Lecture 7 | 09.04.2024

Statistical inference in a normal linear model

Overview

In general, the random sample $\left\{\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top} ; i=1, \ldots, n\right\}$ from some joint distribution $F_{(Y, \boldsymbol{X})}$ (a generic random vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top} \in \mathbb{R}^{p+1}$)
\square the underlying structure (i.e., linear model) is assumed to hold

$$
Y_{i}=\boldsymbol{X}_{i}^{\top} \beta+\varepsilon_{i}, \quad \text { for } i=1, \ldots, n, \text { where } \varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

\square the model can be equivalently also expressed in a matrix notation as

$$
\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\varepsilon, \quad \text { where } \varepsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbb{I}\right)
$$

\square the model formulations above specifies the (conditional) mean structure $(\mathbb{X} \boldsymbol{\beta})$ and the (conditional) variance-covariance structure $\left(\sigma^{2} \mathbb{I}\right)$ of the random vector \boldsymbol{Y} given the random matrix \mathbb{X}

Overview

\square In general, the random sample $\left\{\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top} ; i=1, \ldots, n\right\}$ from some joint distribution $F_{(Y, \boldsymbol{X})}$ (a generic random vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top} \in \mathbb{R}^{p+1}$)
\square the underlying structure (i.e., linear model) is assumed to hold

$$
Y_{i}=\boldsymbol{X}_{i}^{\top} \beta+\varepsilon_{i}, \quad \text { for } i=1, \ldots, n, \text { where } \varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

\square the model can be equivalently also expressed in a matrix notation as

$$
\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\varepsilon, \quad \text { where } \boldsymbol{\varepsilon} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbb{I}\right)
$$

\square the model formulations above specifies the (conditional) mean structure $(\mathbb{X} \boldsymbol{\beta})$ and the (conditional) variance-covariance structure $\left(\sigma^{2} \mathbb{I}\right)$ of the random vector \boldsymbol{Y} given the random matrix \mathbb{X}
\square the joint distribution function $F_{Y, \boldsymbol{X}}(\boldsymbol{y}, \boldsymbol{x})$ can be factorized as

$$
F_{Y, x}(y, x)=F_{Y \mid X}(y \mid x) \cdot F_{X}(x)
$$

and $F_{Y \mid \boldsymbol{X}}(y \mid \boldsymbol{x})$ is assumed to be a conditional normal distribution

Typical linear model assumptions

\square Ordinary linear regression model
\square random sample $\left(Y_{i}, \boldsymbol{X}_{i}\right)$ for $i=1, \ldots, n$ from the joint distribution $F_{(Y, \boldsymbol{X})}$
\square mean specification $E[\boldsymbol{Y} \mid \mathbb{X}]=\mathbb{X} \boldsymbol{\beta}$, respectively $E[Y \mid \boldsymbol{X}]=\boldsymbol{X}^{\top} \boldsymbol{\beta}$
variance specification $\operatorname{Var}(\boldsymbol{Y} \mid \mathbb{X})=\sigma^{2} \mathbb{I}$, resp. $\operatorname{Var}(\varepsilon)=\sigma^{2} \mathbb{I}$
\square Normal linear regression model
\square random sample $\left(Y_{i}, \boldsymbol{X}_{i}\right)$ for $i=1, \ldots, n$ from the joint distribution $F_{(Y, \boldsymbol{X})}$
\square distributional specification $\boldsymbol{Y} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right)$

Typical linear model assumptions

\square Ordinary linear regression model
random sample $\left(Y_{i}, \boldsymbol{X}_{i}\right)$ for $i=1, \ldots, n$ from the joint distribution $F_{(Y, \boldsymbol{X})}$
mean specification $E[\boldsymbol{Y} \mid \mathbb{X}]=\mathbb{X} \boldsymbol{\beta}$, respectively $E[Y \mid \boldsymbol{X}]=\boldsymbol{X}^{\top} \boldsymbol{\beta}$
variance specification $\operatorname{Var}(\boldsymbol{Y} \mid \mathbb{X})=\sigma^{2} \mathbb{I}$, resp. $\operatorname{Var}(\varepsilon)=\sigma^{2} \mathbb{I}$
\square Normal linear regression model
\square random sample $\left(Y_{i}, \boldsymbol{X}_{i}\right)$ for $i=1, \ldots, n$ from the joint distribution $F_{(Y, \boldsymbol{X})}$
\square distributional specification $\boldsymbol{Y} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right)$

The formulation of the normal model above also implies the following:
$\square \varepsilon \mid \mathbb{X} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbb{I}\right)$
$\square \varepsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbb{I}\right)$
\square error terms $\varepsilon_{1}, \ldots, \varepsilon_{n}$ form a random sample from a univariate normal distribution with the zero mean and the variance $\sigma^{2}>0$

Parameter estimation in the normal model

\square the normal model $\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\varepsilon$, where $\varepsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbb{I}\right)$ is assumed to hold
\square the unknown parameters to be estimated are $\beta \in \mathbb{R}^{p}$, and $\sigma^{2}>0$
\square statistical inference (confidence intervals, statistical tests) could be, however, also performed with respect to the parameters β and σ^{2} but, it can be also of some interest to do inference about some linear combination(s) of β
\square from the practical point of view, we are interested in the parameter vector $\boldsymbol{\beta}$ itself but also some (reasonable) linear combinations I ${ }^{\top} \boldsymbol{\beta}$, for some (fixed) vector $I \in \mathbb{R}^{p}$

Parameter estimation in a normal model

There are basically two standard techniques for the parameter estimation under the linear model formulation:
\square Least Squares
\square Maximum Likelihood

Parameter estimation in a normal model

There are basically two standard techniques for the parameter estimation under the linear model formulation:
\square Least Squares
\square Maximum Likelihood

In both situations the estimates are given by the formulae
$\square \widehat{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X} \boldsymbol{Y}$, where $\mathbb{X}^{\top} \mathbb{X}$ is of a full rank $p \in \mathbb{N}$

- $\widehat{\sigma^{2}}=\frac{1}{n-p} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}$, where $\widehat{Y}_{i}=Y_{i}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}$

Parameter estimation in a normal model

There are basically two standard techniques for the parameter estimation under the linear model formulation:
\square Least Squares
\square Maximum Likelihood

In both situations the estimates are given by the formulae

- $\widehat{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X} \boldsymbol{Y}$, where $\mathbb{X}^{\top} \mathbb{X}$ is of a full rank $p \in \mathbb{N}$
- $\widehat{\sigma^{2}}=\frac{1}{n-p} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}$, where $\widehat{Y}_{i}=Y_{i}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}$

Both estimates-quantities $\widehat{\beta}$ and $\widehat{\sigma^{2}}$-are random quantities (random vector and random variable) and, therefore, it is reasonable to investigate their statistical properties (e.g., mean, variance, distribution, etc.)

Linear combinations of the model parameters

\square the unknown vector of parameters $\beta \in \mathbb{R}^{p}$ is used to model the conditional mean structure $E[\boldsymbol{Y} \mid \mathbb{X}]$ but specific interpretation (meaning) of the elements of β depends on the parametrization that is used in the model
\square therefore, it is also of some interest to perform statistical inference about some linear combination of the unknow vector of paramters-inference about some different parametrization of the mean structure
\square let $\mathbb{L} \in \mathbb{R}^{m \times p}$ be a matrix with nonzero rows $\boldsymbol{I}_{1}^{\top}, \ldots, \boldsymbol{I}_{m}^{\top}$ and let $\boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}=\left(\boldsymbol{I}_{1}^{\top} \boldsymbol{\beta}, \ldots, \boldsymbol{I}_{\boldsymbol{m}}^{\top} \boldsymbol{\beta}\right)^{\top}=\left(\theta_{1}, \ldots, \theta_{m}\right) \in \mathbb{R}^{m}$ be some linear combinations of the original β vector
\square instead of performing the inference about $\beta \in \mathbb{R}^{p}$ we can be interested in performing the statistical inference about $\beta \in \mathbb{R}^{m}$

Statistical properties of $\hat{\beta}$ and $\hat{\theta}$

Recall, that we are working with the normal linear model of the form $\boldsymbol{Y} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right)$ and $\boldsymbol{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the estimate for $\boldsymbol{\beta} \in \mathbb{R}^{p}$

Then the following holds:

Statistical properties of $\hat{\beta}$ and $\hat{\theta}$

Recall, that we are working with the normal linear model of the form $\boldsymbol{Y} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right)$ and $\boldsymbol{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the estimate for $\boldsymbol{\beta} \in \mathbb{R}^{p}$

Then the following holds:
$\square \widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ is the (BLUE) estimate for $\boldsymbol{\theta} \in \mathbb{R}^{m}$

Statistical properties of $\hat{\beta}$ and $\hat{\theta}$

Recall, that we are working with the normal linear model of the form $\boldsymbol{Y} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right)$ and $\boldsymbol{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the estimate for $\boldsymbol{\beta} \in \mathbb{R}^{p}$

Then the following holds:

- $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ is the (BLUE) estimate for $\boldsymbol{\theta} \in \mathbb{R}^{m}$
- $\widehat{\boldsymbol{Y}} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{H}\right)$

Statistical properties of $\hat{\beta}$ and $\hat{\theta}$

Recall, that we are working with the normal linear model of the form $\boldsymbol{Y} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right)$ and $\boldsymbol{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the estimate for $\boldsymbol{\beta} \in \mathbb{R}^{p}$

Then the following holds:

- $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ is the (BLUE) estimate for $\boldsymbol{\theta} \in \mathbb{R}^{m}$
- $\widehat{\boldsymbol{Y}} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{H}\right)$
- $\boldsymbol{U} \mid \mathbb{X} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbb{M}\right)$

Statistical properties of $\hat{\beta}$ and $\hat{\theta}$

Recall, that we are working with the normal linear model of the form $\boldsymbol{Y} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right)$ and $\boldsymbol{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the estimate for $\boldsymbol{\beta} \in \mathbb{R}^{p}$

Then the following holds:

- $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ is the (BLUE) estimate for $\boldsymbol{\theta} \in \mathbb{R}^{m}$
- $\widehat{\boldsymbol{Y}} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{H}\right)$
- $\boldsymbol{U} \mid \mathbb{X} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbb{M}\right)$
$\square \widehat{\boldsymbol{\theta}} \sim N_{m}\left(\boldsymbol{\theta}, \sigma^{2} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right)$

Statistical properties of $\hat{\beta}$ and $\hat{\theta}$

Recall, that we are working with the normal linear model of the form $\boldsymbol{Y} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right)$ and $\boldsymbol{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the estimate for $\boldsymbol{\beta} \in \mathbb{R}^{p}$

Then the following holds:

- $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ is the (BLUE) estimate for $\boldsymbol{\theta} \in \mathbb{R}^{m}$
- $\widehat{\boldsymbol{Y}} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{H}\right)$
- $\boldsymbol{U} \mid \mathbb{X} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbb{M}\right)$
$-\widehat{\boldsymbol{\theta}} \sim N_{m}\left(\boldsymbol{\theta}, \sigma^{2} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right)$
random vectors $\widehat{\boldsymbol{Y}}$ and \boldsymbol{U} are conditionally (given \mathbb{X}) independent

Statistical properties of $\hat{\beta}$ and $\hat{\theta}$

Recall, that we are working with the normal linear model of the form $\boldsymbol{Y} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right)$ and $\boldsymbol{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the estimate for $\boldsymbol{\beta} \in \mathbb{R}^{p}$

Then the following holds:

- $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ is the (BLUE) estimate for $\boldsymbol{\theta} \in \mathbb{R}^{m}$
- $\widehat{\boldsymbol{Y}} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{H}\right)$
- $\boldsymbol{U} \mid \mathbb{X} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbb{M}\right)$
$-\widehat{\boldsymbol{\theta}} \sim N_{m}\left(\boldsymbol{\theta}, \sigma^{2} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right)$
random vectors $\widehat{\boldsymbol{Y}}$ and \boldsymbol{U} are conditionally (given \mathbb{X}) independent
random vector $\widehat{\boldsymbol{\theta}}$ and $S S e$ are conditionally (given \mathbb{X}) independent

Statistical properties of $\hat{\beta}$ and $\hat{\theta}$

Recall, that we are working with the normal linear model of the form $\boldsymbol{Y} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right)$ and $\boldsymbol{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the estimate for $\boldsymbol{\beta} \in \mathbb{R}^{p}$

Then the following holds:

- $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ is the (BLUE) estimate for $\boldsymbol{\theta} \in \mathbb{R}^{m}$
- $\widehat{\boldsymbol{Y}} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{H}\right)$
$\square \boldsymbol{U} \mid \mathbb{X} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbb{M}\right)$
$-\widehat{\boldsymbol{\theta}} \sim N_{m}\left(\boldsymbol{\theta}, \sigma^{2} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right)$
random vectors $\widehat{\boldsymbol{Y}}$ and \boldsymbol{U} are conditionally (given \mathbb{X}) independent
\square random vector $\widehat{\boldsymbol{\theta}}$ and $S S e$ are conditionally (given \mathbb{X}) independent
$\square S S e / \sigma^{2} \sim \chi_{n-p}^{2}$ and $\|\widehat{\boldsymbol{Y}}-\mathbb{X} \boldsymbol{\beta}\|^{2} / \sigma^{2} \sim \chi_{p}^{2}$

Statistical properties of $\hat{\beta}$ and $\hat{\theta}$

Recall, that we are working with the normal linear model of the form $\boldsymbol{Y} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right)$ and $\boldsymbol{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the estimate for $\boldsymbol{\beta} \in \mathbb{R}^{p}$

Then the following holds:

- $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ is the (BLUE) estimate for $\boldsymbol{\theta} \in \mathbb{R}^{m}$
- $\widehat{\boldsymbol{Y}} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{H}\right)$
$\square \boldsymbol{U} \mid \mathbb{X} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbb{M}\right)$
$\square \widehat{\boldsymbol{\theta}} \sim N_{m}\left(\boldsymbol{\theta}, \sigma^{2} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right)$
random vectors $\widehat{\boldsymbol{Y}}$ and \boldsymbol{U} are conditionally (given \mathbb{X}) independent
random vector $\widehat{\boldsymbol{\theta}}$ and $S S e$ are conditionally (given \mathbb{X}) independent
$\square S S e / \sigma^{2} \sim \chi_{n-p}^{2}$ and $\|\widehat{\boldsymbol{Y}}-\mathbb{X} \boldsymbol{\beta}\|^{2} / \sigma^{2} \sim \chi_{p}^{2}$
- $T_{j}=\frac{\widehat{j}_{j}-\theta_{j}}{\sqrt{\text { MSe. } \cdot v_{j j}}} \sim t_{n-p}$, where $\mathbb{V}=\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}=\left(v_{i j}\right)_{i, j=1}^{m}$

Statistical properties of $\hat{\beta}$ and $\hat{\theta}$

Recall, that we are working with the normal linear model of the form $\boldsymbol{Y} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right)$ and $\boldsymbol{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the estimate for $\boldsymbol{\beta} \in \mathbb{R}^{p}$

Then the following holds:

- $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ is the (BLUE) estimate for $\boldsymbol{\theta} \in \mathbb{R}^{m}$
- $\widehat{\boldsymbol{Y}} \mid \mathbb{X} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{H}\right)$
$\square \boldsymbol{U} \mid \mathbb{X} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbb{M}\right)$
$\square \widehat{\boldsymbol{\theta}} \sim N_{m}\left(\boldsymbol{\theta}, \sigma^{2} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right)$
random vectors $\widehat{\boldsymbol{Y}}$ and \boldsymbol{U} are conditionally (given \mathbb{X}) independent
random vector $\widehat{\boldsymbol{\theta}}$ and $S S e$ are conditionally (given \mathbb{X}) independent
$\square S S e / \sigma^{2} \sim \chi_{n-p}^{2}$ and $\|\widehat{\boldsymbol{Y}}-\mathbb{X} \boldsymbol{\beta}\|^{2} / \sigma^{2} \sim \chi_{p}^{2}$
- $T_{j}=\frac{\widehat{\theta}_{j}-\theta_{j}}{\sqrt{\text { MSe } \cdot v_{j j}}} \sim t_{n-p}$, where $\mathbb{V}=\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}=\left(v_{i j}\right)_{i, j=1}^{m}$
- $\frac{1}{m}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})^{\top}(M S e \cdot \mathbb{V})^{-1}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \sim F_{m, n-p}$, provided that $\operatorname{rank}(\mathbb{L})=m \leq p$

Inference in a normal linear model

\square Inference about some β_{j}
\square confidence interval $\widehat{\beta}_{j} \pm t_{n-p}(1-\alpha / 2) \sqrt{M S e \cdot v_{j j}}$, where $\operatorname{Var} \widehat{\beta}_{j}=\sigma^{2} v_{j j}$
\square statistical tests of the null hypothesis $H_{0}: \beta_{j}=\beta_{j}^{(0)}$

Inference in a normal linear model

\square Inference about some β_{j}
\square confidence interval $\widehat{\beta}_{j} \pm t_{n-p}(1-\alpha / 2) \sqrt{M S e \cdot v_{j j}}$, where $\operatorname{Var} \widehat{\beta}_{j}=\sigma^{2} v_{j j}$
statistical tests of the null hypothesis $H_{0}: \beta_{j}=\beta_{j}^{(0)}$
\square Simultaneous confidence region for β

- $\mathcal{S}(\boldsymbol{\alpha})=\left\{\boldsymbol{\beta} \in \mathbb{R}^{p} ; \frac{1}{p}(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})^{\top}\left(M S e^{-1} \mathbb{X}^{\top} \mathbb{X}\right)(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})<F_{p, n-p}(1-\alpha)\right\}$, which is an elipsoid with the center $\widehat{\boldsymbol{\beta}}$, the shape matrix $M S e \cdot\left(\mathbb{X}^{\top} \mathbb{X}^{-1}\right)$ and the diameter $\sqrt{k F_{p, n-p}(1-\alpha)}$
- statistical test of the null hypothesis $H_{0}: \beta=\beta^{(0)}$

Model based predictions

\square Model utilization for
\square characterization of the conditional distribution of Y given \boldsymbol{X}

- explaining the effect of some covariate X_{j} on the variable Y
\square prediction of a new observation $Y_{\text {new }}$ given the observed value of $\boldsymbol{X}_{\text {new }}$

Model based predictions

\square Model utilization for
\square characterization of the conditional distribution of Y given \boldsymbol{X}

- explaining the effect of some covariate X_{j} on the variable Y
\square prediction of a new observation $Y_{\text {new }}$ given the observed value of $\boldsymbol{X}_{\text {new }}$
\square straightforward prediction in terms of the estimated conditional expectation $\widehat{\mu}_{\text {new }}=\boldsymbol{X}_{\text {new }}^{\top} \widehat{\boldsymbol{\beta}}$
\square however, can we do better (e.g., accounting for the variability in $Y_{\text {new }}$)?

Model based predictions

\square Model utilization for
\square characterization of the conditional distribution of Y given \boldsymbol{X}

- explaining the effect of some covariate X_{j} on the variable Y
\square prediction of a new observation $Y_{\text {new }}$ given the observed value of $\boldsymbol{X}_{\text {new }}$
\square straightforward prediction in terms of the estimated conditional expectation $\widehat{\mu}_{\text {new }}=\boldsymbol{X}_{\text {new }}^{\top} \widehat{\boldsymbol{\beta}}$
however, can we do better (e.g., accounting for the variability in $Y_{\text {new }}$)?
\square distributional assumption

$$
Y_{\text {new }} \mid \boldsymbol{X}_{\text {new }} \sim N\left(\boldsymbol{X}_{\text {new }}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)
$$

where $\left(Y_{\text {new }}, \boldsymbol{X}_{\text {new }}\right)$ is independent of $\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$

Theoretical background of the prediction

\square Formally

$$
Y_{\text {new }}=\boldsymbol{X}_{\text {new }}^{\top} \boldsymbol{\beta}+\varepsilon_{\text {new }}, \quad \text { for } \varepsilon_{\text {new }} \sim N\left(0, \sigma^{2}\right)
$$

\square Theoretical property

$$
P\left[Y_{\text {new }} \in\left(\mathbb{X}_{\text {new }}^{\top} \beta \pm u_{1-\alpha / 2} \sigma\right)\right]=1-\alpha
$$

\square Theoretical property

$$
P\left[Y_{\text {new }} \in\left(\mathbb{X}_{\text {new }}^{\top} \widehat{\boldsymbol{\beta}} \pm t_{1-\alpha / 2}(n-p) \sqrt{\left.1+\boldsymbol{X}_{\text {new }}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{X}_{\text {new }}\right)}\right]=1-\alpha\right.
$$

Summary

\square Simple inference in a normal linear model
\square confidence intervals and statistical tests for elements of $\beta \in \mathbb{R}^{p}$
\square confidence intervals for some linear combination of $\boldsymbol{I}^{\top} \boldsymbol{\beta}$, for $\boldsymbol{I} \in \mathbb{R}^{p}$
\square Simultaneous inference for vector parameters in the linear model
\square confidence regions and statistical tests for the whole vector $\beta \in \mathbb{R}^{p}$
\square confidence regions for some linear combinations $\mathbb{L} \beta$, where $\mathbb{L} \in \mathbb{R}^{m \times p}$
\square Prediction in the normal linear model
\square point prediction for a new value of Y given the observed $\boldsymbol{X}=\boldsymbol{x}$

- interval prediction for a new value of Y given the observed $\boldsymbol{X}=\boldsymbol{x}$

