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Why? What is (linear) regression?

“When a numerical criterion variable is to be predicted from other
numerical predictor variables, proper (linear/regression) models
outperform (human) intuition.”

Paul Meehl (1954)

Clinical versus statistical prediction: A theoretical analysis and a Review of the Evidence
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numerical predictor variables, proper (linear/regression) models
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Paul Meehl (1954)

Clinical versus statistical prediction: A theoretical analysis and a Review of the Evidence

dynamic, global, sensible, advanced, delicate, holistic, nice, mechanical, local, dashed, too simple, unreal, artificial, ran-
rich, pure, configural, organized, sophiticated, natural, realis- dom, incomplete, trivial, pedant, trivial, static, forced, shal-
tic, understandable, exemplary, vital; low, academic, scientific, blind;
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Motivation

Regression (models) applied all around us ...
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Regression models applied in practice

[ Black boxes: 1m(), PROC REG, XLSTAT, LinearModel.fit();
https://en.wikipedia.org/wiki/List_of_statistical_packages
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[ Inside of the black box there is a complex and quite sophisticated
mathematical and statistical theory which makes the output reliable and
useful if and only if the input data suits the theory in the box.
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Regression models applied in practice

[ Black boxes: 1m(), PROC REG, XLSTAT, LinearModel.fit();
https://en.wikipedia.org/wiki/List_of_statistical_packages

A& YoU CAN SEE, BY LATE
NEXT MONTH YOU'LL HAVE
OVER FOUR DOZEN HUSBANDS,
) BEMERGETA
BULK RATE ON
WEDDING CAXE.

[ Inside of the black box there is a complex and quite sophisticated
mathematical and statistical theory which makes the output reliable and
useful if and only if the input data suits the theory in the box.
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Outline

@ Motivation & some historical background
Somehow, it was all a little bit different at the beginning...
A brief look into the historical backgrounds of the regression.

@ Basic principles of the theoretical background
All we need in regression is conveniently concentrated in three main
pivots: cognition, calibration, and prediction.

© Common problems when fitting a regression model

What can actually go wrong at the end? A few examples of incorrect
applications of the linear regression framework.
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Motivatiol

Regression: At the very beginning ...
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Regression: Pioneer Francis Galton

[ The British Association for the Advancement of Science
Presidential address (1885): "Regression toward mediocrity in hereditary stature”

TABLE I.
Numper oF ApuLt CHILDREN OF VARIOUS STATURES BORN OF 205 MID-PARENTS OF VARIOUS STATURES.
(All Female heights have been multiplied by 1:08).

Heights of Heights of the Adult Children. Total Number of
the Mid- .
par sl;:e in Medians.
inches. -2 632 642 652 [66°2 [67-2 682 69-2 I70-2 I71-2 799 |73 Adult Mid-
Below (622|632 64'2 (65°2 |66'2 672|682 692 702|712 |72:2 (732 Above Children. | parents.

Above B T T T f 1] 8 . 4 5 .
725 PO [P . 1| 2| 1] 27| 2 4 19 6 72:2
ns T En 1 3| 4| 3 5|10 4| 9| 2 2 43 11 699
705 1 1., 1 1| 3(12|18(14 | 7| 4| 38 3 68 22 695
695 . . 1|16 4172720 33|25 /20|11| 4 5 183 41 €89
685 1 . 711116 |25 (31 |34 (48|21 |18 4| 8 219 49 682
675 . 3| 5|14 |1536|38 |28 38|19 11| 4 .. . 211 33 676
665 . 3| 3| 5| 2|17 (171413 . . 78 20 672
655 1 9| 5| 7Tl 7| 7 211 66 12 667
645 1 1| 4| 4| 1| 5| 5. 2 - . . 23 5 658

Below 1 2| 4| 1| 2| 2| 1|1 . 14 1 .

Totals . 5 7|32 |59 |48 (117 (138 [120 (167 | 99 | 64 | 41 | 17 14 928 205 .

Medians .. . .. |66367'8|67'9 (677|679 68'3 68'5 690 |69'0 7001 .. . . . .

Norz.—In calculating the Medians, the entries have been taken as referring to the middle of the squares in which they
stand. The reason why the headings run 622, 632, &c., instead of 625, 63'5, &c., is that the observations are unequally
distributed between 62 and 63, 63 and 64, &., there being a strong Lias in favour of integral inches. ~After careful consideration,
I concluded that the headings, as adopted, best satisfied the conditions. This inequality was not apparent in the case of the
Mid-parents.
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Regression: Regressing towards mediocrity

RATE OF REGRESSION IN HEREDITARY STATURE.
Fig. ()
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Regression: Dependent vs. independent

DIAGRAM BASED ON TABLE 1.
(all female heights are multiplied by 1'08)
MID-PARENTS ADULT CHILDREN
I — their Heights , and Deviations from 68%inches.
Hegslpwisies @3 @0 e @ e @ 2w n n m
inches | inches -4 -3 -2 -1 o «1 sz +3  +a
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Motivation

Regression: General concept

[d An accidental word invented by Francis Galton (1822 — 1911) because the
heights of sons, while following the tendency of their parents (tall parents
have tall sons, small parents small sons), tend to return — “regress” —
towards the mediocrity/median/average (population stability).

1 Nowadays, "regression” is understood as a technique for fitting functional
relationships (not necessarily linear) to data (regardless of whether the
slope is less or greater than 1).

[d Some sources understand regression as a study of the mean (expectation)
conditionally on predictors. Our understanding is broader — beyond
conditional expectations, and beyond least squares.

1 The primary goal of regression is to understand, as far as possible
with the available data, how the conditional distribution of the
response varies across subpopulations determined by possible values
of the predictor(s) (repeating observations under different conditions).

(R. D. Cook and S. Weisberg, Applied Regression Including Computing and Graphics, p. 27)
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!lnear regression mo!e S In rea !ata applications

Regression: Three main tasks of regression

 Cognition — understanding the given data

[ What data actually is? What is the nature of data?
1 How data is collected and represented?
[d How data is connected/shared/stored/integrated?

 Calibration — quantification of the relationship

[d What is our believe about the underlying data structure?
[ What methodology should be applied to access the information in data?
[ Which (regression) model is suitable for the data generation?

0 Prediction/forecasting future observations

[d Can the model be utilized for prediction/forecast?
1 What is the model potential in prediction/forecast?
[ What is the reliability of the prediction/forecast?
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1. Cognition: Understanding the data

EPCSR  water Consumption in Edmonton
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1. Cognition: Understanding the data

EPCSR  water Consumption in Edmonton During Olympic Gold Medal Hockey Game
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1. Cognition: Understanding the data

EPCSR water Consumption in Edmonton During Olympic Gold Medal Hockey Game
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1. Cognition: Understanding the data

EPCSR water Consumption in Edmonton During Olympic Gold Medal Hockey Game
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!lnear regression mo!e S In rea !a!a appllcallons

2. Calibration: Model specification (linearity)

1 Linear regression model: Where the linearity comes from?

R%0.06 REXTHOR, THE DOG-BEARER
T DONT TRUST LINEAR REGRESSIONS WHEN ITS HARDER

10 GUESS THE DIRECTION OF THE CORRELATION FROM THE
SCATTER PLOT THAN TO FIND NELJ) CONSTELLATIONS ON IT:
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!lnear regression mo!e S In rea !ata applications

2. Calibration: Model specification (linearity)

1 Linear regression model: Where the linearity comes from?

______.___,___:————r-'
R%0.06 REXTHOR, THE DOG-BEARER

T DONT TRUST LINEAR REGRESSIONS WHEN ITS HARDER
TO GUESS THE DIRECTION OF THE CORRELATION FROM THE
SCATTER PLOT THAN TO FIND NELJ) CONSTELLATIONS ON IT.

[d Regression is about fitting functional relationships within the data, not
geometric objects (not "fitting a line” through data).

[ There is a lot of geometry in regression, but of a high-dimensional nature.
(projections within R” dimensional linear space into a finite dimensional subspace)
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2. Calibration: Model specification (parametric structure)
Y=0+pX+e
ETYIx) = fo + fux

Deperder
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2. Calibration: Model specification (parametric structure)
Y=p+hX+e Y =B+ AX+ X+
E[Y|x] = Bo + f1x E[Y[x] = Bo + Bix + Bax?

Do
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2. Calibration: Model specification (parametric structure)
Y=p+hX+e Y = fot+ BiX+ FaX? + e Y = fot+ BLX + BoX? + B3X3 + ¢
E[Y|x] = Bo + f1x E[Y[x] = Bo + Bix + Bax? E[Y|x] = o + Bix + Box® + B3x®

[r——
r—
a0 a1 2

NMFM 334 | Lecture 1
14 /39




2. Calibration: Model specification (parametric structure)

Y =0 +MhX+e
E[Y|x] = fo + fix

Y =Bo+MX+ X +e Y = fo+ BiX + X2+ 53X3 + ¢
E[Y|x] = fo + Bix + Box? E[Y|x] = Bo + Bix + fox® + B33

[r——

Y = B0+ filog(X) +¢
E[Y|x] = fo + B1log(x)

Expanaor arte Explnatry variaie

[am—
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2. Calibration: Model specification (parametric structure)

Y =0 +MhX+e
E[Y|x] = fo + fix

Y =Bo+MX+ X +e
E[Y|x] = Bo + Bux + f2x*

Y = fo+ BiX + X2+ 53X3 + ¢
E[Y|x] = Bo + Brx + Pax? + Pax*

[r——

Y = B0+ filog(X) +¢
E[Y|x] = fo + B1log(x)

Expanaor arte

Y = o+ X+ Bo(X —05); +¢
E[Y[x] = fo + Bix + f2(x — 0.5)4.

[am—

Explnaton e
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2. Calibration: Model specification (parametric structure)

[r——

Y =0 +MhX+e
E[Y|x] = fo + fix
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2. Calibration: Model specification (parametric structure)

Y=0+MAaX+e
E[YIx] = Bo + Aux

Y =Bo+MX+ X +e
E[Y|x] = Bo + Bux + f2x*

Y = fo+ BiX + X2+ 53X3 + ¢
E[Y|x] = Bo + Brx + Pax? + Pax*

o0 02 04 06 o8

Expansony aratle

10 00 02 o4 05 o8 10

Eplanaory e

:; - g -
Y = B0+ filog(X) +¢ Y = o+ X+ Bo(X —05); +¢ Y =5+ Z?:l Bilie, ) (X) + ¢
E[Y[x] = fo + B1 log(x) E[Y|x] = o+ Bix + Ba(x = 0.5)s  E[Y|x] = o+ 37, Blle, ) (X)
i H H

[ Infinitely many options how to define the underlying (parametric) structure
of the linear regression model using the given data points only;
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Linear regression models in real data applications

2. Calibration: Pioneers before least squares

o Roger Cotes (1682 — 1716) o Tobias Mayer (1723 - 1762) o Roger Joseph Boscovich (1711 - 1787) o Pierre-Simon Laplace (1749-1827)
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Linear regression models in real data applications

2.

Calibration: Pioneers before least squares

o Roger Cotes (1682 — 1716) o Tobias Mayer (1723 - 1762) o Roger Joseph Boscovich (1711 - 1787) o Pierre-Simon Laplace (1749-1827)

A

]

1722 — combination of different observations taken under the same conditions instead of
trying one’s best to observe a single observation accurately (method of averages);

1750 — studying the librations of the moon in 1750 by Tobias Mayer and exploring the
motion of Jupiter and Saturn by Laplace;

1757 — combination of different observations taken under different conditions to study the
shape of the earth by Boscovich (least absolute deviations);

1799 — combination of the method with a symmetric two-sided exponential distribution by
Laplace for studying the same problem as Boscovich (discovering median instead of average);




Linear regression models in real data applications

2.

a

Calibration: Model estimation approaches

Method of averages — multiple observations of the same event observed
with random error rather than just one precise measurement;

Least absolute deviation — ancient method developed by Roger Joseph
Boscovich in 1757 (about 50 years before the least squares);

Least squares — developed in 19th century (Legendre in 1805 and Gauss
in 1809) for describing the behavior of celestial bodies used for astronomy,
ships' navigation, and geodesy — connection with the normal distribution;

Maximum likelihood — first ideas by Bernoulli in 1713 for analyzing
Bernoulli trials, however, its widespread use arose between 1912 and 1922
due to Ronald Fisher;

Robust estimation — estimation approach less sensitive to outlying
observations, developed by Huber in 1964;

Other methods — for instance, based on different risk assessment, atomic
pursuit estimation and sparsity, non-convex problems;
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16



!lnear regression mo!e S In rea !a!a appllcallons

Calibration by the method of least squares

Adrien-Marie Legendre (1752 — 1833) Johann Carl Friedrich Gauss (1777 — 1855)

1 Legendre used the technique for fitting linear equations to data while
demonstrating the new method by analyzing the same data as Laplace for
the shape of the earth. The method is described as an algebraic procedure.

1 Gauss claimed to know the method since 1795. He connected the method
of least squares with the principles of the theory of probability and defined
the estimation method that minimizes the error — normal distribution.
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Linear regression models in real data applications

Proving the least squares: Ceres rediscovery

[ Italian astronomer Giuseppe Piazzi discovered Ceres on 1st January 1801 and
followed it for 40 days before it was lost in the glare of the sun — until the last
observation (out of 24) taken on 11 February 1801.

[d Given the data, astronomers desired to determine the location of Ceres after it
emerged from behind the sun without solving Kepler's complicated nonlinear
equations of planetary motion.

[ Using the information published in Monatliche Correspondenz in September
1801, J.C.F.Gauss (24 years old at that time) was the only one to successfully
predicted the Ceres position.

4 Hungarian astronomer Heinrich W. M. Olbers found Ceres at the predicted
location on 31st December 1801.

Eccentricity: 0.080 Perihelion (q): 2.544 a.u.
Orbital Period: 4.599 years Aphelion (7): 2.987 a.u.

Distance from Sun: 2.983 a.u.
Distance from Earth: 2.135 a.u. Orbital inclination: 10.6°




Calibration by the method of least squares

Y =08+ /X +e
E[Y|x] = Bo + B1x

Dependent variable

Explanatory variable
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Calibration by the method of least squares
Yi= 0o+ b1 Xi + €

— foralli=1,...,n

Dependent variable

Explanatory variable

NMFM 334 | Lecture 1
19 /39




Calibration by the method of least squares

Y1 1 X 6 &1
. . . 0 .
; = : +
o )

Y, 1 X, €n

Explanatory variable
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Calibration by the method of least squares

Y=XB8+¢
Y €¢R", B € R?

Dependent variable

Explanatory variable
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Calibration by the method of least squares

Y = model + ¢
Y cR", B € R?

Dependent variable

Explanatory variable
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Calibration by the method of least squares

Y = model + error
Y cR", B € R?

Dependent variable

Explanatory variable
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Calibration by the method of least squares

Y=PY+(I-P)Y
Y e¢R", B € R?

Dependent variable

Explanatory variable
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Calibration by the method of least squares

Y=PY+(I-P)Y
Y cR", B € R?

Dependent variable

Explanatory variable

The errors (I —P)Y should be minimal in some sense!
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Calibration by the method of least squares

Y=PY+(I-P)Y
Y cR", B € R?

Dependent variable

Explanatory variable

The errors Y — PY should be minimal in some sense!
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Calibration by the method of least squares

Y=PY+(I-P)Y
Y e¢R", B € R?

Dependent variable

Explanatory variable

The errors Y; — (8o + £1.X;) should be minimal in some sense!
(for all indexes i =1,...,n)
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Calibration by the method of least squares

Y=PY+(I-P)Y
Y e¢R", B € R?

Dependent variable
pa—

Explanatory variable

The errors Y; — (8o + £1.X;) should be minimal in some sense!
(for all indexes i =1,...,n)
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Calibration by the method of least squares

Y=PY+(I-P)Y
Y e¢R", B € R?

Dependent variable
pa—

Explanatory variable
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Calibration by the method of least squares

Y=PY+(I-P)Y
Y e R", B € R?

Dependent variable

Explanatory variable

2
The errors [Y; —(Bo+ le,-)} should be minimal in some sense!

(for all indexes i =1,...,n)
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Calibration by the method of least squares

Y=PY+(I-P)Y
Y e R", B € R?

Dependent variable

Explanatory variable

2
The errors [Y; —(Bo+ le,-)} should be minimal in some sense!

(for all indexes i =1,...,n)
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Calibration by the method of least squares
Y=PY+(I-P)Y

Y cR". B € R?
g
Explanatory variable
2
The errors [Y; —(Bo+ le,-)} should be minimal in some sense!
(for all indexes i =1,...,n)
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Calibration by the method of least squares

Y=PY+(I-P)Y
Y e R", B € R?

Dependent variable

Explanatory variable

2
The errors [Y; —(Bo+ le,-)} should be minimal in some sense!

(for all indexes i =1,...,n)
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Calibration by the method of least squares

Y=PY+(I-P)Y
Y e R", B € R?

Dependent variable

OIJ‘ lJJJ‘“"

. ‘ 14‘1]1‘1 LH ‘j
| ‘ }

Explanatory variable

2
The errors >, [Y,- — (Bo+ /J’lX,-)] should be minimal in some sense!

(for all indexes i =1,...,n)
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Calibration by the method of least squares

Y=PY+(I-P)Y
Y e¢R", B € R?

T

J‘ JJJ]""

J]h‘] ‘m ‘J
] ‘ ‘

Dependent variable

Explanatory variable

The errors | Y — Xf3||3 should be minimal in some sense!

NMFM 334 | Lecture 1
19 /39




Calibration by the method of least squares

[0 The model parameters 8 = (fo, .- ., ,)" € RP™ are obtained/estimated
by solving the minimization problem

Bn= Argmin ||Y —XB|3
BE]KPH
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Calibration by the method of least squares

[0 The model parameters 8 = (fo, .- ., ,)" € RP™ are obtained/estimated
by solving the minimization problem

Bn= Argmin ||Y —XB|3
BERP+1

[ It is easy to verify that this is a convex minimization problem — the
effective solution exists and it can be obtained in an explicit form;
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Calibration by the method of least squares

[0 The model parameters 8 = (fo, .- ., ,)" € RP™ are obtained/estimated
by solving the minimization problem

En = Argmin |Y — X,BH%
BE]RPH

[ It is easy to verify that this is a convex minimization problem — the
effective solution exists and it can be obtained in an explicit form;

[d Taking partial derivatives with respect to [, ..., 8, and setting the
derivatives to be equal to zero, the system of linear equations is obtains:
X'xg=xX'Y
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!lnear regression mo!e S In rea !a!a appllcallons

Calibration by the method of least squares

[0 The model parameters 8 = (fo, .- ., ,)" € RP™ are obtained/estimated
by solving the minimization problem

Bn= Argmin ||Y —XB|3
ﬂeRP+1

[ It is easy to verify that this is a convex minimization problem — the
effective solution exists and it can be obtained in an explicit form;

[d Taking partial derivatives with respect to [, ..., 8, and setting the
derivatives to be equal to zero, the system of linear equations is obtains:
X'xg=xX'Y

[0 If the matrix X' X is invertible, then the solution is explicitly expressed as

Bo=(X"X)XTY
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!lnear regression mo!e S In rea !a!a app! |cal|ons

Calibration by the method of least squares

[0 The model parameters 8 = (fo, .- ., ,)" € RP™ are obtained/estimated
by solving the minimization problem

Bn= Argmin ||Y —XB|3
ﬂeRP+1

[ It is easy to verify that this is a convex minimization problem — the
effective solution exists and it can be obtained in an explicit form;

[d Taking partial derivatives with respect to [, ..., 8, and setting the
derivatives to be equal to zero, the system of linear equations is obtains:
X'xg=xX'Y

[0 If the matrix X' X is invertible, then the solution is explicitly expressed as

Bo=(X"X)XTY

4 The estimated model XB,, is actually a projection into a linear subspace
generated by the columns of the matrix X (i.e. P = X(XTXR?F’IXT).
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Some alternative calibration techniques

1 However, we can still do better... (SVD, EIV);

Projection of Y onto L(X) Projection of X onto L(Y) Projection onto 1.PC
< A < A <
o o o 4
~ ) ~ O
2 i 2 2
2 2 2
k<4 - s
g g g
> > Aalie | > -
o -
- o
| g T
— —
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X variable X variable X variable
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Linear regression models in real data applications

Probabilistic model and the role of statistics

For practical utilization of the model (linear regression) we need much
more than just some algebraic calculations, partial derivatives, and
numerical algorithms to find the solution... The goal is to do inference!

(1 Probabilistic model (usually imposed on the error terms)

(1 this allows to derive some useful properties for 3, (the model);
[ the most common probabilistic model: the normal regression model;
1 BLUE, consistency, normality or asymptotic normality, etc.;

[J Statistical data which corresponds with the underlying theory

[d not the data should be enhanced but the model must suit the data;
[ various statistical tools to verify underlying theoretical assumptions;
[ this is, however, not performed by the black-box software automatically!
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!lnear regression mo!e S In rea !ata applications

3. Prediction/Forecasting: Model utilization

"The regression model describes the relationship between one or more 'input’ variables
and an ‘output’ variable. It gives us an equation to predict values for the ‘output’

variable, by plugging in the corresponding values for the 'input’ variables.”

d Prediction
Formal statement which can be validated or falsified with just one single
observation (the prediction was true or false);

1 A calibrated regression model is needed to make a prediction;
[ Algebraic procedures and numerical algorithms needed to calibrate model;

1 Forecasting
Multiple observations are needed to determine confidence level — it is
characterized by calculating probabilities;

1 The regression model and the nature of the data is needed for forecasting;
[d Probability theory and statistical inference tools!
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Linear regression models in real data applications

Regression: Some useful jargon

[ If we believe to know the underlying model — we believe in some specific
form of an analytic functional relationship which we know up to some few
values of parameters — then the regression is called parametric;

[ Otherwise, the regression is called nonparametric;

 If the unknown parameters enter the model in a linear way, we speak
about linear regression.

(1 Otherwise, we speak about nonlinear regression;

[ A linear regression is called simple if we fit a linear dependence of a
response on just one single predictor;

[ Otherwise, the linear regression is called multiple;

[ If we believe that the nature of the data follows the normal distribution,
we speak about normal linear regression;

1 Otherwise, the regression is general;
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Common problems
when fitting regression models
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What can go wrong in regression?

1 Model specification
(incorrect specification of the unknown underlying structure)

1 Inconsistent calibration
(wrong method used for the model estimation)

[ False prediction/forecasting
(violated assumptions needed for the proper inference)

1 Model selection
(incorrect covariates used for explaining the dependent variable)

[ Multicolinearity
(the estimated parameters, the calibrated model respectively, is not stable)

1 Dependence
(analyzing dependent data instead of independent)
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Model selection: Variable screening

"The administrative database was evaluated by means of univariate and multivariate
regression. First, we identified variables that were associated with the dependent
variable with p-value < 0.20. These potential confounders were then entered in

multivariate regression in a stepwise backward fitting approach.”
(JAMA Surgery, 2016)
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Model selection: Variable screening

"The administrative database was evaluated by means of univariate and multivariate
regression. First, we identified variables that were associated with the dependent
variable with p-value < 0.20. These potential confounders were then entered in

multivariate regression in a stepwise backward fitting approach.”
(JAMA Surgery, 2016)

[ Sifnificant covariate in a univariate regression may turn
non-significant in a multivariate regression;

1 Non-significant covariate in a univariate regression may turn
significant in a multivariate regression;
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Missing important covariate

"The administrative database was evaluated by means of univariate and multivariate
regression. First, we identified variables that were associated with the dependent
variable with p-value < 0.20. These potential confounders were then entered in
multivariate regression in a stepwise backward fitting approach.”

(JAMA Surgery, 2016)

[d Three independent (standard normal) covariates: Xi, Xo, X;
O Standard normal error terms (indelendent of X covariates) ¢ ~ N(0, o?);
[ Additional covariate Xy defined as: Xa = 51.X1 + 52X2 = 2X1 + Xo;

[ True underlying model of the form: Y = a1 + aoXo + a3 Xz + aa Xy + ¢;

Cov(Y,Xa) __ azs
Varky 4T 52

[ Univariate regression slope for Y ~ X;:
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Missing important covariate

"The administrative database was evaluated by means of univariate and multivariate
regression. First, we identified variables that were associated with the dependent
variable with p-value < 0.20. These potential confounders were then entered in
multivariate regression in a stepwise backward fitting approach.”

(JAMA Surgery, 2016)

[d Three independent (standard normal) covariates: Xi, Xo, X;
O Standard normal error terms (indelendent of X covariates) ¢ ~ N(0, o?);
[ Additional covariate Xy defined as: Xa = 51.X1 + 52X2 = 2X1 + Xo;

[ True underlying model of the form: Y = a1 + aoXo + a3 Xz + aa Xy + ¢;

Cov(Y,Xa) __ azs
Varky 4T 52

[ Univariate regression slope for Y ~ X;:

Underlying model:

Y:1+3X2+4X3—06X4+6
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Missing important covariate

[ Simulation results based on 10.000 Monte Carlo repetitions;

n ‘ Univariate Regression X; Multiple Regression X, Regression on X; and X3
Estimate (Std.Err.) Estimate (Std.Error) Estimates (Std. Errs)

30 -0.0005 (0.4225) -0.6010 (0.0988) 2.4074 (0.3030) | 4.0028 (0.3047)
50 -0.0016 (0.3194) -0.6003 (0.0748) 2.3990 (0.2281) | 4.0014 (0.2302)
100 -0.0009 (0.2226) -0.6003 (0.0513) 2.4020 (0.1611) | 3.9992 (0.1581)
200 0.0002 (0.1485) -0.6002 (0.0357) 2.3999 (0.1111) | 4.0019 (0.1126)
500 0.0005 (0.0965) -0.6005 (0.0226) 2.4002 (0.0703) | 4.0005 (0.0705)
1000 -0.0002 (0.0691) -0.6000 (0.0160) 2.4002 (0.0498) | 3.9993 (0.0492)

4 Underlying model:

Y=1+3Xo+4X3—0.6X; +¢
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Missing important covariate

[ Simulation results based on 10.000 Monte Carlo repetitions;

n ‘ Univariate Regression X; Multiple Regression X, Regression on X; and X3
Estimate (Std.Err.) Estimate (Std.Error) Estimates (Std. Errs)
30 -0.0005 (0.4225) -0.6010 (0.0988) 2.4074 (0.3030) | 4.0028 (0.3047)
50 -0.0016 (0.3194) -0.6003 (0.0748) 2.3990 (0.2281) | 4.0014 (0.2302)
100 -0.0009 (0.2226) -0.6003 (0.0513) 2.4020 (0.1611) | 3.9992 (0.1581)
200 0.0002 (0.1485) -0.6002 (0.0357) 2.3999 (0.1111) | 4.0019 (0.1126)
500 0.0005 (0.0965) -0.6005 (0.0226) 2.4002 (0.0703) | 4.0005 (0.0705)
1000 -0.0002 (0.0691) -0.6000 (0.0160) 2.4002 (0.0498) | 3.9993 (0.0492)
—p0

4 Underlying model:

Y=1+3Xo+4X3—0.6X; +¢
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Missing important covariate

[ Simulation results based on 10.000 Monte Carlo repetitions;

Univariate Regression X,

Estimate (Std.Err.)

Multiple Regression X,

Estimate (Std.Error)

Regression on X; and X3
Estimates (Std. Errs)

30
50
100
200
500
1000

-0.0005 (0.4225)
-0.0016 (0.3194)
-0.0009 (0.2226)
0.0002 (0.1485)
0.0005 (0.0965)
-0.0002 (0.0691)

—p0

4 Underlying model:

~0.6010 (0.0988)
-0.6003 (0.0748)
-0.6003 (0.0513)
-0.6002 (0.0357)
-0.6005 (0.0226)
-0.6000 (0.0160)

—p *3/5

2.4074 (0.3030) | 4.0028 (0.3047)
2.3990 (0.2281) | 4.0014 (0.2302)
2.4020 (0.1611) | 3.9992 (0.1581)
2.3999 (0.1111) | 4.0019 (0.1126)
2.4002 (0.0703) | 4.0005 (0.0705)
2.4002 (0.0498) | 3.9993 (0.0492)

Y=1+3Xo+4X3—0.6X; +¢
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Missing important covariate

[ Simulation results based on 10.000 Monte Carlo repetitions;

Univariate Regression X,

Estimate (Std.Err.)

Multiple Regression X,

Estimate (Std.Error)

Regression on X; and X3
Estimates (Std. Errs)

30
50
100
200
500
1000

-0.0005 (0.4225)
-0.0016 (0.3194)
-0.0009 (0.2226)
0.0002 (0.1485)
0.0005 (0.0965)
-0.0002 (0.0691)

—p0

4 Underlying model:

~0.6010 (0.0988)
-0.6003 (0.0748)
-0.6003 (0.0513)
-0.6002 (0.0357)
-0.6005 (0.0226)
-0.6000 (0.0160)

—p *3/5

2.4074 (0.3030) | 4.0028 (0.3047)
2.3990 (0.2281) | 4.0014 (0.2302)
2.4020 (0.1611) | 3.9992 (0.1581)
2.3999 (0.1111) | 4.0019 (0.1126)
2.4002 (0.0703) | 4.0005 (0.0705)
2.4002 (0.0498) | 3.9993 (0.0492)

—p 4

Y=1+3Xo+4X3—0.6X; +¢
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Missing important covariate

[ Simulation results based on 10.000 Monte Carlo repetitions;

Univariate Regression X,

Estimate (Std.Err.)

Multiple Regression X,

Estimate (Std.Error)

Regression on X; and X3
Estimates (Std. Errs)

30
50
100
200
500
1000

-0.0005 (0.4225)
-0.0016 (0.3194)
-0.0009 (0.2226)
0.0002 (0.1485)
0.0005 (0.0965)
-0.0002 (0.0691)

—p0

4 Underlying model:

~0.6010 (0.0988)
-0.6003 (0.0748)
-0.6003 (0.0513)
-0.6002 (0.0357)
-0.6005 (0.0226)
-0.6000 (0.0160)

—p *3/5

2.4074 (0.3030) | 4.0028 (0.3047)
2.3990 (0.2281) | 4.0014 (0.2302)
2.4020 (0.1611) | 3.9992 (0.1581)
2.3999 (0.1111) | 4.0019 (0.1126)
2.4002 (0.0703) | 4.0005 (0.0705)
2.4002 (0.0498) | 3.9993 (0.0492)

»p3|—ph

Y=1+3Xo+4X3—0.6X; +¢
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Irrelevant covariate passing the screening

"The administrative database was evaluated by means of univariate and multivariate
regression. First, we identified variables that were associated with the dependent
variable with p-value < 0.20. These potential confounders were then entered in

multivariate regression in a stepwise backward fitting approach.”
(JAMA Surgery, 2016)
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Irrelevant covariate passing the screening

"The administrative database was evaluated by means of univariate and multivariate
regression. First, we identified variables that were associated with the dependent
variable with p-value < 0.20. These potential confounders were then entered in
multivariate regression in a stepwise backward fitting approach.”

(JAMA Surgery, 2016)

[d Three independent (standard normal) covariates: Xi, Xo, Xs;

[ Standard normal error terms (indelendent of X covariates) ¢ ~ N(0, o?);
[ Additional covariate Xy defined as: Xy = 51.X1 + 52 X3 = X1 + X33

[d Consider the true model of the form: Y = ao + o X1 + a2 Xz +¢;

[ Extended model of the form: Y = agp + a1 X1 + anXo + oz Xy + ¢

1 Alternatively: Y = ao + (a1 + a3f1) X1 + a2 Xo + a3 X3 + &
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Irrelevant covariate passing the screening

"The administrative database was evaluated by means of univariate and multivariate
regression. First, we identified variables that were associated with the dependent
variable with p-value < 0.20. These potential confounders were then entered in
multivariate regression in a stepwise backward fitting approach.”

(JAMA Surgery, 2016)

[d Three independent (standard normal) covariates: Xi, Xo, Xs;

[ Standard normal error terms (indelendent of X covariates) ¢ ~ N(0, o?);
[ Additional covariate Xy defined as: Xy = 51.X1 + 52 X3 = X1 + X33

[d Consider the true model of the form: Y = ao + o X1 + a2 Xz +¢;

[ Extended model of the form: Y = agp + a1 X1 + anXo + oz Xy + ¢

1 Alternatively: Y = ao + (a1 + a3f1) X1 + a2 Xo + a3 X3 + &

Underlying model:

Y =X +2X5 +¢
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Irrelevant covariate passing the screening

[ Simulation results based on 10.000 Monte Carlo repetitions;

n Univariate Regression X; Multiple Regression X,
Estimate (Std.Err.) Estimate (Std.Error)

30 1.0024 (0.4723) 0.0038 (0.2014)

50 0.9975 (0.3564) -0.0008 (0.1496)

100 0.9995 (0.2469) -0.0015 (0.1032)

200 0.9982 (0.1733) 0.0005 (0.0723)

500 0.9999 (0.1101) 0.0005 (0.0452)

1000 0.9995 (0.0776) 0.0004 (0.0318)

4 Underlying model:

Y=X1+2Xo+¢
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Correlation transitivity

"Since factor A is highly correlated with outcome Y, and factor A and factor B are
highly correlated, then B should be also correlated with Y.”
(JAMA Surgery, 2016)
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Correlation transitivity

"Since factor A is highly correlated with outcome Y, and factor A and factor B are
highly correlated, then B should be also correlated with Y.”
(JAMA Surgery, 2016)

1 Random variables X and Z are independent standard normal;
[ Let the variable Y be defined as Y = X + Z;

[ The correlation between Y and X is: 0.707;

[ The correlation between Y and Z is again 0.707;

[1d However, the correlation between X and Z is zero;
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Correlation transitivity

"Since factor A is highly correlated with outcome Y, and factor A and factor B are
highly correlated, then B should be also correlated with Y.”
(JAMA Surgery, 2016)

Random variables X and Z are independent standard normal;
Let the variable Y be defined as Y = X + Z;

The correlation between Y and X is: 0.707;

The correlation between Y and Z is again 0.707;

| I I I Wy

However, the correlation between X and Z is zero;

(W]

Example before: the correlation between X3 and X; is 0.707;

(]

Example before: the correlation between X; and Y is 0.408;

[ However, X4 has no role in the multiple regression model;
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Stability of the estimates and p-values

[ Available covariates: height, weight, age, gender, bmi, wh-ratio;
1 body fat vs. subject’s height:
Im(formula = fat ~ height, data = Policie)
Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) -47.6791 23.9707 -1.989 0.0524 .
height 0.3405 0.1343 2.535 0.0146 *
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Stability of the estimates and p-values

[ Available covariates: height, weight, age, gender, bmi, wh-ratio;

1 body fat vs. subject’s height:
Im(formula = fat ~ height, data = Policie)

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -47.6791 23.9707 -1.989 0.0524 .
height 0.3405 0.1343 2.535 0.0146 *

[ body fat vs. subject’s height and weight:
Im(formula = fat ~ height + weight, data = Policie)

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 16.55309 15.24621 1.086 0.2831
height -0.24362 0.09728 -2.504 0.0158 *
weight 0.50418 0.05095 9.896 4.49e-13 **x
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Paradox: Ecological fallacy

[ Stat235 classes at University of Alberta in Fall 2012/2013;
[d Students’ performance for midterm exams and final exams;
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Paradox: Ecological fallacy

[ Stat235 classes at University of Alberta in Fall 2012/2013;
[d Students’ performance for midterm exams and final exams;
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Paradox: Ecological fallacy

[ Stat235 classes at University of Alberta in Fall 2012/2013;
[d Students’ performance for midterm exams and final exams;
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Dependent and independent observations

1 Random sample:
Independent and identically distributed random observations/variablesl;

130 140

120

Blood Pressure
110

100
|

50 55 60 65

Patient's Age
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Dependent and independent observations

1 Random sample:
Independent and identically distributed random observations/variablesl;

Blood Pressure
110 120 130 140
! ! !

100
|

50 55 60 65

Patient's Age
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Linear regression: Formally and correctly

[ Linear regression — a probabilistic model which requires a specific set of
assumptions to be satisfied to obtain reliable results at the end;
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Linear regression: Formally and correctly

[ Linear regression — a probabilistic model which requires a specific set of
assumptions to be satisfied to obtain reliable results at the end;

Available data form a random sample;

(independent and identically distributed random observations)

Correct model specification;

(the parametric form of the estimated structure must be correctly defined)
Normally distributed error terms;

(especially if there is some interest in a consequent statistical inference)
Equal variance = homoscedasticity;

(all error terms should have same variance)

Well defined set of explanatory variables;

for instance, no linear dependence among covariates or multicolinearity

o O o o o
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Hidden catches in regression models

Linear regression: Formally and correctly

[ Linear regression — a probabilistic model which requires a specific set of
assumptions to be satisfied to obtain reliable results at the end;

Available data form a random sample;

(independent and identically distributed random observations)

Correct model specification;

(the parametric form of the estimated structure must be correctly defined)
Normally distributed error terms;

(especially if there is some interest in a consequent statistical inference)
Equal variance = homoscedasticity;

(all error terms should have same variance)

Well defined set of explanatory variables;

for instance, no linear dependence among covariates or multicolinearity

o O o o o

[ Straightforward extensions of the linear model (easy ones or quite
complex) for handling violated assumptions;
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Hidden catches in regression models

Linear regression: Formally and correctly

[ Linear regression — a probabilistic model which requires a specific set of
assumptions to be satisfied to obtain reliable results at the end;

Available data form a random sample;

(independent and identically distributed random observations)

Correct model specification;

(the parametric form of the estimated structure must be correctly defined)
Normally distributed error terms;

(especially if there is some interest in a consequent statistical inference)
Equal variance = homoscedasticity;

(all error terms should have same variance)

Well defined set of explanatory variables;

for instance, no linear dependence among covariates or multicolinearity

o O o o o

[ Straightforward extensions of the linear model (easy ones or quite
complex) for handling violated assumptions;

1 However, applying a standard linear regression model in such cases causes
incorrect results and false conclusions;
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