Lecture 4 | 19.03.2024

.

Multiple regression model (multivariate predictor variable)

Overview: Simple (ordinary) linear regression

Theoretical (population model) for $Y, X \in \mathbb{R}$

 $Y - a + bX + \epsilon$

Population model for a random sample $S = \{(Y_i, X_i); i = 1, ..., n\}$

 $Y_i = a + bX_i + \varepsilon_i$

 \Box Alternatively (under the assumption of $E\varepsilon = 0$) we can write E[Y|X] = a + bX or E[Y|X = x] = a + bx

Principal goals:

- **Estimation** and inference about the unknown parameters $\alpha, \beta \in \mathbb{R}$
- **Estimation and inference about population characteristics**, E[Y|X = x]
- **Prediction** of the future outcome Y_0 , for an observed $X_0 = x_0$ (known)

D Theoretical (population model) for $Y \in \mathbb{R}$ and $X \in \mathbb{R}^p$ and $\beta \in \mathbb{R}^p$

 $Y = a + \boldsymbol{X}^{\top} \boldsymbol{\beta} + \varepsilon$

which can be also expressed as $\mathbf{Y} = (1, \mathbf{X}^{\top})\beta^* + \varepsilon$, for $\beta^* \in \mathbb{R}^{p+1}$ (thus, the first column of the model matrix contains only ones—intercept)

D Theoretical (population model) for $Y \in \mathbb{R}$ and $X \in \mathbb{R}^p$ and $\beta \in \mathbb{R}^p$

 $Y = a + \boldsymbol{X}^{\top} \boldsymbol{\beta} + \varepsilon$

which can be also expressed as $\mathbf{Y} = (1, \mathbf{X}^{\top})\beta^* + \varepsilon$, for $\beta^* \in \mathbb{R}^{p+1}$ (thus, the first column of the model matrix contains only ones—intercept)

□ For simplicity, the population model (with an implicitly included intercept) for a random sample $S = \{(Y_i, X_i); i = 1, ..., n\}$ will be denoted as

$$Y_i = \boldsymbol{X}_i^\top \boldsymbol{\beta} + \varepsilon_i$$

which is also commonly expressed in a matrix form $\mathbf{Y} = \mathbb{X}\beta + \varepsilon$ for $\mathbf{Y} = (Y_1, \dots, Y_n)^\top$, $\mathbb{X} = (X_{ij})_{i,j=1}^{n,p}$, and $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)^\top$

 \Box Theoretical (population model) for $Y \in \mathbb{R}$ and $X \in \mathbb{R}^{p}$ and $\beta \in \mathbb{R}^{p}$

 $Y = a + \mathbf{X}^{\top} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$

which can be also expressed as $\boldsymbol{Y} = (1, \boldsymbol{X}^{\top})\beta^* + \varepsilon$, for $\beta^* \in \mathbb{R}^{p+1}$ (thus, the first column of the model matrix contains only ones-intercept)

For simplicity, the population model (with an implicitly included intercept) for a random sample $S = \{(Y_i, X_i); i = 1, ..., n\}$ will be denoted as

$$Y_i = \boldsymbol{X}_i^\top \boldsymbol{\beta} + \varepsilon_i$$

which is also commonly expressed in a matrix form $oldsymbol{Y} = \mathbb{X}eta + arepsilon$ for $\mathbf{Y} = (Y_1, \ldots, Y_n)^{\top}, \ \mathbb{X} = (X_{ii})_{i,i=1}^{n,p}, \text{ and } \boldsymbol{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_n)^{\top}$

 \Box Similarly, (under the assumption of $E\varepsilon = \mathbf{0} \in \mathbb{R}^n$) the population model

 $E[Y|X] = X^{\top}\beta$ or $E[Y|X = x] = x^{\top}\beta$

and the corresponding (empirical) data model as $E[\mathbf{Y}|\mathbb{X}] = \mathbb{X}\beta$ with the variance assumption $Var\varepsilon_i = \sigma^2$ (matrix notation: $Var[\varepsilon|\mathbb{X}] = \sigma^2\mathbb{I}$)

 \Box Theoretical (population model) for $Y \in \mathbb{R}$ and $X \in \mathbb{R}^{p}$ and $\beta \in \mathbb{R}^{p}$

 $Y = a + \mathbf{X}^{\top} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$

which can be also expressed as $\boldsymbol{Y} = (1, \boldsymbol{X}^{\top})\beta^* + \varepsilon$, for $\beta^* \in \mathbb{R}^{p+1}$ (thus, the first column of the model matrix contains only ones-intercept)

For simplicity, the population model (with an implicitly included intercept) for a random sample $S = \{(Y_i, X_i); i = 1, ..., n\}$ will be denoted as

$$Y_i = \boldsymbol{X}_i^\top \boldsymbol{\beta} + \varepsilon_i$$

which is also commonly expressed in a matrix form $oldsymbol{Y} = \mathbb{X}eta + arepsilon$ for $\mathbf{Y} = (Y_1, \ldots, Y_n)^{\top}, \ \mathbb{X} = (X_{ii})_{i,i=1}^{n,p}, \text{ and } \boldsymbol{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_n)^{\top}$

 \Box Similarly, (under the assumption of $E\varepsilon = \mathbf{0} \in \mathbb{R}^n$) the population model

 $E[Y|X] = X^{\top}\beta$ or $E[Y|X = x] = x^{\top}\beta$

and the corresponding (empirical) data model as $E[\mathbf{Y}|\mathbb{X}] = \mathbb{X}\beta$ with the variance assumption $Var\varepsilon_i = \sigma^2$ (matrix notation: $Var[\varepsilon|\mathbb{X}] = \sigma^2\mathbb{I}$)

Multiple regression example

4 / 15

Principal goals of the multiple regression

□ Remains the same... analogous to an ordinary (simple) regression

Principal goals of the multiple regression

Remains the same... analogous to an ordinary (simple) regression

- **\Box** Estimation and inference about the unknown parameter vector $\beta \in \mathbb{R}^p$
- **Estimation and inference** about the conditional mean E[Y|X]
- **Prediction** of the future outcome Y_0 , for an observed $X_0 = x_0$ (known)

Principal goals of the multiple regression

Remains the same... analogous to an ordinary (simple) regression

- **\Box** Estimation and inference about the unknown parameter vector $\beta \in \mathbb{R}^p$
- **Estimation and inference about the conditional mean** E[Y|X]
- **Prediction** of the future outcome Y_0 , for an observed $X_0 = x_0$ (known)

In addition... for multiple parameters it makes sence to ask for more...

- **\Box** Estimation and inference about some linear combination $c^{\top}\beta$, $c \in \mathbb{R}^{p}$
- \Box Even multiple comparisons in terms of multiple linear combinations

(e.g., for some matrix $\mathbb{C} \in \mathbb{R}^{q imes p}$ we are interested in $\mathbb{C}eta$)

Least-squares vs. maximum likelihood

Least-squares formulation

(generally no distributional assumptions)

- **Assumption:** $\mathbf{Y} \sim (\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbb{I})$
- Convex minimization problem:

$$\widehat{eta} = \operatorname*{Arg\,min}_{eta \in \mathbb{R}^p} \sum_{i=1}^n (Y_i - oldsymbol{X}_i^ op eta)^2$$

 $\Box \text{ Estimate: } \widehat{\beta} = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\mathbf{Y}$

 \Box Statistical properties: $E\widehat{eta} = eta$ for all $eta \in \mathbb{R}^p$ and $Var\widehat{eta} = \sigma^2(\mathbb{X}^\top \mathbb{X})^{-1}$

Maximum likelihood estimation

(under normal model formulation)

Assumption: $\mathbf{Y} \sim N_n(\mathbb{X}\beta, \sigma^2\mathbb{I})$ **Maximization (convex) problem:**

$$(\widehat{\beta}, \widehat{\sigma^2}) = \operatorname*{Arg\,max}_{\beta \in \mathbb{R}^{p}; \sigma^2 > \mathbf{0}} \left[-\frac{n}{2} \log (2\pi\sigma^2) - \frac{1}{2} \sum_{i=1}^{n} \frac{(Y_i - \mathbf{X}_i^{\top} \beta)}{\sigma^2} \right]$$

Estimates: $\widehat{\beta} = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\mathbf{Y}$ and $\widehat{\sigma^2} = \frac{1}{n}\sum_{i=1}^{n}(Y_i - \mathbf{X}_i^{\top}\widehat{\beta})^2$

 $\square \text{ Statistical properties: } E\widehat{\beta} = \beta \text{ for all } \beta \in \mathbb{R}^p \text{ and } Var\widehat{\beta} = \sigma^2(\mathbb{X}^\top \mathbb{X})^{-1}$

Statistical properties of the estimates

 \Box The estimate $\widehat{\beta}$ is **unbiased**

(BLUE – Gauss-Markov Theorem)

- $lacksymbol{\square}$ The ML estimate \widehat{eta} is normally distributed
- **\Box** The LS estimate $\widehat{\beta}$ is (under some conditions) asymptotically normal

Statistical properties of the estimates

 \Box The estimate \widehat{eta} is **unbiased**

(BLUE – Gauss-Markov Theorem)

- $lacksymbol{\square}$ The ML estimate \widehat{eta} is normally distributed
- **The LS estimate** $\hat{\beta}$ is (under some conditions) asymptotically normal
- **D** The ML estimate $\widehat{\sigma^2}$ is **biased**

The unbiased (REML) estimate for σ^2 is $\frac{n}{n-p}\widehat{\sigma^2}$

Useful jargon (overview of multiple regression)

- □ Fitted values: $\widehat{Y}_i = \mathbf{X}_i^\top \widehat{\beta}$ (matrix notation $\widehat{\mathbf{Y}} = (\widehat{Y}_1, \dots, \widehat{Y}_n)^\top = \mathbb{X}\widehat{\beta}$) (Y_i projections onto a *p*-dimensional subspace generated by columns of \mathbb{X})
- **Residuals**: $\hat{u}_i = Y_i \hat{Y}_i$ (in a vector notation $\boldsymbol{U} = \boldsymbol{Y} \mathbb{X}\hat{\beta}$) ("estimates" for ε_i , projections of Y_i onto an orthogonal complement)
- **Residual sum of squares (RSS)**: $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$ (the sum of squared residuals minimization criterion)
- □ Residual standard error (RSE): $\frac{1}{n-p} \sum_{i=1}^{n} (Y_i \widehat{Y}_i)^2$ (residual sum of squares divided by the corresponding degrees of freedom)
- □ Total sum of squares (SST): $\sum_{i=1}^{n} (Y_i \overline{Y}_n)^2$ (the overall data variability with respect to Y when divided by n 1)
- Multiple R² value: 1 RSE/SST (the proportion of the explained variability by considering the given model)

Gauss-Markov Theorem

Assumptions:

- \Box consider a multiple regression model $\boldsymbol{Y}|\mathbb{X} \sim (\mathbb{X}\beta, \sigma^2\mathbb{I})$, for $\beta \in \mathbb{R}^p$
- □ the model matrix $X \in \mathbb{R}^{n \times p}$ is assumed to be of full rank (p < n)

Assertions:

□ Then the vector of fitted values $\widehat{\mathbf{Y}} \in \mathbb{R}^n$ is **BLUE** for the vector of the unknown mean parameters $\boldsymbol{\mu} = E[\mathbf{Y}|\mathbb{X}]$

□ Moreover, it also holds, that

$$Var[\widehat{\mathbf{Y}}|\mathbb{X}] = \sigma^2 \mathbb{X} \left(\mathbb{X}^\top \mathbb{X} \right)^{-1} \mathbb{X}^\top = \sigma^2 \mathbb{H}$$

 \hookrightarrow the matrix \mathbb{H} is the projection matrix from the *n*-dimensional linear space \mathbb{R}^n into a *p*-dimensional linear subspace of \mathbb{R}^n , generated by the columns of the model matrix \mathbb{X} (it is also called the hat matrix)

Multiple regression: Orthogonal projections

Statistical inference

Confidence intervals

 \square Generally, for $\alpha \in (0,1)$ and any β_j for $j \in \{1,\ldots,p\}$ it holds that

$$P\left[\beta_j \in (\widehat{\beta}_j \pm u_{1-\alpha/2}\sqrt{RSS(\mathbb{X}^\top\mathbb{X})_{jj}^{-1}}\right] \approx 1-\alpha$$

D Under normal model, for $\alpha \in (0,1)$ and any β_j for $j \in \{1, \dots, p\}$ it holds

$$P\left[\beta_j \in (\widehat{\beta}_j \pm t_{1-\alpha/2}(n-p)\sqrt{RSS(\mathbb{X}^\top \mathbb{X})_{jj}^{-1}}\right] = 1 - \alpha$$

Statistical tests

□ Typically, of the form

$$H_0: \boldsymbol{c}^\top \boldsymbol{\beta} = 0$$

against a general alternative

$$H_A: \boldsymbol{c}^\top \boldsymbol{\beta} \neq 0$$

▲

Categorical explanatory variable X

- □ the explanatory variable $X \in \mathbb{X}$ is categorical with $K \in \mathbb{N}$ categories (this means that $X \in \mathbb{R}$ takes only K different values from \mathbb{R})
- the goal is to learn the underlying relationship between Y and X (while the discrete random variable X can be either nominal or ordinal)
- □ the linear regression model for the conditional expectation E[Y|X] (estimating means of $K \in \mathbb{N}$ sub-populations defined by the value of X)
- □ let's assume, that $X \in \{1, ..., K\}$ and $Y = f(X) + \varepsilon$ (what should be the form of $f : \{1, ..., K\} \longrightarrow \mathbb{R}$ for a good model?)

Categorical explanatory variable X

- □ the explanatory variable $X \in \mathbb{X}$ is categorical with $K \in \mathbb{N}$ categories (this means that $X \in \mathbb{R}$ takes only K different values from \mathbb{R})
- the goal is to learn the underlying relationship between Y and X (while the discrete random variable X can be either nominal or ordinal)
- □ the linear regression model for the conditional expectation E[Y|X] (estimating means of $K \in \mathbb{N}$ sub-populations defined by the value of X)
- □ let's assume, that $X \in \{1, ..., K\}$ and $Y = f(X) + \varepsilon$ (what should be the form of $f : \{1, ..., K\} \longrightarrow \mathbb{R}$ for a good model?)
- **Dummy variables**" for each sub-group (sub-population, value of X) $\tilde{X}_{ik} = \mathbb{I}_{\{X_i = k\}}, \quad \text{for } i = 1, \dots, n \text{ and } k = 1, \dots, K$

Categorical explanatory variable X

- □ the explanatory variable $X \in \mathbb{X}$ is categorical with $K \in \mathbb{N}$ categories (this means that $X \in \mathbb{R}$ takes only K different values from \mathbb{R})
- the goal is to learn the underlying relationship between Y and X (while the discrete random variable X can be either nominal or ordinal)
- □ the linear regression model for the conditional expectation E[Y|X] (estimating means of $K \in \mathbb{N}$ sub-populations defined by the value of X)
- □ let's assume, that $X \in \{1, ..., K\}$ and $Y = f(X) + \varepsilon$ (what should be the form of $f : \{1, ..., K\} \longrightarrow \mathbb{R}$ for a good model?)
- **Dummy variables**" for each sub-group (sub-population, value of X) $\tilde{X}_{ik} = \mathbb{I}_{\{X_i = k\}}, \quad \text{for } i = 1, \dots, n \text{ and } k = 1, \dots, K$

 \square Thus, the model (with some intercept $a \in \mathbb{R}$) can be expressed as

$$Y_{i} = a + \sum_{k=1}^{K} \tilde{\beta}_{k} \mathbb{I}_{\{X_{i}=k\}} + \varepsilon_{i} = a + (\tilde{X}_{i1}, \dots, \tilde{X}_{iK}) \tilde{\beta} + \varepsilon_{i} = \mathbf{X}_{i}^{\top} \beta + \varepsilon_{i},$$

For $\mathbf{X}_{i} = (1, X_{i1}, \dots, X_{iK})^{\top}$ and $\beta = (a, \tilde{\beta}_{1}, \dots, \tilde{\beta}_{K})^{\top} \in \mathbb{R}^{K+1}_{\text{NMFM 334 | Lecture 2}}$

Model over-parametrization

- □ thus, the model for a categorical explanatory variable $X \in \mathbb{X}$ taking $K \in \mathbb{N}$ distinct values can be formalized as a multiple regression model with $X \in \mathbb{R} \times \{0, 1\}^{K}$ (i.e., K + 1 dimensional explanatory vector)
- □ however, $K \in \mathbb{N}$ possible values for X define K different subpopulations with their specific (conditional) mean parameters E[Y|X = k] for $k \in \{1, ..., K\}$
- □ the total number of unknown parameters in the model is K + 1(parameters $a, \tilde{\beta}_1, \ldots, \tilde{\beta}_K$) ⇒ the model is over-parametrized

 \square $\tilde{\beta}_1 = 0$

 $\hat{\boldsymbol{\beta}}_{\kappa} = \mathbf{0}$

 $\square \sum_{k=1}^{K} \tilde{\beta}_k = 0$

Model over-parametrization

- □ thus, the model for a categorical explanatory variable $X \in \mathbb{X}$ taking $K \in \mathbb{N}$ distinct values can be formalized as a multiple regression model with $X \in \mathbb{R} \times \{0, 1\}^{K}$ (i.e., K + 1 dimensional explanatory vector)
- □ however, $K \in \mathbb{N}$ possible values for X define K different subpopulations with their specific (conditional) mean parameters E[Y|X = k] for $k \in \{1, ..., K\}$
- □ the total number of unknown parameters in the model is K + 1(parameters $a, \tilde{\beta}_1, \ldots, \tilde{\beta}_K$) ⇒ the model is over-parametrized
- □ another equation is needed to guarantee a unique solution for β \hookrightarrow can be achieved by different approaches—different equations
 - (reference category for k = 1) (reference category for k = K) (overall category)

Model selection approaches

The main question is the following: From the set of plausible models, which can be very rich... how should we select one model that we consider to be the final one (the most appropriate one?)

Naive methods

- expert judgement
- some previous experince/knowledge

Systematic modelling approaches

- □ stepwise forward modelling approach
- stepwise background modelling approach

Various quantitative criteria

- □ Akaike's information criterion (AIC)
- Bayesian information criterion (BIC)

Transformations of the explanatory variable

□ In general, simple linear regression model can be also expressed in term

 $Y = a + bt(X) + \varepsilon$

where $t : \mathbb{R} \to \mathbb{R}$ is some reasonable (measurable) transformation function

- Usually, there are two reasons why to consider some transformation of the explanatory variable:
 - improving the quality of the final model (fit) (but it usually make the interpretation worse)
 - improving the quality of the model interpretation (can help even in terms of the calculation efficiency and model accuracy)

Similarly, transformation can be used also for a multiple regression model