
Lecture 3 | 12.03.2024

Linear regression model
with one predictor variable
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Motivation

Simple supervised learning

❏ Linear regression is a simple model of supervised learning...
❏ The simplest regression model fits a straight line through the data
❏ However, the true underlying model is hardly a linear line...

❏ The dependent variable Y is assumed to be continuous (Y ∈ R)
❏ The explanatory variable can be either continuous or binary

❏ The main goal is to learn what is the underlying relationship Y ≈ f (X)
❏ where, in addition, we assume that f ∈ C = {f (x) = a + bx ; a, b ∈ R}
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Motivation

Simple (ordinary) linear regression model
❏ Theoretical (population model)

Y = a + bX + ε

❏ Random sample from the population (i.e., a joint distribution FY ,X ):

S = {(Yi , Xi ); i = 1, . . . , n}

❏ Empirical (data) model counterpart

Yi = a + bXi + εi i = 1, . . . , n ∈ N

Principal goals:
❏ Estimation of the unknown parameters α, β ∈ R
❏ Estimation of distributional characteristics of Y |X – e.g., E [Y |X = x ]
❏ Prediction of the future outcome Y0, for an observed X0 = x0 (known)

↪→ both, the estimation and the prediction can be given in terms of some specific point (point estimate, point prediction)
or in terms of some region (interval estimate, interval prediction respectively)
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Motivation

Linear regressing line | Examples

❏ Quality of the fit – the “goodness-of-fit” criterion:
❏ Mean Squared Error: f = Arg ming∈C E [Y − g(X)]2 (theoretical functional)

❏ Least Squares: f̂N = Arg ming∈C
1
n

∑n
i=1[Yi − g(Xi )]2 (empirical functional)

❏ Specific class of functions C = {f (x); f (x) = a + bx ; a, b ∈ R}
❏ linear line with the intercept parameter a and the slope parameter b
❏ for b = 0 everything reduces to a simple mean (sample average)

❏ How to find f̂N ∈ C if we only know the data {(Yi , Xi ); i = 1, . . . , n}?

❏ restricting on C we are looking for â, b̂ ∈ R, such that f̂N(x) = â + b̂x
❏ solving a convex minimization problem

min
a,b∈R

1
n

n∑
i=1

[Yi − (a + bXi )]2 ≡ min
a,b∈R

L(a, b, S)
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Motivation

Least squares solution
❏ Convex minimization problem

❏ minimization of a convex function
❏ minimization with respect to a convex set

❏ Normal equations (score equations)
❏ partial derivative of L(a, b, S) with respect to the argument a ∈ R
❏ partial derivative of L(a, b, S) with respect to the argument b ∈ R

❏ Solutions of the normal equations
❏ Intercept parameter estimate:

â = Y n − b̂Xn

❏ Slope parameter estimate:

b̂ =

∑n
i=1(Yi − Y n)(Xi − Xn)∑n

i=1(Xi − Xn)2
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Motivation

Some useful jargon

❏ Fitted values: Ŷi = â + b̂Xi
(“estimates” for Y values, projected Yi values onto a line a + bx)

❏ Residuals: ûi = Yi − Ŷi
(“estimates” for εi , projections of Yi onto an orthogonal complement)

❏ Residual sum of squares (RSS):
∑n

i=1(Yi − Ŷi )2

(the sum of squared residuals – minimization criterion)

❏ Residual standard error (RSE): 1
n−2

∑n
i=1(Yi − Ŷi )2

(residual sum of squares divided by the corresponding degrees of freedom)
❏ Total sum of squares (SST):

∑n
i=1(Yi − Y n)2

(the overall data variability with respect to Y when divided by n − 1)
❏ Multiple R2 value: 1 − RSE/SST

(the proportion of the explained variability by considering the given model)
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Motivation

Regression example
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Motivation

Statistical properties of â and b̂

❏ Assumptions: Eε = 0 and Varε = σ2 < ∞

Considering the model Yi = a + bXi + εi with at least two unique values
of Xi for i = 1, . . . , n and the assumptions above, we have the following:

1 Unbiased estimates: Eâ = a and Eb̂ = b for all a, b ∈ R
2 Linear estimates: â and b̂ can be expressed as linear functions of Yi

3 Best estimates: â and b̂ are the best linear estimates in terms of the
mean squared error criterion

❏ The result is also known as Gauss–Markov theorem – the estimates are so called
BLUE – Best Linear Unbiased Estimates (a formal proof will be given for a
multiple linear regression model with multiple predictor variables)
(BLUE – nejlepší nestranný lineárný odhad)
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❏ Assumptions: Eε = 0 and Varε = σ2 < ∞

Considering the model Yi = a + bXi + εi with at least two unique values
of Xi for i = 1, . . . , n and the assumptions above, we have the following:
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Motivation

Maximum likelihood estimation
❏ Assumption: ε ∼ N(0, σ2)

Considering the model Yi = a + bXi + εi for εi ∼ N(0, σ2), the maximum
likelihood estimates of a, b ∈ R are given as

❏ Intercept and slope parameter estimates:

â = Y n − b̂X n and b̂ =
∑n

i=1(Yi − Y n)(Xi − X n)∑n
i=1(Xi − X n)2

❏ Variance parameter estimate:

σ̂2 = 1
n

n∑
i=1

(Yi − (â + b̂Xi )2)

and, moreover, it holds that

❏ â ∼ N
(

a, σ2
[

1
n + Xn∑

i
(Xi −Xn)2

])
and b̂ ∼ N

(
b, σ2∑

i
(Xi −Xn)2

)
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Motivation

Likelihood and log-likelihood

❏ density of a normal N(µ, σ2) distribution

f (x , µ, σ2) = 1√
2πσ2

· exp
{

− (x − µ)2

2σ2

}

❏ likelihood L(µ, σ2, S) for the data S = {(Yi , Xi ); i = 1, . . . , n}

L(µ, σ2, S) =
n∏

i=1

[
1√

2πσ2
· exp

{
− (Yi − (a + bXi ))2

2σ2

}]

❏ the corresponding log-likelihood function ℓ(µ, σ2, S)

ℓ(µ, σ2, S) = (−n/2) log(2πσ2) −
n∑

i=1

(Yi − (a + bXi ))2

2σ2
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Motivation

Statistical inference in a simple model

❏ Confidence intervals
(random interval which covers unknown but non-random quantity with a pre-defined probability)

❏ typically for the unknown parameters a, b ∈ R
❏ also for the conditional mean parameter µx = E [Y |X = x ]
❏ or some reasonable linear combination, e.g. c1a + c2b, for c1, c2 ∈ R

❏ Hypothesis tests
(null vs. alternative hypothesis about the unknown but non-random parameters)

❏ typically in the form H0 : c1a + c2b = d against a general (both-sided)
alternative HA : c1a + c2b ̸= d

❏ performed in terms of a test statistic which is sensitive (large) under the
violation of the null hypothesis H0
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Motivation

Model utilization for prediction

❏ Point prediction
(one realization of the random variable to somehow characterize another random quantity)

❏ what can be the expected outcome/realization of Y if we restrict to
a sub-population given by X = x0

❏ typically, Y0 (an outcome of Y when X = x0) is predicted as the estimated
conditional mean of Y given X = x0 (i.e., Ŷ0 = â + b̂x0)

❏ other characteristics can be used of course

❏ Interval prediction
(random interval which covers unknown but random quantity with a pre-defined probability)
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Motivation

Binary explanatory variable
❏ Until now, the explanatory variable X ∈ R was assumed to be a

continuous one (taking infinitely/uncountable many values). The
regression model f (x) = a + bx can be, however, also considered for a
binary variable X (taking only two different values)

❏ Let X takes value one (e.g., TRUE) and zero otherwise (e.g., FALSE)
❏ For X = 0, the model reduces to E [Y |X = 0] = f (0) = a

(i.e., a ∈ R stands for the mean of the sub-population for which we have FALSE)

❏ For X = 1, the model reduces to E [Y |X = 1] = f (1) = a + b
(i.e., a + b ∈ R stands for the the mean of the sub-population for which we have TRUE)

❏ Infinitely many different parametrizations can be used to encode the
binary variable X – for instance, it can take two values ±1
(thus, a − b stands for the mean of the first and a + b for the second sub-population)

❏ In other words, the binary explanatory variable X reduces the ordinary
linear regression model into a standard two sample problem

Y = a + bI{TRUE} + ε = a + bI{Xi =1} + ε = . . .
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Motivation

Summary

❏ simple linear regression model Y = a + bX + ε (population version)
(for a continuous response Y ∈ R and continuous or binary X ∈ R)

❏ random sample (Yi , Xi ), i = 1, . . . , n =⇒ Yi = a + bXi + εi (data model)
(realizations Yi ∈ R and Xi ∈ R drawn from a joint distribution of (Y , X))

❏ estimates for the unknown parameters a, b ∈ R via convex minimization
(minimization based on the mean squared error/least squares respectively)

❏ under the normal model the estimation based on the maximum likelihood
(distribution properties of the estimates â and b̂ given straightforwardly)

❏ typical inference regarding the parameters a, b ∈ R or E [Y |X = x ]
(performed in terms of confidence intervals or statistical tests respectively)
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