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Motivation

Overview

[ typical linear regression model (in a matrix notatoin) is of the form
Y=XB+¢
for the response (random) vector Y = (Y1,...,Y,)" € R", the model

matrix X € R"*?, and the vector of unknown (model) parameters 8 € R

[d the model matrix X contains basis vectors (as columnts in X) that
generate the linear subspace M(X) C R" (of the dimension rank(X) < n')

[ typically, we build a regression model in a way that the model matrix X is
of a full rank, meaning that the dimension of M(X) is p € N

(1 the projection matrix (i.e., a linear operator from R" into M(X) C R"
can be expressed as H = X(X ' X)*X" and the fitted values Y € R" can
be expressed as Y = HY (i.e., the systematic part of the model)

[ the remaining part of the model — the projection from R” into M(X)~*

(i.e., the orthogonal complement of M(X) in R") is called the residuals
and the can be expressed as U = (I-H)Y = MY € R"
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! O!IVa!lOn

Model assumptions

< from the overall point of view, we are interested in a conditional distribution
of the dependent variable Y € R given the (observed) independent variables

X € RP ... however, from the practical reasons, we are usually only interested
in some distributional characteristics—e.g., the conditional expectation
E[Y|X]... but it is also a nice habit for statisticians in general to also control
for the second moment—the variance of Y given X—i.e., Var(Y|X)
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< from the overall point of view, we are interested in a conditional distribution
of the dependent variable Y € R given the (observed) independent variables

X € RP ... however, from the practical reasons, we are usually only interested
in some distributional characteristics—e.g., the conditional expectation
E[Y|X]... but it is also a nice habit for statisticians in general to also control
for the second moment—the variance of Y given X—i.e., Var(Y|X)

Typical assumptions:
d Ordinary linear regression model

[ independent observation (Y, X;), respectively error terms ¢;
[d mean specification E[Y|X] = X8, respectively E[Y|X] = XT3
O variance specification Var(Y|X) = 021, resp. Var(e) = oI

1 Normal linear regression model

[ independent observation (Y;, X;), respectively error terms &;
[ distributional specification Y|X ~ N, (X3, o2T)
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! otivation

Model residuals

4 Analytically

Y- [H—F(]I—H)}Y: [H+M]Y:HY+MY:\?+U

1 Geometrically
Projections into two disjoint (but orthogonal) parts of the data space R”
(the regression part M(X) and the residual part M(X)™")

1 Formally
The variable of interest is decomposed into two parts—the model and the
resiadual—the systematic part and the unsystematic part (the projection
into M(X) and the projection into M(X)~*

[J Statistically
Decomposition of the distribution of Y into the mean specification (that
we are interested in) and the variability part (that is crucial for the
inference)
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! otivation

Residuals & standardized residuals

— there are actually two quantitative characteristics that can be used to judge the
quality of the regression model... the estimated conditional mean px = E[Y|X = x]
and the model residuals, vy = Y1 — Yi,...,un=Yn— Ya

[ the quality of the model is typically judged with respect to the residuals...
however, there are different types of residuals, that can be considered for
such purposes...

[d commonly, we distinguish the raw residuals and the standardized
residuals... both have some advantages and disadvantages...

(1 ideal tools for the model quality assessment are graphical tools and
statistical tools...

NMFM 334 | Lecture 6




Standardized (studentized) residuals

For a linear model Y|X ~ (X2, 02I) with the vector of residuals

U= (uy,...,u,)", where ; =Y; =Y, fori=1,..., n we define the
vector of standardized residuals (in some literature also the vector of
studentized residuals) V = (vi,...,v,)" as
uj .
Vi = ! if m; >0

vV MSe - mij; ’
and

v;is undefined for m; =0
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! O!IVa!lOn

Standardized (studentized) residuals

For a linear model Y|X ~ (X2, 02I) with the vector of residuals

~

U= (uy,...,u,)", where ; =Y; =Y, fori=1,..., n we define the
vector of standardized residuals (in some literature also the vector of
studentized residuals) V = (vi,...,v,)" as
uj .
Vi = ! if m; >0

vV MSe - mij; ’
and

v;is undefined for m; =0

The Mean Squared Error (MSe) quantity is the consistent estiamate of
the unknown variance parameter o2 > 0
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Properties of the residuals

dJ Raw model residuals

0 E[ui|X]=0,fori=1,...,n
Q Var(u;|X) = 0?m;;, where M = (m,-j);?,j:1
[J Moreover, in a normal linear model, also U ~ N,(0, 02M)
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Properties of the residuals

dJ Raw model residuals

0 E[ui|X]=0,fori=1,...,n
Q Var(u;|X) = 0?m;;, where M = (m,-j);’,j:1
1 Moreover, in a normal linear model, also U ~ N,(0, 0’2M)

(1 Standardized (studentized) residuals
0 E[v|X] =0, fori=1,...,n
d Var(vi|X)=1,fori=1,...,n
1 However, vy, ..., v, does not follow the normal distribution
(not even in a normal linear model)
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Graphical diagnostic tools

Residuals vs Fitted

- — o329

osae

0

Residuals
[ ] mw 00
0D 06500
0 ©OO 00 000
0@00 @0 O
0
000 0

o
™00 W00 00
0m 0

000
0

000 0O
®

0
|
omm%
00 0 00EOWO
00 0 (O0@0 @ 0WO 0 @ 000
00
0
0
0
0
0

]

000
000 000 @M

1209

D T T T T T T T T
a.a a.6 a.s 5.0 5.2 5.4 5.6 s.8

Fitted values
Im(yvield — log2(Mg))

NMFM 334 | Lecture 6




Graphical diagnostic tools

Normal Q—Q
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Graphical diagnostic tools

Scale—Location
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Different sum of squares

1 Total Sum of Squares SST
(the overall variability within the data)

SST = z":(v,- ~Y,)?

i=1

[J Regression Sum of Squares RSS
(the variability explained by the model compared to the simple mean)

RSS =Y (Yi=Y,)
i=1

1 Residual Sum of Squares SSe
(the variability that is still not explained by the model)

SSe = ZH:(Y,- ~ V)

i=1
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Some properties for the sum of squares

In a linear regression model Y|X ~ (X8, 0°l,) with the vector of
unknown parameters 8 € RP, the following decomposition holds true:

D= Vo= (Y= VP D (Vi - V)

i=
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Coefficient of determination

O For a linear regression model Y ~ (X8, 0%l,) with rank(X) = p € N and
1, € M(X) (i.e., the intercept parameter in the model) the quantity

SSe
R=1-57

is called the coefficient of determination in the model;

[ In the same linear regression model, the quantity

n—p SSe

Ra=1- 1557

is called the adjusted coefficient of determination in the model;
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Coefficient of determination

O For a linear regression model Y ~ (X8, 0%l,) with rank(X) = p € N and
1, € M(X) (i.e., the intercept parameter in the model) the quantity

SSe
R=1-57

is called the coefficient of determination in the model;

[ In the same linear regression model, the quantity

n—p SSe

R =1= T ssT

is called the adjusted coefficient of determination in the model;

— both quantities can be also defined for a more general model with the model
matrix X € R"*P such that rank(X) =r < p
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Motivation
2

Important properties of R?> and Ry

0 For both, R? and RZ; it holds that

0<R*<1 0<Ry;<1

[ Both quantities are typically reported as x100 % of the response
variability explained by the regression model

1 Both quantities quantify a relative improvement of the quality of
prediction if the regression model and the conditional distribution of
response given the covariates is used compared to the prediction based on
the marginal distribution of the response

1 Both coefficients of determination only quantifies the predictive ability of
the model — they do not say much about the quality of the model with
respect to the possibility to capture correctly the conditional mean E[Y|X]
— even a model with a low value of R? (or Rﬁdj respectively) migh be
useful for modelling the expectation mean and explaining the effects of X
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Model based predictions

[ Model utilization for

[ characterization of the conditional distribution of Y given X
[J explaining the effect of some covariate X; on the variable Y
1 prediction of a new observation Yjen given the observed value of Xpew
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Model based predictions

[ Model utilization for

[ characterization of the conditional distribution of Y given X
[J explaining the effect of some covariate X; on the variable Y
1 prediction of a new observation Yjen given the observed value of Xpew

[ straightforward prediction in terms of the estimated conditional
expectation Jinew = Xpo B

[d however, can we do better (e.g., accounting for the variability in Ypew)?
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! O!IVa!lOn

Model based predictions

[ Model utilization for

[ characterization of the conditional distribution of Y given X
[J explaining the effect of some covariate X; on the variable Y
1 prediction of a new observation Yjen given the observed value of Xpew

[ straightforward prediction in terms of the estimated conditional
expectation Jinew = Xpo B

[d however, can we do better (e.g., accounting for the variability in Ypew)?

[ distributional assumption
Ynew|xnew ~ N(Xr;l;w:B7o'2)

where (Ynew, Xnew) is independent of {(Y;, X;); i=1,...,n}
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Theoretical background of the prediction

d Formally
Ynew = ,—;l;w,B + Enew s for Enew " N(O,UZ)

1 Theoretical property
P[Ynew € (X:ewﬁ + ul—a/ZU)] =l-a

1 Theoretical property

Pl Yoew € (XhowB £ ti_a/o(n— p)AV/1+ X (XTX) Xpew) | =1 — @
/
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