
Lecture 4 | 19.03.2024

Multiple regression model
(multivariate predictor variable)
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Motivation

Overview: Simple (ordinary) linear regression
❏ Theoretical (population model) for Y , X ∈ R

Y = a + bX + ε

❏ Population model for a random sample S = {(Yi , Xi ); i = 1, . . . , n}

Yi = a + bXi + εi

❏ Alternatively (under the assumption of Eε = 0) we can write

E [Y |X ] = a + bX or E [Y |X = x ] = a + bx

Principal goals:
❏ Estimation and inference about the unknown parameters α, β ∈ R
❏ Estimation and inference about population characteristics, E [Y |X = x ]
❏ Prediction of the future outcome Y0, for an observed X0 = x0 (known)
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Motivation

Generalization: Multiple regression model
❏ Theoretical (population model) for Y ∈ R and X ∈ Rp and β ∈ Rp

Y = a + X⊤β + ε

which can be also expressed as Y = (1, X⊤)β∗ + ε, for β∗ ∈ Rp+1

(thus, the first column of the model matrix contains only ones—intercept)

❏ For simplicity, the population model (with an implicitly included intercept)
for a random sample S = {(Yi , Xi ); i = 1, . . . , n} will be denoted as

Yi = X⊤
i β + εi

which is also commonly expressed in a matrix form Y = Xβ + ε for
Y = (Y1, . . . , Yn)⊤, X = (Xij)n,p

i,j=1, and ε = (ε1, . . . , εn)⊤

❏ Similarly, (under the assumption of Eε = 0 ∈ Rn) the population model

E [Y |X] = X⊤β or E [Y |X = x] = x⊤β

and the corresponding (empirical) data model as E [Y |X] = Xβ with the
variance assumption Varεi = σ2 (matrix notation: Var [ε|X] = σ2I)
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Motivation

Multiple regression example

X1

X2

Y
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Motivation

Principal goals of the multiple regression

❏ Remains the same... analogous to an ordinary (simple) regression

❏ Estimation and inference about the unknown parameter vector β ∈ Rp

❏ Estimation and inference about the conditional mean E [Y |X]
❏ Prediction of the future outcome Y0, for an observed X0 = x0 (known)

❏ In addition... for multiple parameters it makes sence to ask for more...
❏ Estimation and inference about some linear combination c⊤β, c ∈ Rp

❏ Even multiple comparisons in terms of multiple linear combinations
(e.g., for some matrix C ∈ Rq×p we are interested in Cβ)
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Motivation

Least-squares vs. maximum likelihood
❏ Least-squares formulation (generally no distributional assumptions)

❏ Assumption: Y ∼ (Xβ, σ2I)
❏ Convex minimization problem:

β̂ = Arg min
β∈Rp

n∑
i=1

(Yi − X⊤
i β)2

❏ Estimate: β̂ = (X⊤X)−1X⊤Y
❏ Statistical properties: E β̂ = β for all β ∈ Rp and Var β̂ = σ2(X⊤X)−1

❏ Maximum likelihood estimation (under normal model formulation)
❏ Assumption: Y ∼ Nn(Xβ, σ2I)
❏ Maximization (convex) problem:

(β̂, σ̂2) = Arg max
β∈Rp ;σ2>0

[
−

n
2

log (2πσ2) −
1
2

n∑
i=1

(Yi − X⊤
i β)

σ2

]
❏ Estimates: β̂ = (X⊤X)−1X⊤Y and σ̂2 = 1

n
∑n

i=1(Yi − X⊤
i β̂)2

❏ Statistical properties: E β̂ = β for all β ∈ Rp and Var β̂ = σ2(X⊤X)−1
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Motivation

Statistical properties of the estimates

❏ The estimate β̂ is unbiased (BLUE – Gauss-Markov Theorem)

❏ The ML estimate β̂ is normally distributed
❏ The LS estimate β̂ is (under some conditions) asymptotically normal

❏ The ML estimate σ̂2 is biased
❏ The unbiased (REML) estimate for σ2 is n

n−p σ̂2
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Motivation

Useful jargon (overview of multiple regression)

❏ Fitted values: Ŷi = X⊤
i β̂ (matrix notation Ŷ = (Ŷ1, . . . , Ŷn)⊤ = Xβ̂)

(Yi projections onto a p-dimensional subspace generated by columns of X)

❏ Residuals: ûi = Yi − Ŷi (in a vector notation U = Y − Xβ̂)
(“estimates” for εi , projections of Yi onto an orthogonal complement)

❏ Residual sum of squares (RSS):
∑n

i=1(Yi − Ŷi )2

(the sum of squared residuals – minimization criterion)

❏ Residual standard error (RSE): 1
n−p

∑n
i=1(Yi − Ŷi )2

(residual sum of squares divided by the corresponding degrees of freedom)
❏ Total sum of squares (SST):

∑n
i=1(Yi − Y n)2

(the overall data variability with respect to Y when divided by n − 1)
❏ Multiple R2 value: 1 − RSE/SST

(the proportion of the explained variability by considering the given model)
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Motivation

Gauss-Markov Theorem
Assumptions:

❏ consider a multiple regression model Y |X ∼ (Xβ, σ2I), for β ∈ Rp

❏ the model matrix X ∈ Rn×p is assumed to be of full rank (p < n)

Assertions:
❏ Then the vector of fitted values Ŷ ∈ Rn is BLUE for the vector of the

unknown mean parameters µ = E [Y |X]
❏ Moreover, it also holds, that

Var [Ŷ |X] = σ2X
(
X⊤X

)−1
X⊤ = σ2H

↪→ the matrix H is the projection matrix from the n-dimensional linear space Rn into a
p-dimensional linear subspace of Rn, generated by the columns of the model matrix X
(it is also called the hat matrix)
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Motivation

Multiple regression: Orthogonal projections

❏ Fitted values as projections of Y : Ŷ = HY
❏ Residuals as projections of Y : U = (I − H)Y = MY
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Motivation

Statistical inference
❏ Confidence intervals

❏ Generally, for α ∈ (0, 1) and any βj for j ∈ {1, . . . , p} it holds that

P
[

βj ∈ (β̂j ± u1−α/2

√
RSS(X⊤X)−1

jj

]
≈ 1 − α

❏ Under normal model, for α ∈ (0, 1) and any βj for j ∈ {1, . . . , p} it holds

P
[

βj ∈ (β̂j ± t1−α/2(n − p)
√

RSS(X⊤X)−1
jj

]
= 1 − α

❏ Statistical tests
❏ Typically, of the form

H0 : c⊤β = 0

❏ against a general alternative

HA : c⊤β ̸= 0
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Motivation

Categorical explanatory variable X
❏ the explanatory variable X ∈ X is categorical with K ∈ N categories

(this means that X ∈ R takes only K different values from R)
❏ the goal is to learn the underlying relationship between Y and X

(while the discrete random variable X can be either nominal or ordinal)
❏ the linear regression model for the conditional expectation E [Y |X ]

(estimating means of K ∈ N sub-populations defined by the value of X)
❏ let’s assume, that X ∈ {1, . . . , K} and Y = f (X) + ε

(what should be the form of f : {1, . . . , K} −→ R for a good model?)

❏ “Dummy variables” for each sub-group (sub-population, value of X)
X̃ik = I{Xi =k}, for i = 1, . . . , n and k = 1, . . . , K

❏ Thus, the model (with some intercept a ∈ R) can be expressed as

Yi = a +
K∑

k=1

β̃kI{Xi =k} + εi = a + (X̃i1, . . . , X̃iK )β̃ + εi = X⊤
i β + εi ,

for Xi = (1, Xi1, . . . , XiK )⊤ and β = (a, β̃1, . . . , β̃K )⊤ ∈ RK+1
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Motivation

Model over-parametrization

❏ thus, the model for a categorical explanatory variable X ∈ X taking
K ∈ N distinct values can be formalized as a multiple regression model
with X ∈ R × {0, 1}K (i.e., K + 1 dimensional explanatory vector)

❏ however, K ∈ N possible values for X define K different subpopulations
with their specific (conditional) mean parameters E [Y |X = k] for
k ∈ {1, . . . , K}

❏ the total number of unknown parameters in the model is K + 1
(parameters a, β̃1, . . . , β̃K ) ⇒ the model is over-parametrized

❏ another equation is needed to guarantee a unique solution for β
↪→ can be achieved by different approaches—different equations

❏ β̃1 = 0 (reference category for k = 1)
❏ β̃K = 0 (reference category for k = K)
❏

∑K
k=1 β̃k = 0 (overall category)

❏ ...
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Motivation

Model selection approaches

The main question is the following: From the set of plausible models,
which can be very rich... how should we select one model that we
consider to be the final one (the most appropriate one?)

❏ Naive methods
❏ expert judgement
❏ some previous experince/knowledge

❏ Systematic modelling approaches
❏ stepwise forward modelling approach
❏ stepwise background modelling approach

❏ Various quantitative criteria
❏ Akaike’s information criterion (AIC)
❏ Bayesian information criterion (BIC)
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Motivation

Transformations of the explanatory variable

❏ In general, simple linear regression model can be also expressed in term

Y = a + bt(X) + ε

where t : R → R is some reasonable (measurable) transformation function
❏ Usually, there are two reasons why to consider some transformation of the

explanatory variable:
❏ improving the quality of the final model (fit)

(but it usually make the interpretation worse)

❏ improving the quality of the model interpretation
(can help even in terms of the calculation efficiency and model accuracy)

❏ Similarly, transformation can be used also for a multiple regression model
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