Lecture 4 | 19.03.2024

Multiple regression model (multivariate predictor variable)

Overview: Simple (ordinary) linear regression

\square Theoretical (population model) for $Y, X \in \mathbb{R}$

$$
Y=a+b X+\varepsilon
$$

\square Population model for a random sample $\mathcal{S}=\left\{\left(Y_{i}, X_{i}\right) ; i=1, \ldots, n\right\}$

$$
Y_{i}=a+b X_{i}+\varepsilon_{i}
$$

- Alternatively (under the assumption of $E \varepsilon=0$) we can write

$$
E[Y \mid X]=a+b X \quad \text { or } \quad E[Y \mid X=x]=a+b x
$$

Principal goals:

\square Estimation and inference about the unknown parameters $\alpha, \beta \in \mathbb{R}$
\square Estimation and inference about population characteristics, $E[Y \mid X=x]$
\square Prediction of the future outcome Y_{0}, for an observed $X_{0}=x_{0}$ (known)

Generalization: Multiple regression model

\square Theoretical (population model) for $Y \in \mathbb{R}$ and $\boldsymbol{X} \in \mathbb{R}^{p}$ and $\beta \in \mathbb{R}^{p}$

$$
Y=a+\boldsymbol{X}^{\top} \boldsymbol{\beta}+\varepsilon
$$

which can be also expressed as $\boldsymbol{Y}=\left(1, \boldsymbol{X}^{\top}\right) \boldsymbol{\beta}^{*}+\varepsilon$, for $\boldsymbol{\beta}^{*} \in \mathbb{R}^{p+1}$ (thus, the first column of the model matrix contains only ones-intercept)

Generalization: Multiple regression model

\square Theoretical (population model) for $Y \in \mathbb{R}$ and $\boldsymbol{X} \in \mathbb{R}^{p}$ and $\beta \in \mathbb{R}^{p}$

$$
Y=a+\boldsymbol{X}^{\top} \boldsymbol{\beta}+\varepsilon
$$

which can be also expressed as $\boldsymbol{Y}=\left(1, \boldsymbol{X}^{\top}\right) \boldsymbol{\beta}^{*}+\varepsilon$, for $\boldsymbol{\beta}^{*} \in \mathbb{R}^{p+1}$ (thus, the first column of the model matrix contains only ones-intercept)
\square For simplicity, the population model (with an implicitly included intercept) for a random sample $\mathcal{S}=\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$ will be denoted as

$$
Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}
$$

which is also commonly expressed in a matrix form $\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ for $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}, \mathbb{X}=\left(X_{i j}\right)_{i, j=1}^{n, p}$, and $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}$

Generalization: Multiple regression model

\square Theoretical (population model) for $Y \in \mathbb{R}$ and $\boldsymbol{X} \in \mathbb{R}^{p}$ and $\beta \in \mathbb{R}^{p}$

$$
Y=a+\boldsymbol{X}^{\top} \boldsymbol{\beta}+\varepsilon
$$

which can be also expressed as $\boldsymbol{Y}=\left(1, \boldsymbol{X}^{\top}\right) \boldsymbol{\beta}^{*}+\varepsilon$, for $\boldsymbol{\beta}^{*} \in \mathbb{R}^{p+1}$ (thus, the first column of the model matrix contains only ones-intercept)
\square For simplicity, the population model (with an implicitly included intercept) for a random sample $\mathcal{S}=\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$ will be denoted as

$$
Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}
$$

which is also commonly expressed in a matrix form $\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ for

$$
\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}, \mathbb{X}=\left(X_{i j}\right)_{i, j=1}^{n, p}, \text { and } \varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}
$$

\square Similarly, (under the assumption of $E \varepsilon=\mathbf{0} \in \mathbb{R}^{n}$) the population model

$$
E[Y \mid \boldsymbol{X}]=\boldsymbol{X}^{\top} \boldsymbol{\beta} \quad \text { or } \quad E[Y \mid \boldsymbol{X}=\boldsymbol{x}]=\boldsymbol{x}^{\top} \boldsymbol{\beta}
$$

and the corresponding (empirical) data model as $E[\boldsymbol{Y} \mid \mathbb{X}]=\mathbb{X} \boldsymbol{\beta}$ with the variance assumption $\operatorname{Var} \varepsilon_{i}=\sigma^{2}\left(\right.$ matrix notation: $\left.\operatorname{Var}[\varepsilon \mid \mathbb{X}]=\sigma^{2} \mathbb{I}\right)$

Generalization: Multiple regression model

\square Theoretical (population model) for $Y \in \mathbb{R}$ and $\boldsymbol{X} \in \mathbb{R}^{p}$ and $\beta \in \mathbb{R}^{p}$

$$
Y=a+\boldsymbol{X}^{\top} \boldsymbol{\beta}+\varepsilon
$$

which can be also expressed as $\boldsymbol{Y}=\left(1, \boldsymbol{X}^{\top}\right) \boldsymbol{\beta}^{*}+\varepsilon$, for $\boldsymbol{\beta}^{*} \in \mathbb{R}^{p+1}$ (thus, the first column of the model matrix contains only ones-intercept)
\square For simplicity, the population model (with an implicitly included intercept) for a random sample $\mathcal{S}=\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$ will be denoted as

$$
Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}
$$

which is also commonly expressed in a matrix form $\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ for

$$
\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}, \mathbb{X}=\left(X_{i j}\right)_{i, j=1}^{n, p}, \text { and } \varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}
$$

\square Similarly, (under the assumption of $E \varepsilon=\mathbf{0} \in \mathbb{R}^{n}$) the population model

$$
E[Y \mid \boldsymbol{X}]=\boldsymbol{X}^{\top} \boldsymbol{\beta} \quad \text { or } \quad E[Y \mid \boldsymbol{X}=\boldsymbol{x}]=\boldsymbol{x}^{\top} \boldsymbol{\beta}
$$

and the corresponding (empirical) data model as $E[\boldsymbol{Y} \mid \mathbb{X}]=\mathbb{X} \boldsymbol{\beta}$ with the variance assumption $\operatorname{Var} \varepsilon_{i}=\sigma^{2}\left(\right.$ matrix notation: $\left.\operatorname{Var}[\varepsilon \mid \mathbb{X}]=\sigma^{2} \mathbb{I}\right)$

Multiple regression example

Principal goals of the multiple regression

\square Remains the same... analogous to an ordinary (simple) regression

Principal goals of the multiple regression

\square Remains the same... analogous to an ordinary (simple) regression
\square Estimation and inference about the unknown parameter vector $\beta \in \mathbb{R}^{p}$
Estimation and inference about the conditional mean $E[Y \mid \boldsymbol{X}]$
\square Prediction of the future outcome Y_{0}, for an observed $\boldsymbol{X}_{0}=\boldsymbol{x}_{0}$ (known)

Principal goals of the multiple regression

\square Remains the same... analogous to an ordinary (simple) regression
\square Estimation and inference about the unknown parameter vector $\beta \in \mathbb{R}^{p}$

- Estimation and inference about the conditional mean $E[Y \mid \boldsymbol{X}]$
\square Prediction of the future outcome Y_{0}, for an observed $\boldsymbol{X}_{0}=\boldsymbol{x}_{0}$ (known)
\square In addition... for multiple parameters it makes sence to ask for more...
- Estimation and inference about some linear combination $\boldsymbol{c}^{\top} \boldsymbol{\beta}, \boldsymbol{c} \in \mathbb{R}^{p}$
- Even multiple comparisons in terms of multiple linear combinations (e.g., for some matrix $\mathbb{C} \in \mathbb{R}^{q \times p}$ we are interested in $\mathbb{C} \beta$)

Least-squares vs. maximum likelihood

\square Least-squares formulation (generally no distributional assumptions)
Assumption: $\boldsymbol{Y} \sim\left(\mathbb{X} \beta, \sigma^{2} \mathbb{I}\right)$
\square Convex minimization problem:

$$
\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{Arg} \min } \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)^{2}
$$

Estimate: $\widehat{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$
Statistical properties: $E \widehat{\beta}=\beta$ for all $\beta \in \mathbb{R}^{p}$ and $\operatorname{Var} \widehat{\boldsymbol{\beta}}=\sigma^{2}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$
\square Maximum likelihood estimation
(under normal model formulation)

- Assumption: $\boldsymbol{Y} \sim N_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right)$
\square Maximization (convex) problem:

$$
\left(\widehat{\beta}, \widehat{\sigma^{2}}\right)=\underset{\boldsymbol{\beta} \in \mathbb{R}^{\boldsymbol{P}} ; \boldsymbol{\sigma}^{2}>0}{\operatorname{Arg} \max }\left[-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2} \sum_{i=1}^{n} \frac{\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)}{\sigma^{2}}\right]
$$

\square Estimates: $\widehat{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ and $\widehat{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}\right)^{2}$
Statistical properties: $E \widehat{\beta}=\beta$ for all $\beta \in \mathbb{R}^{p}$ and $\operatorname{Var} \widehat{\beta}=\sigma^{2}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$

Statistical properties of the estimates

The estimate $\widehat{\boldsymbol{\beta}}$ is unbiased
(BLUE - Gauss-Markov Theorem)
\square The ML estimate $\widehat{\boldsymbol{\beta}}$ is normally distributed
\square The LS estimate $\widehat{\boldsymbol{\beta}}$ is (under some conditions) asymptotically normal

Statistical properties of the estimates

\square The estimate $\widehat{\boldsymbol{\beta}}$ is unbiased
\square The ML estimate $\widehat{\boldsymbol{\beta}}$ is normally distributed
The LS estimate $\widehat{\boldsymbol{\beta}}$ is (under some conditions) asymptotically normal
\square The ML estimate $\widehat{\sigma^{2}}$ is biased
\square The unbiased (REML) estimate for σ^{2} is $\frac{n}{n-p} \widehat{\sigma^{2}}$

Useful jargon (overview of multiple regression)

\square Fitted values: $\widehat{Y}_{i}=\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}} \quad\left(\right.$ matrix notation $\left.\widehat{\boldsymbol{Y}}=\left(\widehat{Y}_{1}, \ldots, \widehat{Y}_{n}\right)^{\top}=\mathbb{X} \widehat{\boldsymbol{\beta}}\right)$ (Y_{i} projections onto a p-dimensional subspace generated by columns of \mathbb{X})
\square Residuals: $\widehat{u}_{i}=Y_{i}-\widehat{Y}_{i} \quad$ (in a vector notation $\boldsymbol{U}=\boldsymbol{Y}-\mathbb{X} \widehat{\boldsymbol{\beta}}$) ("estimates" for ε_{i}, projections of Y_{i} onto an orthogonal complement)
\square Residual sum of squares (RSS): $\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}$ (the sum of squared residuals - minimization criterion)
\square Residual standard error (RSE): $\frac{1}{n-p} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}$ (residual sum of squares divided by the corresponding degrees of freedom)
\square Total sum of squares (SST): $\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}$ (the overall data variability with respect to Y when divided by $n-1$)
\square Multiple R^{2} value: $1-R S E / S S T$ (the proportion of the explained variability by considering the given model)

Gauss-Markov Theorem

Assumptions:

\square consider a multiple regression model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right)$, for $\boldsymbol{\beta} \in \mathbb{R}^{p}$
\square the model matrix $\mathbb{X} \in \mathbb{R}^{n \times p}$ is assumed to be of full rank $(p<n)$

Assertions:

\square Then the vector of fitted values $\widehat{\boldsymbol{Y}} \in \mathbb{R}^{n}$ is BLUE for the vector of the unknown mean parameters $\boldsymbol{\mu}=E[\boldsymbol{Y} \mid \mathbb{X}]$
\square Moreover, it also holds, that

$$
\operatorname{Var}[\widehat{\boldsymbol{Y}} \mid \mathbb{X}]=\sigma^{2} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}=\sigma^{2} \mathbb{H}
$$

\hookrightarrow the matrix \mathbb{H} is the projection matrix from the n-dimensional linear space \mathbb{R}^{n} into a p-dimensional linear subspace of \mathbb{R}^{n}, generated by the columns of the model matrix \mathbb{X} (it is also called the hat matrix)

Multiple regression: Orthogonal projections

- Fitted values as projections of $\boldsymbol{Y}: \widehat{\boldsymbol{Y}}=\mathbb{H} \boldsymbol{Y}$

Residuals as projections of $\boldsymbol{Y}: \boldsymbol{U}=(\mathbb{I}-\mathbb{H}) \boldsymbol{Y}=\mathbb{M} \boldsymbol{Y}$

Statistical inference

\square Confidence intervals
\square Generally, for $\alpha \in(0,1)$ and any β_{j} for $j \in\{1, \ldots, p\}$ it holds that

$$
P\left[\beta_{j} \in\left(\widehat{\beta}_{j} \pm u_{1-\alpha / 2} \sqrt{R S S\left(\mathbb{X}^{\top} \mathbb{X}\right)_{j j}^{-1}}\right] \approx 1-\alpha\right.
$$

\square Under normal model, for $\alpha \in(0,1)$ and any β_{j} for $j \in\{1, \ldots, p\}$ it holds

$$
P\left[\beta_{j} \in\left(\widehat{\beta}_{j} \pm t_{1-\alpha / 2}(n-p) \sqrt{R S S\left(\mathbb{X}^{\top} \mathbb{X}\right)_{j j}^{-1}}\right]=1-\alpha\right.
$$

\square Statistical tests
Typically, of the form

$$
H_{0}: \boldsymbol{c}^{\top} \beta=0
$$

\square against a general alternative

$$
H_{A}: c^{\top} \beta \neq 0
$$

Categorical explanatory variable X

\square the explanatory variable $X \in \mathbb{X}$ is categorical with $K \in \mathbb{N}$ categories (this means that $X \in \mathbb{R}$ takes only K different values from \mathbb{R})
\square the goal is to learn the underlying relationship between Y and X (while the discrete random variable X can be either nominal or ordinal)
\square the linear regression model for the conditional expectation $E[Y \mid X]$ (estimating means of $K \in \mathbb{N}$ sub-populations defined by the value of X)
\square let's assume, that $X \in\{1, \ldots, K\}$ and $Y=f(X)+\varepsilon$ (what should be the form of $f:\{1, \ldots, K\} \longrightarrow \mathbb{R}$ for a good model?)

Categorical explanatory variable X

\square the explanatory variable $X \in \mathbb{X}$ is categorical with $K \in \mathbb{N}$ categories (this means that $X \in \mathbb{R}$ takes only K different values from \mathbb{R})
\square the goal is to learn the underlying relationship between Y and X (while the discrete random variable X can be either nominal or ordinal)
\square the linear regression model for the conditional expectation $E[Y \mid X]$ (estimating means of $K \in \mathbb{N}$ sub-populations defined by the value of X)
\square let's assume, that $X \in\{1, \ldots, K\}$ and $Y=f(X)+\varepsilon$ (what should be the form of $f:\{1, \ldots, K\} \longrightarrow \mathbb{R}$ for a good model?)

- "Dummy variables" for each sub-group (sub-population, value of X)

$$
\tilde{X}_{i k}=\mathbb{I}_{\left\{x_{i}=k\right\}}, \quad \text { for } i=1, \ldots, n \text { and } k=1, \ldots, K
$$

Categorical explanatory variable X

\square the explanatory variable $X \in \mathbb{X}$ is categorical with $K \in \mathbb{N}$ categories (this means that $X \in \mathbb{R}$ takes only K different values from \mathbb{R})
\square the goal is to learn the underlying relationship between Y and X (while the discrete random variable X can be either nominal or ordinal)
\square the linear regression model for the conditional expectation $E[Y \mid X]$ (estimating means of $K \in \mathbb{N}$ sub-populations defined by the value of X)
\square let's assume, that $X \in\{1, \ldots, K\}$ and $Y=f(X)+\varepsilon$ (what should be the form of $f:\{1, \ldots, K\} \longrightarrow \mathbb{R}$ for a good model?)

- "Dummy variables" for each sub-group (sub-population, value of X)

$$
\tilde{X}_{i k}=\mathbb{I}_{\left\{x_{i}=k\right\}}, \quad \text { for } i=1, \ldots, n \text { and } k=1, \ldots, K
$$

\square Thus, the model (with some intercept $a \in \mathbb{R}$) can be expressed as

$$
\begin{aligned}
& \qquad Y_{i}=a+\sum_{k=1}^{K} \tilde{\beta}_{k} \mathbb{I}_{\left\{X_{i}=k\right\}}+\varepsilon_{i}=a+\left(\tilde{X}_{i 1}, \ldots, \tilde{X}_{i K}\right) \tilde{\boldsymbol{\beta}}+\varepsilon_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}, \\
& \text { for } \boldsymbol{X}_{i}=\left(1, X_{i 1}, \ldots, X_{i K}\right)^{\top} \text { and } \boldsymbol{\beta}=\left(a, \tilde{\beta}_{1}, \ldots, \tilde{\beta}_{K}\right)^{\top} \in \mathbb{R}_{\text {NMFM 334 | Lecture } 2}^{K+1}
\end{aligned}
$$

Model over-parametrization

\square thus, the model for a categorical explanatory variable $X \in \mathbb{X}$ taking $K \in \mathbb{N}$ distinct values can be formalized as a multiple regression model with $\boldsymbol{X} \in \mathbb{R} \times\{0,1\}^{K}$ (i.e., $K+1$ dimensional explanatory vector)
\square however, $K \in \mathbb{N}$ possible values for X define K different subpopulations with their specific (conditional) mean parameters $E[Y \mid X=k]$ for $k \in\{1, \ldots, K\}$
\square the total number of unknown parameters in the model is $K+1$ (parameters $\left.a, \tilde{\beta}_{1}, \ldots, \tilde{\beta}_{K}\right) \Rightarrow$ the model is over-parametrized

Model over-parametrization

\square thus, the model for a categorical explanatory variable $X \in \mathbb{X}$ taking $K \in \mathbb{N}$ distinct values can be formalized as a multiple regression model with $\boldsymbol{X} \in \mathbb{R} \times\{0,1\}^{K}$ (i.e., $K+1$ dimensional explanatory vector)
\square however, $K \in \mathbb{N}$ possible values for X define K different subpopulations with their specific (conditional) mean parameters $E[Y \mid X=k]$ for $k \in\{1, \ldots, K\}$
\square the total number of unknown parameters in the model is $K+1$ (parameters $\left.a, \tilde{\beta}_{1}, \ldots, \tilde{\beta}_{K}\right) \Rightarrow$ the model is over-parametrized
\square another equation is needed to guarantee a unique solution for β \hookrightarrow can be achieved by different approaches-different equations

- $\tilde{\beta}_{1}=0$
- $\tilde{\beta}_{K}=0$
- $\sum_{k=1}^{K} \tilde{\beta}_{k}=0$
- ...
(reference category for $k=1$)
(reference category for $k=K$)
(overall category)

Model selection approaches

The main question is the following: From the set of plausible models, which can be very rich... how should we select one model that we consider to be the final one (the most appropriate one?)
\square Naive methods
\square expert judgement
\square some previous experince/knowledge
\square Systematic modelling approaches
\square stepwise forward modelling approach
\square stepwise background modelling approach

- Various quantitative criteria
\square Akaike's information criterion (AIC)
\square Bayesian information criterion (BIC)

Transformations of the explanatory variable

\square In general, simple linear regression model can be also expressed in term

$$
Y=a+b t(X)+\varepsilon
$$

where $t: \mathbb{R} \rightarrow \mathbb{R}$ is some reasonable (measurable) transformation function
\square Usually, there are two reasons why to consider some transformation of the explanatory variable:

- improving the quality of the final model (fit) (but it usually make the interpretation worse)
\square improving the quality of the model interpretation (can help even in terms of the calculation efficiency and model accuracy)
\square Similarly, transformation can be used also for a multiple regression model

