Lecture 2 | 05.03.2024

Regression and classification

Regression

\square Historically, an accidental word invented by Francis Galton (1822 - 1911) because the heights of sons, while following the tendency of their parents (tall parents have tall sons, small parents small sons), tend to return "regress" - towards the mediocrity/median/average (population stability).
\square Nowadays, "regression" is understood as a technique for fitting functional relationships (not necessarily linear, nor parametric) to data (regardless of whether the "slope" is less or greater than 1).

- Mathematically, it describes the relationship between one or more 'input' variable(s) $\boldsymbol{X} \in \mathbb{R}^{p}$ and an 'output' variable $Y \in \mathbb{R}$. It gives us an equation to predict values (resp. specific characteristics) for the unknown 'output' variable, by plugging in the observed values of the 'input' variables.
\square Generally, it is functional relation ship of the form

$$
Y=f(\boldsymbol{X})+\text { error }
$$

for some well-specified (but somehow still unknown) function f (model) and some unobserved random noise (error, fluctuation respectively).
\hookrightarrow systematic vs. non-systematic part of $Y \ldots$

Regression model

General/generic model formulation

$$
Y=f(\boldsymbol{X})+\varepsilon
$$

- $Y \in \mathbb{R}$ is a random variable, the covariate of interest (dependent variable)
$\square X \in \mathbb{R}\left(\right.$ or $\left.\boldsymbol{X}=\left(X_{1}, \ldots, X_{p}\right)^{\top} \in \mathbb{R}^{p}\right)$ is a random variable (or a random vector respectively) which represents the explanatory information
$\square f(\cdot)$ is a measurable regression function from the domain of X (or \mathbb{X} respectively) to the domain of Y - the systematic part
$\square \varepsilon$ represents the irreducible error - even if we observe a given realization of X and we know $f(\cdot)$ apriori, there will be some uncertainty left, because Y is a random variable - the non-systematic part
\square instead of "predicting" one specific value of Y with the regression function $f(\cdot)$ and the observed realization " $X=x$ " we would like to rather estimate some (useful) characteristic of the whole distribution of possible values for Y when (conditionally on) " $X=x$ "

Principal roles of the regression

Regression models and data smoothing techniques (e.g., moving averages, weighted averages, splines, parametric smoothing, Whittaker-Henderson) are essentially very similar but there is at least one principal and crucial difference - while the data smoothing techniques just smooth the empirical data the regression methods goes beyond as they try to learn important facts about the unknown population - the theoretical model behind the data.

Principal roles of the regression

Regression models and data smoothing techniques (e.g., moving averages, weighted averages, splines, parametric smoothing, Whittaker-Henderson) are essentially very similar but there is at least one principal and crucial difference - while the data smoothing techniques just smooth the empirical data the regression methods goes beyond as they try to learn important facts about the unknown population - the theoretical model behind the data.
\square Goal \#1
with a good choice of the model (i.e., the regression function $f(\cdot)$) we can use the information contained in \boldsymbol{X} (the explanatory variable) to say something relevant about Y (the dependent variable) But why do we want to do so?

- Goal \#2
if the set of the explanatory variables is relatively very rich, it can be useful to say which components of $\boldsymbol{X}=\left(X_{1}, \ldots, X_{p}\right)^{\top} \in \mathbb{R}^{p}$ are relevant (play a role) in the relationship between Y and $\boldsymbol{X} \quad$ Why to select if we can use all?
- Goal \#3
once we know which information in $\boldsymbol{X}=\left(X_{1}, \ldots, X_{p}\right)^{\top}$ has an impact on the values of Y it is often of interest to quantify this effect - to evaluate how a specific component of \boldsymbol{X} affects the value of Y Why is this useful in practice?

General regression setup

Generic random vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$ with some joint distribution $F_{Y, \boldsymbol{x}}(\boldsymbol{y}, \boldsymbol{x})$

- Generic (population) model: $\boldsymbol{Y}=f(\boldsymbol{X})+\varepsilon$

General regression setup

Generic random vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$ with some joint distribution $F_{Y, \boldsymbol{x}}(\boldsymbol{y}, \boldsymbol{x})$

- Generic (population) model: $\boldsymbol{Y}=f(\boldsymbol{X})+\varepsilon$

Random sample from the population: $\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$ for $n \in \mathbb{N}$

- Empirical/data model: $Y_{i}=f\left(\boldsymbol{X}_{i}\right)+\varepsilon_{i}$ for $i=1, \ldots, n$

General regression setup

Generic random vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$ with some joint distribution $F_{Y, \boldsymbol{x}}(\boldsymbol{y}, \boldsymbol{x})$

- Generic (population) model: $\boldsymbol{Y}=f(\boldsymbol{X})+\varepsilon$

Random sample from the population: $\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$ for $n \in \mathbb{N}$

- Empirical/data model: $Y_{i}=f\left(\boldsymbol{X}_{i}\right)+\varepsilon_{i}$ for $i=1, \ldots, n$

What is known: dependent observations Y_{i} and explanatory variable(s) $\boldsymbol{X}_{\boldsymbol{i}}$
What is unknown: random errors ε_{i} and the regression function $f(\cdot)$

General regression setup

\square Generic random vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$ with some joint distribution $F_{Y, \boldsymbol{x}}(y, \boldsymbol{x})$
\square Generic (population) model: $Y=f(\boldsymbol{X})+\varepsilon$
\square Random sample from the population: $\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$ for $n \in \mathbb{N}$
\square Empirical/data model: $Y_{i}=f\left(\boldsymbol{X}_{i}\right)+\varepsilon_{i}$ for $i=1, \ldots, n$
What is known: dependent observations Y_{i} and explanatory variable(s) \boldsymbol{X}_{i}
What is unknown: random errors ε_{i} and the regression function $f(\cdot)$
\square Typical assumptions:

- the error terms (unobserved fluctuations or disturbances respectively) have a zero mean and some finite (typically unknown) variance $\sigma^{2}>0$
\square the unknown regression function $f(\cdot)$ is expected to belong to some well specified class of functions

General regression setup

\square Generic random vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$ with some joint distribution $F_{Y, \boldsymbol{x}}(y, \boldsymbol{x})$
\square Generic (population) model: $Y=f(\boldsymbol{X})+\varepsilon$
\square Random sample from the population: $\left\{\left(Y_{i}, \boldsymbol{X}_{i}\right) ; i=1, \ldots, n\right\}$ for $n \in \mathbb{N}$
\square Empirical/data model: $Y_{i}=f\left(\boldsymbol{X}_{i}\right)+\varepsilon_{i}$ for $i=1, \ldots, n$
What is known: dependent observations Y_{i} and explanatory variable(s) \boldsymbol{X}_{i}
What is unknown: random errors ε_{i} and the regression function $f(\cdot)$
\square Typical assumptions:

- the error terms (unobserved fluctuations or disturbances respectively) have a zero mean and some finite (typically unknown) variance $\sigma^{2}>0$
\square the unknown regression function $f(\cdot)$ is expected to belong to some well specified class of functions
and possibly others... (depending on the specific model formulations)

Conditional distribution of Y

\square for different values of the independent variable X the possible values of the dependent variable Y may have different distribution \Longrightarrow conditional distribution of Y given " $X=x$ " (an analogy to a $K \in \mathbb{N}$ sample problem, for $K \longrightarrow \infty$)
\square infinitely many characteristics can be used to characterize the (conditional) distribution of Y (given X)... Which are good/ideal ones?
\square the answer usually depends on the criterion we choose to measure the quality of the model/fit - the so-called "goodness-of-fit" criterion

Conditional distribution of Y

\square for different values of the independent variable X the possible values of the dependent variable Y may have different distribution \Longrightarrow conditional distribution of Y given " $X=x$ "
(an analogy to a $K \in \mathbb{N}$ sample problem, for $K \longrightarrow \infty$)
\square infinitely many characteristics can be used to characterize the (conditional) distribution of Y (given X)... Which are good/ideal ones?
\square the answer usually depends on the criterion we choose to measure the quality of the model/fit - the so-called "goodness-of-fit" criterion

- Mean squared error (as a theoretical functional)

$$
\min _{f} E[Y-f(X)]^{2}
$$

\square Least squares (as an empirical counterpart)

$$
\min _{f} \frac{1}{n} \sum_{i=1}^{n}\left[Y_{i}-f\left(X_{i}\right)\right]^{2}
$$

\hookrightarrow where both minimization problems are taken with respect to some well-defined class of regression functions f (note the analogy between the theoretical mean and its empirical estimate - the average)

Estimation of the regression function

- Two sample problem
if X only takes two values (e.g., $X= \pm 1$), the observations (random sample) $\left(Y_{i}, X_{i}\right)$ for $i=1, \ldots, n$ can be split into two parts - values of Y for which $X_{i}=-1$ and the values of Y for which $X=1$ - and a simple average is calculated in both groups
\square Multiple samples
if X takes finitely many different values (e.g., X is a categorical variable with $K \in \mathbb{N}$ levels), the random sample (Y_{i}, X_{i}) for $i=1, \ldots, n$ can be split into K disjoint groups and, again, simple averages can be calculated for each of K groups
\square Continuous explanatory variable
if X is a continuous variable (taking infinitely/uncountable many values), the sample can not be split into all possible groups - for very many " $X=x$ " there will be simply no observations of Y available \Longrightarrow borrowing power from the neighbors

From local techniques to parametric ones (or vice versa?)

\square Nonparametric regression techniques
\square the conditional distribution of Y given $X=x$ estimated locally for $x \in \mathbb{R}$
very flexible technique, adapts to any functional form of $f(\cdot)$
\square the number of unknown parameters to be estimated is large $(\rightarrow \infty)$
\square the amount of flexibility is an important aspect to control for
\square Parametric regression techniques
\square a limited class of functions is used, the class depends on some parameters
\square the number of unknown parameter is relatively small (and fixed)
\square the flexibility of the model is determined by the analytical form of $f(\cdot)$
\square in many cases straightforward and relatively simple interpretation

From local techniques to parametric ones (or vice versa?)

\square Nonparametric regression techniques
\square the conditional distribution of Y given $X=x$ estimated locally for $x \in \mathbb{R}$
\square very flexible technique, adapts to any functional form of $f(\cdot)$
\square the number of unknown parameters to be estimated is large $(\rightarrow \infty)$
\square the amount of flexibility is an important aspect to control for
\square Parametric regression techniques
\square a limited class of functions is used, the class depends on some parameters
\square the number of unknown parameter is relatively small (and fixed)
\square the flexibility of the model is determined by the analytical form of $f(\cdot)$
\square in many cases straightforward and relatively simple interpretation
\square Semi-parametric regression techniques
\square a bridge between parametric and non-parametric methods
\square the idea is to select positive properties from both
\square negative properties are, however, inherited accordingly
\square still very popular in practical applications and theoretical developments

Some trade-offs to keep in mind

\square Mathematics: parsimonious models vs. "black-box" algorithms (transparent models are tractable by mathematical theory)
\square Probability: bias vs. variability of the estimate (small bias means better accuracy, large variance means high uncertainty)
\square Utilization: prediction purposes vs. explanation of the relationship (different models are build depending on the primary purpose)
\square Computation: computational tractability and time efficiency (machine limitations in algorithmic computations does not allow for an arbitrary model)
\square Interpretation: simple models are easy to interpret but less accurate complex models are very difficult (impossible) to reasonable explain

Some trade-offs to keep in mind

\square Mathematics: parsimonious models vs. "black-box" algorithms (transparent models are tractable by mathematical theory)
\square Probability: bias vs. variability of the estimate (small bias means better accuracy, large variance means high uncertainty)
\square Utilization: prediction purposes vs. explanation of the relationship (different models are build depending on the primary purpose)
\square Computation: computational tractability and time efficiency (machine limitations in algorithmic computations does not allow for an arbitrary model)
\square Interpretation: simple models are easy to interpret but less accurate complex models are very difficult (impossible) to reasonable explain
"All models are wrong, but some are usefu!!"

Model accuracy

Let's assume that for the (generic) model $Y=f(X)+\varepsilon$ we obtained the estimated $\hat{f}(\cdot)$ based on the random sample $\left\{\left(Y_{i}, X_{i}\right) ; i=1, \ldots, n\right\}$

How to access the model quality (its accuracy) quantitatively?
U Using the "training data" $\left\{\left(Y_{i}, X_{i}\right) ; i=1, \ldots, n\right\}$
Using a fresh "testing data" $\left\{\left(Y_{i}, X_{i}\right) ; i=n+1, \ldots, N\right\}$

Model accuracy

Let's assume that for the (generic) model $Y=f(X)+\varepsilon$ we obtained the estimated $\hat{f}(\cdot)$ based on the random sample $\left\{\left(Y_{i}, X_{i}\right) ; i=1, \ldots, n\right\}$

How to access the model quality (its accuracy) quantitatively?
\square Using the "training data" $\left\{\left(Y_{i}, X_{i}\right) ; i=1, \ldots, n\right\}$
\square Using a fresh "testing data" $\left\{\left(Y_{i}, X_{i}\right) ; i=n+1, \ldots, N\right\}$

How to access the model quality (its accuracy) qualitatively?
\square Using mathematical/stochastic theory and various statistical tools
Using expert knowledge, previous experience, common sense, etc.

Model prediction error - Example I

Model prediction error - Example II

Model prediction error - Example III

Bias-variance Trade-Off
 Mean Squared Error (MSE):

$$
\begin{aligned}
E[Y-\hat{f}(X)]^{2} & =E[(f(X)+\varepsilon-E \hat{f}(X))-(\hat{f}(X)-f(X))]^{2} \\
& =E[\hat{f}(X)-E \hat{f}(X)]^{2}+(E \hat{f}(X)-f(X))^{2}+E \varepsilon^{2} \\
& =\operatorname{Var} \hat{f}(X)+(\operatorname{Bias} \hat{f}(X))^{2}+\operatorname{Var} \varepsilon
\end{aligned}
$$

Optimal model

\square again, there are many different approaches to say which model is a good one (optimal one, useful or practical one, ...)
\square in terms of the bias-variance trade-off the optimal model is the one that minimizes the mean squared error criterion
\square the minimization of the mean squared criterion results in the minimization of the expected square of the error term
\square in applications, instead of the theoretical (generic) error term ε we work with the empirical residual terms (residuals respectively)
\square instead of minimizing the MSE criterion, we minimize the sum of the squared residuals (i.e., empirical estimate for MSE)

More general: Regression vs. Classification

\square what is the nature of the input variable(s) $\boldsymbol{X} \in \mathbb{R}^{p}$?
\square what is the nature of the output variable $Y \in \mathbb{R}$?

More general: Regression vs. Classification

\square what is the nature of the input variable(s) $\boldsymbol{X} \in \mathbb{R}^{p}$?
\square what is the nature of the output variable $Y \in \mathbb{R}$?
\square ordinary linear regression model
\square analysis of variance
\square classification
\square contingency table

Vague motivation of the classification problem

\square if the response variable Y is qualitative and the explanatory variables $\boldsymbol{X}=\left(X_{1}, \ldots, X_{p}\right)^{\top}$ are continuous/discrete/mixed we are (typically) dealing with a classification problem
\square the goal is to use the information in \boldsymbol{X} to assign a classification label for Y (to decide into which category it belongs)
\square the "goodness-of-fit" in classification problems is (commonly) measured by a missclassification error rate $\sum_{i=1}^{n} \mathbb{I}_{\left\{Y_{i} \notin \widehat{C}\left(\boldsymbol{X}_{i}\right)\right\}}$
the value $\widehat{C}\left(\boldsymbol{X}_{i}\right) \in\{1, \ldots K\}$ is the assigned classification label which typically maximize the corresponding posterior probability
\hookrightarrow so called the Bayes classification rule

Classification vs. regression problem

\square Mowers data: $\left\{\left(Y_{i}, X_{i 1}, X_{i 2}\right)^{\top} ; i=1, \ldots, 24\right\}$
Model: $Y_{i} \sim X_{i 1}+X_{i 2}$

Linear Regression Model

Model 1

Linear Discriminansyion/Classification

Model 2

Generalized Linear Model

Model 3

$$
C\left(X_{1}, X_{2}\right)= \begin{cases}+1 & \text { if } \beta_{1} X_{1}+\beta_{2} X_{2}>\frac{\mu_{1}+\mu_{2}}{\alpha_{1}} \\ -1 & \text { if } \beta_{1} X_{1}+\beta_{2} X_{2}<\frac{\mu_{1} \mu_{2}}{2}\end{cases}
$$

$$
\log \frac{P\left[Y=1 \mid X_{1}, x_{1}\right]}{\left.1-P|Y=1| X_{1}, X_{2}\right]}=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2}
$$

Generalized regression models

\square considering the model $Y=f(X)+\varepsilon$ and the support of the dependent variable Y which is limited/bounded/finite, it is not reasonable to assume, for instance, linear/unbounded/continuous function $f(\cdot)$ in the model...
\square on the other hand, recall that model expressed as $Y=f(X)+\varepsilon$ and $E[Y \mid X=x]=f(x)$ are, actually (under some mild assumptions), two equivalent (linear regression) model formulations
\square even discrete distribution of Y can be well-specified by some continuous characteristic - e.g., some probability parameter $p \in(0,1)$
\square how to mathematically formalize a regression model in such situations? \hookrightarrow generalized (linear) regression models $g(E[Y=1 \mid X=x])=f(x)$
\square what are the analogies with the regression model $Y=f(X)+\varepsilon$?

