Lecture 3 | 12.03.2024

Linear regression model with one predictor variable

Simple supervised learning

\square Linear regression is a simple model of supervised learning...
\square The simplest regression model fits a straight line through the data
\square However, the true underlying model is hardly a linear line...

Simple supervised learning

\square Linear regression is a simple model of supervised learning...
\square The simplest regression model fits a straight line through the data
\square However, the true underlying model is hardly a linear line...

The dependent variable Y is assumed to be continuous $(Y \in \mathbb{R})$
\square The explanatory variable can be either continuous or binary

Simple supervised learning

\square Linear regression is a simple model of supervised learning...
\square The simplest regression model fits a straight line through the data
\square However, the true underlying model is hardly a linear line...

The dependent variable Y is assumed to be continuous $(Y \in \mathbb{R})$
\square The explanatory variable can be either continuous or binary
\square The main goal is to learn what is the underlying relationship $Y \approx f(X)$
\square where, in addition, we assume that $f \in \mathcal{C}=\{f(x)=a+b x ; a, b \in \mathbb{R}\}$

Simple (ordinary) linear regression model

\square Theoretical (population model)

$$
Y=a+b X+\varepsilon
$$

\square Random sample from the population (i.e., a joint distribution $F_{Y, X}$):

$$
\mathcal{S}=\left\{\left(Y_{i}, X_{i}\right) ; \quad i=1, \ldots, n\right\}
$$

\square Empirical (data) model counterpart

$$
Y_{i}=a+b X_{i}+\varepsilon_{i} \quad i=1, \ldots, n \in \mathbb{N}
$$

Principal goals:

\square Estimation of the unknown parameters $\alpha, \beta \in \mathbb{R}$
\square Estimation of distributional characteristics of $Y \mid X-$ e.g., $E[Y \mid X=x]$
\square Prediction of the future outcome Y_{0}, for an observed $X_{0}=x_{0}$ (known)

Simple (ordinary) linear regression model

\square Theoretical (population model)

$$
Y=a+b X+\varepsilon
$$

\square Random sample from the population (i.e., a joint distribution $F_{Y, X}$):

$$
\mathcal{S}=\left\{\left(Y_{i}, X_{i}\right) ; \quad i=1, \ldots, n\right\}
$$

\square Empirical (data) model counterpart

$$
Y_{i}=a+b X_{i}+\varepsilon_{i} \quad i=1, \ldots, n \in \mathbb{N}
$$

Principal goals:

\square Estimation of the unknown parameters $\alpha, \beta \in \mathbb{R}$
\square Estimation of distributional characteristics of $Y \mid X-$ e.g., $E[Y \mid X=x]$
\square Prediction of the future outcome Y_{0}, for an observed $X_{0}=x_{0}$ (known)
\hookrightarrow both, the estimation and the prediction can be given in terms of some specific point (point estimate, point prediction) or in terms of some region (interval estimate, interval prediction respectively)

Linear regressing line | Examples

\square Quality of the fit - the "goodness-of-fit" criterion:
\square Mean Squared Error: $\quad f=\operatorname{Arg} \min _{g \in \mathcal{C}} E[Y-g(X)]^{2}$
\square Least Squares: $\quad \hat{f}_{N}=\operatorname{Arg} \min _{g \in \mathcal{C}} \frac{1}{n} \sum_{i=1}^{n}\left[Y_{i}-g\left(X_{i}\right)\right]^{2}$
(empirical functional)
\square Specific class of functions $\mathcal{C}=\{f(x) ; f(x)=a+b x ; a, b \in \mathbb{R}\}$

- linear line with the intercept parameter a and the slope parameter b
\square for $b=0$ everything reduces to a simple mean (sample average)
\square How to find $\hat{f}_{N} \in \mathcal{C}$ if we only know the data $\left\{\left(Y_{i}, X_{i}\right) ; i=1, \ldots, n\right\}$?
restricting on \mathcal{C} we are looking for $\widehat{a}, \widehat{b} \in \mathbb{R}$, such that $\hat{f}_{N}(x)=\widehat{a}+\widehat{b} x$
\square solving a convex minimization problem

$$
\min _{a, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n}\left[Y_{i}-\left(a+b X_{i}\right)\right]^{2} \equiv \min _{a, b \in \mathbb{R}} \mathcal{L}(a, b, \mathcal{S})
$$

Least squares solution

- Convex minimization problem
\square minimization of a convex function
\square minimization with respect to a convex set
\square Normal equations (score equations)
\square partial derivative of $\mathcal{L}(a, b, \mathcal{S})$ with respect to the argument $a \in \mathbb{R}$
\square partial derivative of $\mathcal{L}(a, b, \mathcal{S})$ with respect to the argument $b \in \mathbb{R}$
\square Solutions of the normal equations
\square Intercept parameter estimate:

$$
\widehat{a}=\bar{Y}_{n}-\widehat{b} \bar{X}_{n}
$$

- Slope parameter estimate:

$$
\widehat{b}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)\left(X_{i}-\bar{X}_{n}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}
$$

Some useful jargon

- Fitted values: $\widehat{Y}_{i}=\widehat{a}+\widehat{b} X_{i}$
("estimates" for Y values, projected Y_{i} values onto a line $a+b x$)
- Residuals: $\widehat{u}_{i}=Y_{i}-\widehat{Y}_{i}$
("estimates" for ε_{i}, projections of Y_{i} onto an orthogonal complement)
- Residual sum of squares (RSS): $\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}$ (the sum of squared residuals - minimization criterion)
- Residual standard error (RSE): $\frac{1}{n-2} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}$ (residual sum of squares divided by the corresponding degrees of freedom)
\square Total sum of squares (SST): $\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}$ (the overall data variability with respect to Y when divided by $n-1$)
- Multiple R^{2} value: $1-R S E / S S T$ (the proportion of the explained variability by considering the given model)

Regression example

Statistical properties of \hat{a} and \widehat{b}

\square Assumptions: $E \varepsilon=0$ and $\operatorname{Var} \varepsilon=\sigma^{2}<\infty$
Considering the model $Y_{i}=a+b X_{i}+\varepsilon_{i}$ with at least two unique values of X_{i} for $i=1, \ldots, n$ and the assumptions above, we have the following:

Statistical properties of \hat{a} and \hat{b}

\square Assumptions: $E \varepsilon=0$ and $\operatorname{Var} \varepsilon=\sigma^{2}<\infty$
Considering the model $Y_{i}=a+b X_{i}+\varepsilon_{i}$ with at least two unique values of X_{i} for $i=1, \ldots, n$ and the assumptions above, we have the following:
(1) Unbiased estimates: $E \widehat{a}=a$ and $E \widehat{b}=b$ for all $a, b \in \mathbb{R}$
(2) Linear estimates: \hat{a} and \hat{b} can be expressed as linear functions of Y_{i}
(3) Best estimates: \hat{a} and \hat{b} are the best linear estimates in terms of the mean squared error criterion

- The result is also known as Gauss-Markov theorem - the estimates are so called BLUE - Best Linear Unbiased Estimates (a formal proof will be given for a multiple linear regression model with multiple predictor variables) (BLUE - nejlepší nestranný lineárný odhad)

Maximum likelihood estimation

\square Assumption: $\varepsilon \sim N\left(0, \sigma^{2}\right)$
Considering the model $Y_{i}=a+b X_{i}+\varepsilon_{i}$ for $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$, the maximum likelihood estimates of $a, b \in \mathbb{R}$ are given as
\square Intercept and slope parameter estimates:

$$
\widehat{a}=\bar{Y}_{n}-\widehat{b} \bar{X}_{n} \quad \text { and } \quad \widehat{b}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)\left(X_{i}-\bar{X}_{n}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}
$$

V Variance parameter estimate:

$$
\widehat{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\left(\widehat{a}+\widehat{b} X_{i}\right)^{2}\right)
$$

and, moreover, it holds that

$$
\square \hat{a} \sim N\left(a, \sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}_{n}}{\sum_{i}\left(x_{i}-\bar{x}_{n}\right)^{2}}\right]\right) \quad \text { and } \quad \widehat{b} \sim N\left(b, \frac{\sigma^{2}}{\sum_{i}\left(x_{i}-\bar{x}_{n}\right)^{2}}\right)
$$

Likelihood and log-likelihood

\square density of a normal $N\left(\mu, \sigma^{2}\right)$ distribution

$$
f\left(x, \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

likelihood $L\left(\mu, \sigma^{2}, \mathcal{S}\right)$ for the data $\mathcal{S}=\left\{\left(Y_{i}, X_{i}\right) ; i=1, \ldots, n\right\}$

$$
L\left(\mu, \sigma^{2}, \mathcal{S}\right)=\prod_{i=1}^{n}\left[\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot \exp \left\{-\frac{\left(Y_{i}-\left(a+b X_{i}\right)\right)^{2}}{2 \sigma^{2}}\right\}\right]
$$

\square the corresponding log-likelihood function $\ell\left(\mu, \sigma^{2}, \mathcal{S}\right)$

$$
\ell\left(\mu, \sigma^{2}, \mathcal{S}\right)=(-n / 2) \log \left(2 \pi \sigma^{2}\right)-\sum_{i=1}^{n} \frac{\left(Y_{i}-\left(a+b X_{i}\right)\right)^{2}}{2 \sigma^{2}}
$$

Statistical inference in a simple model

\square Confidence intervals
(random interval which covers unknown but non-random quantity with a pre-defined probability)
typically for the unknown parameters $a, b \in \mathbb{R}$
\square also for the conditional mean parameter $\mu_{x}=E[Y \mid X=x]$
\square or some reasonable linear combination, e.g. $c_{1} a+c_{2} b$, for $c_{1}, c_{2} \in \mathbb{R}$
\square Hypothesis tests
(null vs. alternative hypothesis about the unknown but non-random parameters)
\square typically in the form $H_{0}: c_{1} a+c_{2} b=d$ against a general (both-sided) alternative $H_{A}: c_{1} a+c_{2} b \neq d$
\square performed in terms of a test statistic which is sensitive (large) under the violation of the null hypothesis H_{0}

Model utilization for prediction

\square Point prediction
(one realization of the random variable to somehow characterize another random quantity)
\square what can be the expected outcome/realization of Y if we restrict to a sub-population given by $X=x_{0}$
\square typically, Y_{0} (an outcome of Y when $X=x_{0}$) is predicted as the estimated conditional mean of Y given $X=x_{0}$ (i.e., $\widehat{Y}_{0}=\widehat{a}+\widehat{b} x_{0}$)
\square other characteristics can be used of course
\square Interval prediction
(random interval which covers unknown but random quantity with a pre-defined probability)

Binary explanatory variable

\square Until now, the explanatory variable $X \in \mathbb{R}$ was assumed to be a continuous one (taking infinitely/uncountable many values). The regression model $f(x)=a+b x$ can be, however, also considered for a binary variable X (taking only two different values)
\square Let X takes value one (e.g., TRUE) and zero otherwise (e.g., FALSE)
\square For $X=0$, the model reduces to $E[Y \mid X=0]=f(0)=a$ (i.e., $a \in \mathbb{R}$ stands for the mean of the sub-population for which we have FALSE)
\square For $X=1$, the model reduces to $E[Y \mid X=1]=f(1)=a+b$ (i.e., $a+b \in \mathbb{R}$ stands for the the mean of the sub-population for which we have TRUE)
\square Infinitely many different parametrizations can be used to encode the binary variable X - for instance, it can take two values ± 1 (thus, $a-b$ stands for the mean of the first and $a+b$ for the second sub-population)
\square In other words, the binary explanatory variable X reduces the ordinary linear regression model into a standard two sample problem

$$
Y=a+b \mathbb{I}_{\{T R U E\}}+\varepsilon=a+b \mathbb{I}_{\left\{X_{i}=1\right\}}+\varepsilon=\ldots
$$

Summary

\square simple linear regression model $Y=a+b X+\varepsilon$ (population version) (for a continuous response $Y \in \mathbb{R}$ and continuous or binary $X \in \mathbb{R}$)
\square random sample $\left(Y_{i}, X_{i}\right), i=1, \ldots, n \Longrightarrow Y_{i}=a+b X_{i}+\varepsilon_{i}$ (data model) (realizations $Y_{i} \in \mathbb{R}$ and $X_{i} \in \mathbb{R}$ drawn from a joint distribution of (Y, X))
\square estimates for the unknown parameters $a, b \in \mathbb{R}$ via convex minimization (minimization based on the mean squared error/least squares respectively)
\square under the normal model the estimation based on the maximum likelihood (distribution properties of the estimates \widehat{a} and \widehat{b} given straightforwardly)
\square typical inference regarding the parameters $a, b \in \mathbb{R}$ or $E[Y \mid X=x]$ (performed in terms of confidence intervals or statistical tests respectively)

