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Multiple regression model
(multivariate predictor variable)
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! O!IVa!lOn

Overview: Simple (ordinary) linear regression

[ Theoretical (population model) for Y, X € R
Y=a+bX+e¢

(1 Population model for a random sample § = {(Y;, Xi); i=1,...,n}
Yi=a+ bXi+¢i

[ Alternatively (under the assumption of Ec = 0) we can write

E[Y|X] = a+ bX or E[Y|X =x]=a+ bx

Principal goals:
[ Estimation and inference about the unknown parameters o, 8 € R
(1 Estimation and inference about population characteristics, E[Y|X = x]

[ Prediction of the future outcome Yg, for an observed Xo = xo (known)
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Generalization: Multiple regression model

[ Theoretical (population model) for Y € R and X € R? and B8 € R?
Y=a+X B+e¢

which can be also expressed as Y = (1, X")3* + ¢, for 8* € RP*!
(thus, the first column of the model matrix contains only ones—intercept)
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! 0!IVa!lOn

Generalization: Multiple regression model

[ Theoretical (population model) for Y € R and X € R? and B8 € R?
Y=a+X B+e
which can be also expressed as Y = (1, X")8* + ¢, for 8* € RPH!
(thus, the first column of the model matrix contains only ones—intercept)
[ For simplicity, the population model (with an implicitly included intercept)
for a random sample S = {(Y;, Xi); i =1,...,n} will be denoted as
Yi=X"B+e

which is also commonly expressed in a matrix form Y = X3 + € for
Y=(Y1,....Yn)", X=(Xp)/y and € = (e1,...,n) "

J=11
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which is also commonly expressed in a matrix form Y = X3 + € for
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Multiple regression example

Iy
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Principal goals of the multiple regression

[d Remains the same... analogous to an ordinary (simple) regression
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Principal goals of the multiple regression

[d Remains the same... analogous to an ordinary (simple) regression

[ Estimation and inference about the unknown parameter vector 8 € RP
[ Estimation and inference about the conditional mean E[Y|X]
[J Prediction of the future outcome Yj, for an observed Xy = xp (known)

A In addition... for multiple parameters it makes sence to ask for more...

[ Estimation and inference about some linear combination cT,B, c € RP
1 Even multiple comparisons in terms of multiple linear combinations
(e.g., for some matrix C € R9%P we are interested in CS3)
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! 0!IVa!lOn

Least-squares vs. maximum likelihood

1 Least-squares formulation (generally no distributional assumptions)

O Assumption: Y ~ (X8, 02)
1 Convex minimization problem:

n

E: Arg min Z(Y, - X" B)?

BERP

0 Estimate: 5 = (X X)Xy
(1 Statistical properties: E8 = 3 for all 8 € RP and Varf = ¢?(XTX)~!

4 Maximum likelihood estimation (under normal model formulation)

O Assumption: Y ~ N,(X8, 02)
[ Maximization (convex) problem:

~ A~ Y; — xT
(B,02) = Argmax |[—= Iog (270?) Z ( A)
BERP;02>0
0 Estimates: 3 = (XTX)7'XTY and 02 = L 37 (Y, - X B)2
1 Statistical properties: EZ—I\: B for all B € RP and Var,fy’\: P (XTx)—!
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Statistical properties of the estimates

[d The estimate B is unbiased (BLUE — Gauss-Markov Theorem)
[d The ML estimate E is normally distributed

[ The LS estimate 2'3\ is (under some conditions) asymptotically normal
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Statistical properties of the estimates

[d The estimate B is unbiased (BLUE — Gauss-Markov Theorem)
[d The ML estimate B is normally distributed

[ The LS estimate B is (under some conditions) asymptotically normal

d The ML estimate &\2 is biased

O The unbiased (REML) estimate for 2 is nfp;
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Motivation

Useful jargon (overview of multiple regression)

O Fitted values: Y; = X,»TE (matrix notation Y = (/\;1, e, /\;,,)T = XE)
(Y; projections onto a p-dimensional subspace generated by columns of X)

0 Residuals: 7, = Y; — Y,  (in a vector notation U = Y — X3)
(“estimates” for £;, projections of Y; onto an orthogonal complement)

1 Residual sum of squares (RSS): Y7 (Yi — ?,)2
(the sum of squared residuals — minimization criterion)

O Residual standard error (RSE): ;23" (Vi — Yi)?
(residual sum of squares divided by the corresponding degrees of freedom)

0 Total sum of squares (SST): Y7 (Vi — Y,)?
(the overall data variability with respect to Y when divided by n — 1)

O Multiple R? value: 1 — RSE/SST
(the proportion of the explained variability by considering the given model)
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! 0!IVa!lOn

Gauss-Markov Theorem

Assumptions:
O consider a multiple regression model Y|X ~ (X8, 5°I), for 8 € R?
[ the model matrix X € R"*? is assumed to be of full rank (p < n)

Assertions:

O Then the vector of fitted values ¥ € R” is BLUE for the vector of the
unknown mean parameters pu = E[Y|X]

[ Moreover, it also holds, that

e —1
Var[Y|X] = 0°X (XTX) X" =o’H

— the matrix H is the projection matrix from the n-dimensional linear space R" into a
p-dimensional linear subspace of R”, generated by the columns of the model matrix X
(it is also called the hat matrix)
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! 0!IVa!lOn

Multiple regression: Orthogonal projections

Y

1 Fitted values as projections of Y: Y =HY
1 Residuals as projections of Y: U= (I-H)Y =MY
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Statistical inference

1 Confidence intervals
1 Generally, for o € (0,1) and any g; for j € {1,...,p} it holds that

P [ﬁj €@+ U1_a )24 /RSS(XTX)EI} ~l—a

1 Under normal model, for a € (0,1) and any ; for j € {1,...,p} it holds

Pl8 € (B tiappln = p)y/RSSETR); | =1-a

(1 Statistical tests
A Typically, of the form

Hy:c"B=0

[ against a general alternative

Ha:c"B#0
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! O!IVa!lOn

Categorical explanatory variable X

[d the explanatory variable X € X is categorical with K € N categories
(this means that X € R takes only K different values from R)
[d the goal is to learn the underlying relationship between Y and X
(while the discrete random variable X can be either nominal or ordinal)
[ the linear regression model for the conditional expectation E[Y|X]
(estimating means of K € N sub-populations defined by the value of X)
[ let's assume, that X € {1,...,K} and Y = f(X) +¢
(what should be the form of f: {1,..., K} — R for a good model?)
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! otivation

Categorical explanatory variable X

[d the explanatory variable X € X is categorical with K € N categories
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[d the goal is to learn the underlying relationship between Y and X
(while the discrete random variable X can be either nominal or ordinal)
[ the linear regression model for the conditional expectation E[Y|X]
(estimating means of K € N sub-populations defined by the value of X)
[ let's assume, that X € {1,...,K} and Y = f(X) +¢
(what should be the form of f: {1,..., K} — R for a good model?)

[d “Dummy variables” for each sub-group (sub-population, value of X)

Xie = Iyx=«y, fori=1,...,nand k=1,...,K

1 Thus, the model (with some intercept a € R) can be expressed as
K
Yi=a+ Zﬁkﬂ{x,:k} tei=a+Xun,....,.Xw)B+e=XB+e,
k=1

T o3 2 N\T K+1
for X; = (1’Xi1""’XiK) and ’B = (a’ﬂl""’BK) eR -rtww\.\ 334 | Lecture 2
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! 0!IVa!lOn

Model over-parametrization

[ thus, the model for a categorical explanatory variable X € X taking
K € N distinct values can be formalized as a multiple regression model
with X € R x {0,1}* (i.e., K + 1 dimensional explanatory vector)

1 however, K € N possible values for X define K different subpopulations
with their specific (conditional) mean parameters E[Y|X = k] for

ked{l,...,K}
[ the total number of unknown parameters in the model is K + 1
(parameters a, f1,. .., k) = the model is over-parametrized
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Model over-parametrization

[ thus, the model for a categorical explanatory variable X € X taking
K € N distinct values can be formalized as a multiple regression model
with X € R x {0,1}* (i.e., K + 1 dimensional explanatory vector)

1 however, K € N possible values for X define K different subpopulations
with their specific (conditional) mean parameters E[Y|X = k] for

ked{l,...,K}
[ the total number of unknown parameters in the model is K + 1
(parameters a, f1,. .., k) = the model is over-parametrized

[ another equation is needed to guarantee a unique solution for 8
< can be achieved by different approaches—different equations

a @1 =0 (reference category for k = 1)
d Bk =0 (reference category for k = K)
- Ele Bi=0 (overall category)
[
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! 0!IVa!lOn

Model selection approaches

The main question is the following: From the set of plausible models,
which can be very rich... how should we select one model that we
consider to be the final one (the most appropriate one?)

d Naive methods

1 expert judgement
[J some previous experince/knowledge

1 Systematic modelling approaches

1 stepwise forward modelling approach
1 stepwise background modelling approach

1 Various quantitative criteria

[d Akaike's information criterion (AIC)
(1 Bayesian information criterion (BIC)
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! 0!IVa!IOn

Transformations of the explanatory variable

[ In general, simple linear regression model can be also expressed in term
Y =a+bt(X)+e¢

where t : R — R is some reasonable (measurable) transformation function

[d Usually, there are two reasons why to consider some transformation of the
explanatory variable:

(1 improving the quality of the final model (fit)
(but it usually make the interpretation worse)

[ improving the quality of the model interpretation
(can help even in terms of the calculation efficiency and model accuracy)

[ Similarly, transformation can be used also for a multiple regression model
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