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Regression and classification
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Regression ...
❏ Historically, an accidental word invented by Francis Galton (1822 – 1911)

because the heights of sons, while following the tendency of their parents
(tall parents have tall sons, small parents small sons), tend to return –
“regress” – towards the mediocrity/median/average (population stability).

❏ Nowadays, ”regression” is understood as a technique for fitting functional
relationships (not necessarily linear, nor parametric) to data (regardless of
whether the “slope” is less or greater than 1).

❏ Mathematically, it describes the relationship between one or more ’input’
variable(s) X ∈ Rp and an ’output’ variable Y ∈ R. It gives us an equation
to predict values (resp. specific characteristics) for the unknown ’output’
variable, by plugging in the observed values of the ’input’ variables.

❏ Generally, it is functional relation ship of the form

Y = f (X) + error

for some well-specified (but somehow still unknown) function f (model)
and some unobserved random noise (error, fluctuation respectively).
↪→ systematic vs. non-systematic part of Y ...
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Regression model
General/generic model formulation

Y = f (X) + ε

❏ Y ∈ R is a random variable, the covariate of interest (dependent variable)
❏ X ∈ R (or X = (X1, . . . , Xp)⊤ ∈ Rp) is a random variable (or a random

vector respectively) which represents the explanatory information
❏ f (·) is a measurable regression function from the domain of X (or X

respectively) to the domain of Y – the systematic part
❏ ε represents the irreducible error – even if we observe a given realization

of X and we know f (·) apriori, there will be some uncertainty left,
because Y is a random variable – the non-systematic part

❏ instead of “predicting” one specific value of Y with the regression
function f (·) and the observed realization “X = x” we would like to rather
estimate some (useful) characteristic of the whole distribution of possible
values for Y when (conditionally on) “X = x”
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Principal roles of the regression
Regression models and data smoothing techniques (e.g., moving averages, weighted
averages, splines, parametric smoothing, Whittaker-Henderson) are essentially very
similar but there is at least one principal and crucial difference – while the data
smoothing techniques just smooth the empirical data the regression methods goes
beyond as they try to learn important facts about the unknown population – the
theoretical model behind the data.

❏ Goal #1
with a good choice of the model (i.e., the regression function f (·)) we can use
the information contained in X (the explanatory variable) to say something
relevant about Y (the dependent variable) But why do we want to do so?

❏ Goal #2
if the set of the explanatory variables is relatively very rich, it can be useful to
say which components of X = (X1, . . . , Xp)⊤ ∈ Rp are relevant (play a role) in
the relationship between Y and X Why to select if we can use all?

❏ Goal #3
once we know which information in X = (X1, . . . , Xp)⊤ has an impact on the
values of Y it is often of interest to quantify this effect – to evaluate how a
specific component of X affects the value of Y Why is this useful in practice?
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General regression setup

❏ Generic random vector (Y , X⊤)⊤ with some joint distribution FY ,X(y , x)
❏ Generic (population) model: Y = f (X) + ε

❏ Random sample from the population: {(Yi , Xi ); i = 1, . . . , n} for n ∈ N
❏ Empirical/data model: Yi = f (Xi ) + εi for i = 1, . . . , n

❏ What is known: dependent observations Yi and explanatory variable(s) Xi

❏ What is unknown: random errors εi and the regression function f (·)

❏ Typical assumptions:
❏ the error terms (unobserved fluctuations or disturbances respectively) have

a zero mean and some finite (typically unknown) variance σ2 > 0
❏ the unknown regression function f (·) is expected to belong to some well

specified class of functions
❏ and possibly others... (depending on the specific model formulations)
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Conditional distribution of Y
❏ for different values of the independent variable X the possible values of

the dependent variable Y may have different distribution
=⇒ conditional distribution of Y given “X = x”
(an analogy to a K ∈ N sample problem, for K −→ ∞)

❏ infinitely many characteristics can be used to characterize the
(conditional) distribution of Y (given X)... Which are good/ideal ones?

❏ the answer usually depends on the criterion we choose to measure the
quality of the model/fit – the so-called “goodness-of-fit” criterion

❏ Mean squared error (as a theoretical functional)
minf E [Y − f (X)]2

❏ Least squares (as an empirical counterpart)

minf
1
n

n∑
i=1

[Yi − f (Xi )]2

↪→ where both minimization problems are taken with respect to some
well-defined class of regression functions f (note the analogy between the
theoretical mean and its empirical estimate – the average)
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Estimation of the regression function

❏ Two sample problem
if X only takes two values (e.g., X = ±1), the observations (random
sample) (Yi , Xi ) for i = 1, . . . , n can be split into two parts – values of Y
for which Xi = −1 and the values of Y for which X = 1 – and a simple
average is calculated in both groups

❏ Multiple samples
if X takes finitely many different values (e.g., X is a categorical variable
with K ∈ N levels), the random sample (Yi , Xi ) for i = 1, . . . , n can be
split into K disjoint groups and, again, simple averages can be calculated
for each of K groups

❏ Continuous explanatory variable
if X is a continuous variable (taking infinitely/uncountable many values),
the sample can not be split into all possible groups – for very many
“X = x” there will be simply no observations of Y available
=⇒ borrowing power from the neighbors
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From local techniques to parametric ones (or vice versa?)

❏ Nonparametric regression techniques
❏ the conditional distribution of Y given X = x estimated locally for x ∈ R
❏ very flexible technique, adapts to any functional form of f (·)
❏ the number of unknown parameters to be estimated is large (→ ∞)
❏ the amount of flexibility is an important aspect to control for

❏ Parametric regression techniques
❏ a limited class of functions is used, the class depends on some parameters
❏ the number of unknown parameter is relatively small (and fixed)
❏ the flexibility of the model is determined by the analytical form of f (·)
❏ in many cases straightforward and relatively simple interpretation

❏ Semi-parametric regression techniques
❏ a bridge between parametric and non-parametric methods
❏ the idea is to select positive properties from both
❏ negative properties are, however, inherited accordingly
❏ still very popular in practical applications and theoretical developments
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Some trade-offs to keep in mind
❏ Mathematics: parsimonious models vs. “black-box” algorithms

(transparent models are tractable by mathematical theory)

❏ Probability: bias vs. variability of the estimate
(small bias means better accuracy, large variance means high uncertainty)

❏ Utilization: prediction purposes vs. explanation of the relationship
(different models are build depending on the primary purpose)

❏ Computation: computational tractability and time efficiency
(machine limitations in algorithmic computations does not allow for an
arbitrary model)

❏ Interpretation: simple models are easy to interpret but less accurate
complex models are very difficult (impossible) to reasonable explain

“All models are wrong, but some are useful!”
George E. P. Box (1919 – 2013)
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Model accuracy

Let’s assume that for the (generic) model Y = f (X ) + ε we obtained the
estimated f̂ (·) based on the random sample {(Yi , Xi); i = 1, . . . , n}

How to access the model quality (its accuracy) quantitatively?

❏ Using the “training data” {(Yi , Xi ); i = 1, . . . , n}
❏ Using a fresh “testing data” {(Yi , Xi ); i = n + 1, . . . , N}

How to access the model quality (its accuracy) qualitatively?

❏ Using mathematical/stochastic theory and various statistical tools
❏ Using expert knowledge, previous experience, common sense, etc.
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Model prediction error – Example I
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Model prediction error – Example II
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Model prediction error – Example III
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Bias-variance Trade-Off
Mean Squared Error (MSE):

E [Y − f̂ (X )]2 = E [(f (X ) + ε − E f̂ (X )) − (f̂ (X ) − f (X ))]2

= E [f̂ (X ) − E f̂ (X )]2 +
(

E f̂ (X ) − f (X )
)2

+ Eε2

= Var f̂ (X ) +
(

Bias f̂ (X )
)2

+ Var ε
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Optimal model

❏ again, there are many different approaches to say which model is a good
one (optimal one, useful or practical one, ...)

❏ in terms of the bias-variance trade-off the optimal model is the one that
minimizes the mean squared error criterion

❏ the minimization of the mean squared criterion results in the minimization
of the expected square of the error term

❏ in applications, instead of the theoretical (generic) error term ε we work
with the empirical residual terms (residuals respectively)

❏ instead of minimizing the MSE criterion, we minimize the sum of the
squared residuals (i.e., empirical estimate for MSE)
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More general: Regression vs. Classification

❏ what is the nature of the input variable(s) X ∈ Rp?
❏ what is the nature of the output variable Y ∈ R?

❏ ordinary linear regression model
❏ analysis of variance
❏ classification
❏ contingency table
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Vague motivation of the classification problem

❏ if the response variable Y is qualitative and the explanatory variables
X = (X1, . . . , Xp)⊤ are continuous/discrete/mixed we are (typically)
dealing with a classification problem

❏ the goal is to use the information in X to assign a classification label for
Y (to decide into which category it belongs)

❏ the “goodness-of-fit” in classification problems is (commonly) measured
by a missclassification error rate

∑n
i=1 I{Yi /∈Ĉ(Xi )}

❏ the value Ĉ(Xi ) ∈ {1, . . . K} is the assigned classification label which
typically maximize the corresponding posterior probability
↪→ so called the Bayes classification rule
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Classification vs. regression problem

❏ Mowers data: {(Yi , Xi1, Xi2)⊤; i = 1, . . . , 24} Model: Yi ∼ Xi1 + Xi2
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Model 1

E [Y |X1, X2] = α + β1X1 + β2X2

Model 2

C(X1, X2) =
{

+1 if β1X1 + β2X2 > µ1+µ2
2

−1 if β1X1 + β2X2 < µ1+µ2
2

Model 3

log P[Y =1|X1,X2]
1−P[Y =1|X1,X2] = α + β1X1 + β2X2
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Generalized regression models

❏ considering the model Y = f (X) + ε and the support of the dependent
variable Y which is limited/bounded/finite, it is not reasonable to assume,
for instance, linear/unbounded/continuous function f (·) in the model...

❏ on the other hand, recall that model expressed as Y = f (X) + ε and
E [Y |X = x ] = f (x) are, actually (under some mild assumptions), two
equivalent (linear regression) model formulations

❏ even discrete distribution of Y can be well-specified by some continuous
characteristic – e.g., some probability parameter p ∈ (0, 1)

❏ how to mathematically formalize a regression model in such situations?
↪→ generalized (linear) regression models g(E [Y = 1|X = x ]) = f (x)

❏ what are the analogies with the regression model Y = f (X) + ε?
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