilon_i | \mathbf{X}_i) = \sigma^2(\mathbf{X}_i)$

Two situations are typically distinguished:

□ Homoscedastic model) (Assumption A3a) $\sigma^{2}(\mathbf{X}) = Var(Y|\mathbf{X}) = \sigma^{2} > 0$

□ Heteroscedastic model (Assumption A3b) $\sigma^2(\mathbf{X}) = Var(Y|\mathbf{X})$ such that $E[\sigma^2(\mathbf{X})] < \infty$ and moreover, it also holds that $E[\sigma^2(\mathbf{X})X_jX_k] < \infty$ for $j, k \in \{1, ..., p\}$

Consistency of the LSE estimates

 $\hfill\square$ In particular, we are interested in the following parameters:

$$\begin{array}{l} \square \ \beta \in \mathbb{R}^{p} \\ \square \ \sigma^{2} > 0 \\ \square \ \theta = \mathbf{I}^{\top} \beta \in \mathbb{R}, \mbox{ for some nonzero vector } \mathbf{I} \in \mathbb{R}^{p} \\ \square \ \Theta = \mathbb{L} \beta \in \mathbb{R}^{m}, \mbox{ for some matrix } \mathbb{L} \in \mathbb{R}^{m \times p} \mbox{ with linearly independent rows} \end{array}$$

Consistency of the LSE estimates

□ In particular, we are interested in the following parameters:

$$\begin{array}{l} \square \quad \beta \in \mathbb{R}^{p} \\ \square \quad \sigma^{2} > 0 \\ \square \quad \theta = \mathbf{I}^{\top} \beta \in \mathbb{R}, \text{ for some nonzero vector } \mathbf{I} \in \mathbb{R}^{p} \\ \square \quad \Theta = \mathbb{L} \beta \in \mathbb{R}^{m}, \text{ for some matrix } \mathbb{L} \in \mathbb{R}^{m \times p} \text{ with linearly independent rows} \end{array}$$

□ The corresponding estmates are defined straightforwardly and it holds (under (A1), (A2), and (A3a/A3b)) that

$$\begin{array}{c} \square \quad \widehat{\beta}_n \longrightarrow \beta \text{ a.s. (in P), for } n \to \infty \\ \square \quad \widehat{\theta}_n = \mathbf{I}^\top \widehat{\beta}_n \longrightarrow \theta \text{ a.s. (in P), for } n \to \infty \\ \square \quad \widehat{\Theta}_n = \mathbb{L} \widehat{\beta}_n \longrightarrow \Theta, \text{ a.s. (in P), for } n \to \infty \end{array}$$

NMFM 334 | Lecture 8

Consistency of the LSE estimates

□ In particular, we are interested in the following parameters:

$$\begin{array}{l} \square \quad \beta \in \mathbb{R}^{p} \\ \square \quad \sigma^{2} > 0 \\ \square \quad \theta = \mathbf{I}^{\top} \beta \in \mathbb{R}, \text{ for some nonzero vector } \mathbf{I} \in \mathbb{R}^{p} \\ \square \quad \Theta = \mathbb{L} \beta \in \mathbb{R}^{m}, \text{ for some matrix } \mathbb{L} \in \mathbb{R}^{m \times p} \text{ with linearly independent rows} \end{array}$$

□ The corresponding estmates are defined straightforwardly and it holds (under (A1), (A2), and (A3a/A3b)) that

$$\begin{array}{l} \square \ \widehat{\beta}_n \longrightarrow \beta \text{ a.s. (in P), for } n \to \infty \\ \square \ \widehat{\theta}_n = \mathbf{I}^\top \widehat{\beta}_n \longrightarrow \theta \text{ a.s. (in P), for } n \to \infty \\ \square \ \widehat{\Theta}_n = \mathbb{L} \widehat{\beta}_n \longrightarrow \Theta, \text{ a.s. (in P), for } n \to \infty \end{array}$$

Under the homoscedastic model ((A1), (A2), and (A3a)) it also holds

$$\square \ \widehat{\sigma_n^2} \longrightarrow \sigma^2, \text{ a.s. (in P), for } n \to \infty$$

Assymptotic normality

Under the assumptions stated in (A1), (A2), and (A3a) and, additionally, for $E[\varepsilon^2 X_j X_k] < \infty$ for j, k = 1, ..., p the following holds:

Assymptotic normality

Under the assumptions stated in (A1), (A2), and (A3a) and, additionally, for $E[\varepsilon^2 X_j X_k] < \infty$ for j, k = 1, ..., p the following holds:

$$\begin{array}{l} \Box \quad \sqrt{n}(\widehat{\beta}_n - \beta) \xrightarrow{\mathcal{D}} N_p(\beta, \sigma^2 \mathbb{V}) \text{ for } n \to \infty \\ \Box \quad \sqrt{n}(\widehat{\theta}_n - \theta) \xrightarrow{\mathcal{D}} N(0, \sigma^2 \mathbf{I}^\top \mathbb{V} \mathbf{I}), \text{ as } n \to \infty \\ \Box \quad \sqrt{n}(\widehat{\Theta}_n - \Theta) \xrightarrow{\mathcal{D}} N_m(\mathbf{0}, \sigma^2 \mathbb{L} \mathbb{V} \mathbb{L}^\top), \text{ as } n \to \infty \end{array}$$

Statistical inference based on asymptotics

Define the random variable

$$T_n = \frac{\boldsymbol{I}^{\top} \widehat{\boldsymbol{\beta}}_n - \boldsymbol{I}^{\top} \boldsymbol{\beta}}{\sqrt{MSe \cdot \boldsymbol{I}^{\top} (\mathbb{X}^{\top} \mathbb{X})^{-1} \boldsymbol{I}}}$$

Statistical inference based on asymptotics

Define the random variable

$$T_n = \frac{\boldsymbol{I}^{\top} \widehat{\boldsymbol{\beta}}_n - \boldsymbol{I}^{\top} \boldsymbol{\beta}}{\sqrt{MSe \cdot \boldsymbol{I}^{\top} (\mathbb{X}^{\top} \mathbb{X})^{-1} \boldsymbol{I}}}$$

□ and the random variable

$$Q_n = \frac{1}{m} \frac{(\mathbb{L}\widehat{\beta}_n - \mathbb{L}\beta)^\top \left[\mathbb{L}(\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{L}^\top\right]^{-1} (\mathbb{L}\widehat{\beta}_n - \mathbb{L}\beta)}{MSe}$$

NMFM 334 | Lecture 8 10 /

Statistical inference based on asymptotics

Define the random variable

$$T_n = \frac{\boldsymbol{I}^{\top} \widehat{\boldsymbol{\beta}}_n - \boldsymbol{I}^{\top} \boldsymbol{\beta}}{\sqrt{MSe \cdot \boldsymbol{I}^{\top} (\mathbb{X}^{\top} \mathbb{X})^{-1} \boldsymbol{I}}}$$

and the random variable

$$Q_n = \frac{1}{m} \frac{(\mathbb{L}\widehat{\beta}_n - \mathbb{L}\beta)^\top \left[\mathbb{L}(\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{L}^\top\right]^{-1} (\mathbb{L}\widehat{\beta}_n - \mathbb{L}\beta)}{MSe}$$

Then it holds that $T_n \xrightarrow{\mathcal{D}} N(0,1)$ and $mQ_n \xrightarrow{\mathcal{D}} \chi_m^2$ (both for $n \to \infty$)

Standard inference tools – summary

Confidence intervals

- □ normal linear regression model (exact coverage)
- □ linear regression model without normlity (assymptotic coverage)

Statistical tests

- □ normal linear regression model (based on the exact distribution)
- □ linear regression model without normlity (assymptotic validity)