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Linear regression model
with one predictor variable
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Simple supervised learning

[ Linear regression is a simple model of supervised learning...
[ The simplest regression model fits a straight line through the data

[d However, the true underlying model is hardly a linear line...
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Simple supervised learning

(]

Linear regression is a simple model of supervised learning...
[ The simplest regression model fits a straight line through the data

[d However, the true underlying model is hardly a linear line...

[d The dependent variable Y is assumed to be continuous (Y € R)

[ The explanatory variable can be either continuous or binary

(1 The main goal is to learn what is the underlying relationship Y = f(X)
[ where, in addition, we assume that f € C = {f(x) = a+ bx; a,b € R}
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Simple (ordinary) linear regression model

[ Theoretical (population model)
Y=a+bX+e¢

[d Random sample from the population (i.e., a joint distribution Fy x):

S={(Y;,X); i=1,...,n}

[ Empirical (data) model counterpart

Y:=a+ bX;i +¢; i:].,...,HEN

Principal goals:
[ Estimation of the unknown parameters «, 8 € R
[ Estimation of distributional characteristics of Y|X —e.g., E[Y|X = x]
[ Prediction of the future outcome Yy, for an observed Xy = xo (known)
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! O!IVa!lOn

Simple (ordinary) linear regression model

[ Theoretical (population model)
Y=a+bX+e¢

[d Random sample from the population (i.e., a joint distribution Fy x):

S={(Y;,X); i=1,...,n}

[ Empirical (data) model counterpart

Y:=a+ bX;i +¢; i:].,...,HEN

Principal goals:
[ Estimation of the unknown parameters «, 8 € R
[ Estimation of distributional characteristics of Y|X —e.g., E[Y|X = x]
[ Prediction of the future outcome Yy, for an observed Xy = xo (known)

< both, the estimation and the prediction can be given in terms of some specific point (point estimate, point prediction)
or in terms of some region (interval estimate, interval prediction respectively)
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! 0!IVa!lOn

Linear regressing line | Examples

[ Quality of the fit — the “goodness-of-fit" criterion:
3 Mean Squared Error: f= AI'g mingec E[Y — g(X)]2 (theoretical functional)

0 Least Squares: fy = Arg mingcc % 27:1[\/,- — g(X)]? (empirical functional)

[ Specific class of functions C = {f(x); f(x) =a+ bx;a, b € R}

[ linear line with the intercept parameter a and the slope parameter b
[ for b = 0 everything reduces to a simple mean (sample average)

O How to find fy € C if we only know the data {(Y;, X;); i=1,...,n}?

[ restricting on C we are looking for 3,3 € R, such that fy(x) =23+ bx
[d solving a convex minimization problem

n

1

in = Y — bX)]?> = min L(a,b,S

jmin 2 D Y= (a4 X)F = min £(a,5,5)
i=1
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Least squares solution

1 Convex minimization problem

[ minimization of a convex function
[ minimization with respect to a convex set

[d Normal equations (score equations)

[ partial derivative of L(a, b, S) with respect to the argument a € R
[ partial derivative of L(a, b, S) with respect to the argument b € R

[ Solutions of the normal equations

[ Intercept parameter estimate:

3=V, - bX,

1 Slope parameter estimate:

S0 (Y = Vi) (X — Xa)

5= 2im (Y~ Vo)X
Ei:l(xi = Xn)?
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! otivation

Some useful jargon

O Fitted values: Y, =3+ bX;
(“estimates” for Y values, projected Y; values onto a line a + bx)
O Residuals: ;= Y, — Y,
(“estimates” for £;, projections of Y; onto an orthogonal complement)

1 Residual sum of squares (RSS): Y7 (Yi — ?,)2
(the sum of squared residuals — minimization criterion)

O Residual standard error (RSE): -15 57 (Vi — ¥))?

(residual sum of squares divided by the corresponding degrees of freedom)
0 Total sum of squares (SST): Y7 (Vi — Y,)?

(the overall data variability with respect to Y when divided by n — 1)

O Multiple R? value: 1 — RSE/SST
(the proportion of the explained variability by considering the given model)
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Regression example
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Statistical properties of a and b

O Assumptions: Ee =0 and Vare = 02 < 0

Considering the model Y; = a + bX; + ¢; with at least two unique values
of X; for i =1,...,n and the assumptions above, we have the following:
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Statistical properties of a and b

O Assumptions: Ee =0 and Vare = 02 < 0

Considering the model Y; = a + bX; + ¢; with at least two unique values
of X; for i =1,...,n and the assumptions above, we have the following:

@ Unbiased estimates: Ea=aand Eb= b forall a,b € R

@ Linear estimates: 2 and b can be expressed as linear functions of Y;

© Best estimates: 2 and b are the best linear estimates in terms of the
mean squared error criterion

4 The result is also known as Gauss—Markov theorem — the estimates are so called
BLUE — Best Linear Unbiased Estimates (a formal proof will be given for a
multiple linear regression model with multiple predictor variables)

(BLUE — nejlepsi nestranny linearny odhad)
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Maximum likelihood estimation

O Assumption: € ~ N(0, 0?)

Considering the model Y; = a + bX; +¢; for &; ~ N(0,0?), the maximum
likelihood estimates of a, b € R are given as

[ Intercept and slope parameter estimates:

3:7,,—2)7,7 and E: Zf:l( .

[d Variance parameter estimate:

3 1 . ~ i 2
2= = i — (34 bX;
7= L =G bR

and, moreover, it holds that
O3~ N(ao?|t 4 KXo and b~ N(b, 2
nY X=X D (Xi=Xn)?
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Likelihood and log-likelihood

O density of a normal N(u,c?) distribution

1 (x — p)?
212 P { 202

O likelihood L(p, 02, S) for the data S = {(Y;, X;); i =1,...,n}

i=1

f(x, 1, 0%) =

[ the corresponding log-likelihood function £(u, 0%, S)

Up,0°,S) = (—n/2)log(2m0”) — Z (i = (a4 bX)) (;U—Z bX:))
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! 0!IVa!lOn

Statistical inference in a simple model

1 Confidence intervals
(random interval which covers unknown but non-random quantity with a pre-defined probability)

[ typically for the unknown parameters a, b € R
1 also for the conditional mean parameter px = E[Y|X = x]
[ or some reasonable linear combination, e.g. c1a+ &b, for ¢, ¢ € R

4 Hypothesis tests
(null vs. alternative hypothesis about the unknown but non-random parameters)
1 typically in the form Hp : cia+ b = d against a general (both-sided)
alternative Hy : cia+ cpb # d
(1 performed in terms of a test statistic which is sensitive (large) under the
violation of the null hypothesis Hp
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Model utilization for prediction

1 Point prediction
(one realization of the random variable to somehow characterize another random quantity)
[d what can be the expected outcome/realization of Y if we restrict to
a sub-population given by X = xp
[ typically, Yp (an outcome of Y when X = xg) is predicted as the estimated
conditional mean of Y given X = xq (i.e., Yo =3+ bxo)
[d other characteristics can be used of course

1 Interval prediction
(random interval which covers unknown but random quantity with a pre-defined probability)
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Motivation

Binary explanatory variable

4 Until now, the explanatory variable X € R was assumed to be a
continuous one (taking infinitely/uncountable many values). The
regression model f(x) = a+ bx can be, however, also considered for a
binary variable X (taking only two different values)

1 Let X takes value one (e.g., TRUE) and zero otherwise (e.g., FALSE)
1 For X = 0, the model reduces to E[Y|X = 0] = f(0) = a
(i.e., a € R stands for the mean of the sub-population for which we have FALSE)

d For X =1, the model reduces to E[Y|X =1]=f(1)=a+ b
(i.e., a+ b € R stands for the the mean of the sub-population for which we have TRUE)

[ Infinitely many different parametrizations can be used to encode the
binary variable X — for instance, it can take two values +1
(thus, a — b stands for the mean of the first and a + b for the second sub-population)
[ In other words, the binary explanatory variable X reduces the ordinary
linear regression model into a standard two sample problem

YZa—f—bH{TRUE}+E=3+bﬂ{xi:1}+82...
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! OIIVa!IOH

Summary

[ simple linear regression model Y = a + bX + ¢ (population version)
(for a continuous response Y € R and continuous or binary X € R)

1 random sample (Y, X;), i=1,...,n = Y; = a+ bX; + &; (data model)
(realizations Y; € R and X; € R drawn from a joint distribution of (Y, X))

[ estimates for the unknown parameters a, b € R via convex minimization
(minimization based on the mean squared error/least squares respectively)

[ under the normal model the estimation based on the maximum likelihood
(distribution properties of the estimates 3 and b given straightforwardly)

[ typical inference regarding the parameters a, b € R or E[Y|X = x]
(performed in terms of confidence intervals or statistical tests respectively)
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