On some Constructions of Shapeless Quasigroups

Aleksandra Mileva¹ and Smile Markovski²

 ¹ Faculty of Computer Science, University "Goce Delčev", Štip
 ² Faculty of Computer Science and Computer Engineering, University "Ss. Cyril and Methodius" - Skopje Republic of Macedonia

Loops'11 July 25-27, Třešt, Czech Republic

Aleksandra Mileva and Smile Markovski On some Constructions of Shapeless Quasigroups

イロト イポト イヨト イヨト

 $\begin{array}{c} \text{Outline}\\ \text{Diagonal method and orthomorphisms}\\ \text{Algebraic properties of the quasigroup } (G, \bullet)\\ \text{Different generalizations of the Feistel Network as orthomorphisms}\\ \text{Some constructions of shapeless quasigroups}\\ \text{Conclusions} \end{array}$

Motivation

Today, we can already speak about quasigroup based cryptography, because the number of new defined cryptographic primitives that use quasigroups is growing up:

- stream cipher EDON-80 (Gligoroski et al. (eSTREAM 2008)),
- hash functions EDON-R (Gligoroski et al. (SHA-3 2008)) and NaSHA (Markovski and Mileva (SHA-3 2008)),
- digital signature algorithm MQQ-DSA (Gligoroski et al. (ACAM 2008)),
- public key cryptosystem LQLP-s (for $s \in \{104, 128, 160\}$) (Markovski et al. (SCC 2010)), etc.

 $\begin{array}{c} & \text{Outline} \\ & \text{Diagonal method and orthomorphisms} \\ & \text{Algebraic properties of the quasigroup } (G, \bullet) \\ & \text{Different generalizations of the Feistel Network as orthomorphisms} \\ & \text{Some constructions of shapeless quasigroups} \\ & \text{Conclusions} \end{array}$

Motivation

Different authors seek quasigroups with different properties.

Definition (Gligoroski et al (2006))

A quasigroup (Q, *) of order r is said to be **shapeless** iff it is non-idempotent, non-commutative, non-associative, it does not have neither left nor right unit, it does not contain proper sub-quasigroups, and there is no k < 2r such that identities of the kinds

$$\underbrace{x * (x \cdots * (x) * y)}_{k} = y, \ y = ((y * \underbrace{x) * \cdots x}_{k}) * x$$
(1)

イロト イポト イヨト イヨト

Outline

Diagonal method and orthomorphisms Algebraic properties of the quasigroup (G, \bullet) Different generalizations of the Feistel Network as orthomorphisms Some constructions of shapeless quasigroups Conclusions

- 2 Algebraic properties of the quasigroup (G, \bullet)
- Oifferent generalizations of the Feistel Network as orthomorphisms
- 4 Some constructions of shapeless quasigroups

5 Conclusions

< 日 > < 同 > < 三 > < 三 >

 $\begin{array}{c} & \text{Outline} \\ \textbf{Diagonal method and orthomorphisms} \\ & \text{Algebraic properties of the quasigroup } (G, \bullet) \\ & \text{Different generalizations of the Feistel Network as orthomorphisms} \\ & \text{Some constructions of shapeless quasigroups} \\ & \text{Conclusions} \end{array}$

Diagonal method and orthomorphisms

- 2 Algebraic properties of the quasigroup (G, \bullet)
- 3 Different generalizations of the Feistel Network as orthomorphisms
- 4 Some constructions of shapeless quasigroups

5 Conclusions

Uutline Uitline Uitline Uitline Uitline Oitline Oitl

Complete mappings and orthomorphisms

Definition (Mann (1949), Johnson et al (1961), Evans (1989))

A complete mapping of a quasigroup (group) (G, +) is a permutation $\phi : G \to G$ such that the mapping $\theta : G \to G$ defined by $\theta(x) = x + \phi(x)$ ($\theta = I + \phi$, where I is the identity mapping) is again a permutation of G. The mapping θ is the **orthomorphism** associated to the complete mapping ϕ . A quasigroup (group) G is **admissible** if there is a complete mapping $\phi : G \to G$.

Complete mappings and orthomorphisms

- If θ is the orthomorphism associated to the complete mapping φ, then -φ is the orthomorphism associated to the complete mapping -θ,
- The inverse of the complete mapping (orthomorphism) is also a complete mapping (orthomorphism) (Johnson et al (1961)),
- Two orthomorphisms θ_1 and θ_2 of G are said to be orthogonal if and only if $\theta_1 \theta_2^{-1}$ is an orthomorphism of G too.
- Even more, every orthomorphism is orthogonal to *I* and θ⁻¹ is orthogonal to θ if and only if θ² is an orthomorphism (Johnson et al (1961))

Uutline Uitline Uitline Uitline Uitline Oitline Oitl

Sade's Diagonal method

(Sade (1957)) Consider the group $(\mathbb{Z}_n, +)$ and let θ be a permutation of the set \mathbb{Z}_n , such that $\phi(x) = x - \theta(x)$ is also a permutation. Define an operation \circ on \mathbb{Z}_n by:

$$x \circ y = \theta(x - y) + y \tag{2}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

where $x, y \in \mathbb{Z}_n$. Then (\mathbb{Z}_n, \circ) is a quasigroup (and we say that (\mathbb{Z}_n, \circ) is derived by θ).

 $Uutline Uitline Outline Outline Outline Outline Outline Outline Algebraic properties of the quasigroup (G, <math>\bullet$) Different generalizations of the Feistel Network as orthomorphisms Some constructions of shapeless quasigroups Conclusions

Generalization

Theorem

Let ϕ be a complete mapping of the admissible group (G, +) and let θ be an orthomorphism associated to ϕ . Define operations \circ and \bullet on G by

$$x \circ y = \phi(y - x) + y = \theta(y - x) + x, \tag{3}$$

$$x \bullet y = \theta(x - y) + y = \phi(x - y) + x, \tag{4}$$

where $x, y \in G$. Then (G, \circ) and (G, \bullet) are quasigroups, opposite to each other, i.e., $x \circ y = y \bullet x$ for every $x, y \in G$.

Quasigroup conjugates

Theorem

Let $\phi: G \to G$ be a complete mapping of the abelian group (G, +)with associated orthomorphism $\theta: G \to G$. Then all the conjugates of the quasigroup (G, \bullet) can be obtain by the equation (4) and the following statements are true. a) The quasigroup (G, /) is derived by the orthomorphism θ^{-1} associated to the complete mapping $-\phi\theta^{-1}$. b) The quasigroup (G, \setminus) is derived by the orthomorphism $-\theta(-\phi)^{-1}$ associated to the complete mapping $-(-\phi)^{-1}$. c) The quasigroup (G, //) is derived by the orthomorphism $-\phi(-\theta)^{-1}$ associated to the complete mapping $(-\theta)^{-1}$. d) The quasigroup (G, \setminus) is derived by the orthomorphism $-\phi^{-1}$ associated to the complete mapping $-\theta \phi^{-1}$. e) $(G, \cdot) = (G, \circ)$.

Aleksandra Mileva and Smile Markovski

 $) \land (\sim$

 $\begin{array}{c} \text{Outline}\\ \text{Diagonal method and orthomorphisms}\\ \textbf{Algebraic properties of the quasigroup } (G, \bullet)\\ \text{Different generalizations of the Feistel Network as orthomorphisms}\\ \text{Some constructions of shapeless quasigroups}\\ \text{Conclusions} \end{array}$

Diagonal method and orthomorphisms

2 Algebraic properties of the quasigroup (G, \bullet)

3 Different generalizations of the Feistel Network as orthomorphisms

4 Some constructions of shapeless quasigroups

Conclusions

(人間) とうり くうり

Algebraic properties of the quasigroup (G, \bullet)

- If θ(0) ≠ 0 then the quasigroup (G, ●) has no idempotent elements.
- (G, ●) does not have a left unit and if θ is different to the identity mapping it does not have a right unit either.
- (G, \bullet) is non-associative quasigroup.
- If θ(z) − θ(−z) ≠ z for some z ∈ G then (G, •) is non-commutative quasigroup.

Algebraic properties of the quasigroup (G, \bullet)

• The identity

$$y = ((y \bullet \underbrace{x) \bullet \dots}_{l}) \bullet x$$

holds true in (G, \bullet) iff $\theta^{I} = I$.

• The identity

$$\underbrace{x \bullet (\cdots \bullet (x}_{l} \bullet y)) = y$$

holds true in (G, \bullet) iff $(-\phi)^{I} = I = (I - \theta)^{I}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\begin{array}{c} \text{Outline}\\ \text{Diagonal method and orthomorphisms}\\ \textbf{Algebraic properties of the quasigroup} (G, \bullet)\\ \text{Different generalizations of the Feistel Network as orthomorphisms}\\ \text{Some constructions of shapeless quasigroups}\\ \text{Conclusions} \end{array}$

Algebraic properties of the quasigroup (G, \bullet)

- If θ has a cycle containing 0 of length greater than |G|/2, then the quasigroup (G, ●) cannot have a proper subquasigroup.
- The quasigroup (G, \bullet) is without a proper subquasigroup if $|S| \ge |G|/2$, where

$$S = \bigcup_{i=1}^{i=p+1} \{\theta^{i}(0)\} \cup \bigcup_{i=1}^{i=p+1} \{\theta(0) + \theta^{i}(0)\} \cup \bigcup_{i=1}^{i=p+1} \{\theta(-\theta^{i}(0)) + \theta^{i}(0)\} \cup$$
$$\bigcup_{i=1}^{i=p+1} \{\lambda^{i}(0)\} \cup \bigcup_{i=1}^{i=p+1} \{\lambda(0) + \lambda^{i}(0)\} \cup \bigcup_{i=1}^{i=p+1} \{\lambda(-\lambda^{i}(0)) + \lambda^{i}(0)\},$$
$$p = [|G|/2] \text{ and } \lambda = -\theta(-\phi)^{-1}.$$

イロン 不同 とくほう イロン

 $\begin{array}{c} & \text{Outline} \\ & \text{Diagonal method and orthomorphisms} \\ & \text{Algebraic properties of the quasigroup } (G, \bullet) \\ & \text{Different generalizations of the Feistel Network as orthomorphisms} \\ & \text{Some constructions of shapeless quasigroups} \\ & \text{Conclusions} \end{array}$

Algebraic properties of the quasigroup (G, \bullet)

$$((x \bullet \underbrace{x) \bullet \dots}_{l}) \bullet x = \theta^{l}(0) + x, \quad \underbrace{x \bullet (\dots \bullet (x)}_{l} \bullet x)) = -(-\phi)^{l}(0) + x.$$
(5)

$$((x/\underbrace{x)/\dots}_{l})/x = (\theta^{-1})^{l}(0) + x, \quad \underbrace{x/(\dots}_{l}/x)) = -(\phi\theta^{-1})^{l}(0) + x, \quad (6)$$

$$((x \setminus \underbrace{x) \setminus \dots \setminus x}_{l} = (-\theta(-\phi)^{-1})^{l}(0) + x, \underbrace{x \setminus (\dots \setminus (x)}_{l} \setminus x)) = -((-\phi)^{-1})^{l}(0) + x,$$

$$((x//\underbrace{x)//\dots}_{l})//x = (-\phi(-\theta)^{-1})^{l}(0) + x, \underbrace{x//(\dots//(x)/(x))}_{l} = -(-(-\theta)^{-1})^{l}(0) + x,$$
(2)

$$((x \setminus \underbrace{x) \setminus \dots }_{l} \setminus \underbrace{x}_{l} = (-\phi^{-1})^{l}(0) + x, \quad \underbrace{x \setminus (\dots \setminus (x \setminus x))}_{l} = -(\theta\phi^{-1})^{l}(0) + x.$$
(8)
(9)

Aleksandra Mileva and Smile Markovski

On some Constructions of Shapeless Quasigroups

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(G, \bullet) as an shapeless quasigroup

Theorem

Let θ be an orthomorphism of the abelian group (G, +), and let (G, \bullet) be a quasigroup derived by θ by the equation (4). If θ is with the following properties:

a)
$$\theta(0) \neq 0$$

b) $\theta^{k} \neq I$ for all $k < 2|G|$
c) $(I - \theta)^{k} \neq I$ for all $k < 2|G|$
d) $\theta(Z) - \theta(-Z) \neq Z$ for some $Z \in G$
e) $|S| \geq |G|/2$,
then (G, \bullet) is a shapeless quasigroup.

< ロ > < 同 > < 回 > < 回 >

 $\begin{array}{c} \text{Outline}\\ \text{Diagonal method and orthomorphisms}\\ \textbf{Algebraic properties of the quasigroup (G, \bullet)}\\ \text{Different generalizations of the Feistel Network as orthomorphisms}\\ \text{Some constructions of shapeless quasigroups}\\ \text{Conclusions} \end{array}$

Example of a shapeless quasigroup

The abelian group (Z_2^4, \oplus) is given.

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\theta(x)$	3	9	15	2	13	7	1	11	14	6	4	0	12	8	10	5
$\overline{\phi(x) = x \oplus \theta(x)}$	3	8	13	1	9	2	7	12	6	15	14	11	0	5	4	10

We define the quasigroup operation as

 $x \bullet y = \theta(x \oplus y) \oplus y$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\begin{array}{c} & \text{Outline} \\ & \text{Diagonal method and orthomorphisms} \\ & \text{Algebraic properties of the quasigroup } (\mathcal{G}, \bullet) \\ & \text{Different generalizations of the Feistel Network as orthomorphisms} \\ & \text{Some constructions of shapeless quasigroups} \\ & \text{Conclusions} \end{array}$

Example of a shapeless quasigroup

• 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
03	8	13	1	9	2	7	12	6	15	14	11	0	5	4	10
1 9	2	0	12	3	8	13	6	14	7	10	15	4	1	11	5
215	3	1	10	5	14	11	0	12	9	4	13	6	8	2	7
3 2	14	11	0	15	4	1	10	8	13	12	5	9	7	6	3
413	6	3	8	7	12	9	5	4	1	0	14	2	11	10	15
5 7	12	9	2	13	6	4	8	0	5	15	1	10	3	14	11
6 1	10	15	4	11	7	5	14	2	12	6	3	8	13	0	9
7 11	0	5	14	6	10	15	4	13	3	2	7	12	9	8	1
8 1 4	7	6	3	8	13	12	2	11	0	5	9	1	10	15	4
96	15	2	7	12	9	3	13	1	10	8	4	11	0	5	14
10 4	1	12	5	14	0	10	15	7	11	9	2	13	6	3	8
11 0	5	4	13	1	15	14	11	10	6	3	8	7	12	9	2
1212	9	8	6	10	3	2	7	5	14	11	0	15	4	1	13
13 8	13	7	9	2	11	6	3	15	4	1	10	5	14	12	0
1410	4	14	11	0	5	8	1	9	2	7	12	3	15	13	6
15 5	11	10	15	4	1	0	9	3	8	13	6	14	2	7	12

Aleksandra Mileva and Smile Markovski On some Constructions of Shapeless Quasigroups

<ロ> <同> <同> < 回> < 回>

 $\begin{array}{c} \text{Outline}\\ \text{Diagonal method and orthomorphisms}\\ \text{Algebraic properties of the quasigroup } (G, \bullet)\\ \text{Different generalizations of the Feistel Network as orthomorphisms}\\ \text{Some constructions of shapeless quasigroups}\\ \text{Conclusions} \end{array}$

Diagonal method and orthomorphisms

- 2 Algebraic properties of the quasigroup (G, \bullet)
- Oifferent generalizations of the Feistel Network as orthomorphisms

4 Some constructions of shapeless quasigroups

Conclusions

(人間) とうり くうり

 $\begin{array}{c} \text{Outline}\\ \text{Diagonal method and orthomorphisms}\\ \text{Algebraic properties of the quasigroup } (G, \bullet)\\ \text{Different generalizations of the Feistel Network as orthomorphisms}\\ \text{Some constructions of shapeless quasigroups}\\ \text{Conclusions} \end{array}$

Different generalizations of the Feistel Network

Feistel Networks are introduced by H. Feistel (Scientific American, 1973).

- Parameterized Feistel Network (PFN) (Markovski and Mileva (QRS 2009)),
- Extended Feistel networks *type-1*, *type-2* and *type-3* (Zheng et al (CRYPTO 1989)),
- Generalized Feistel-Non Linear Feedback Shift Register (GF-NLFSR) (Choy et al (ACISP 2009)).

We will redefine the last two generalizations with parameters and over abelian groups.

イロト イポト イヨト イヨト

 $\begin{array}{c} & \text{Outline} \\ & \text{Diagonal method and orthomorphisms} \\ & \text{Algebraic properties of the quasigroup } (G, \bullet) \\ & \text{Different generalizations of the Feistel Network as orthomorphisms} \\ & \text{Some constructions of shapeless quasigroups} \\ & \text{Conclusions} \end{array}$

Parameterized Feistel Network (PFN)

Definition

Let (G, +) be an abelian group, let $f : G \to G$ be a mapping and let $A, B, C \in G$ are constants. The **Parameterized Feistel Network** $F_{A,B,C} : G^2 \to G^2$ created by f is defined for every $l, r \in G$ by

$$F_{A,B,C}(I,r) = (r + A, I + B + f(r + C)).$$

Aleksandra Mileva and Smile Markovski

On some Constructions of Shapeless Quasigroups

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Parameterized Feistel Network (PFN)

In (Markovski and Mileva (QRS 2009)) is shown that if starting mapping f is bijection, the Parameterized Feistel Network $F_{A,B,C}$ and its square $F_{A,B,C}^2$ are orthomorphisms of the group $(G^2, +)$. More over, they are orthogonal orthomorphisms.

(a)

Parameterized Extended Feistel Network (PEFN) type-1

Definition

Let (G, +) be an abelian group, let $f : G \to G$ be a mapping, let $A_1, A_2, \ldots, A_{n+1} \in G$ are constants and let n > 1 be an integer. The **Parameterized Extended Feistel Network (PEFN) type-1** $F_{A_1,A_2,\ldots,A_{n+1}} : G^n \to G^n$ created by f is defined for every $(x_1, x_2, \ldots, x_n) \in G^n$ by

$$F_{\mathcal{A}_1,\mathcal{A}_2,\ldots,\mathcal{A}_{n+1}}(x_1,x_2,\ldots,x_n) =$$

 $(x_2 + f(x_1 + A_1) + A_2, x_3 + A_3, \dots, x_n + A_n, x_1 + A_{n+1}).$

Aleksandra Mileva and Smile Markovski On some Constructions of Shapeless Quasigroups

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Parameterized Extended Feistel Network (PEFN) type-1

Aleksandra Mileva and Smile Markovski

On some Constructions of Shapeless Quasigroups

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Parameterized Extended Feistel Network (PEFN) type-1

Theorem

Let (G, +) be an abelian group, let n > 1 be an integer and $A_1, A_2, \ldots, A_{n+1} \in G$. If $F_{A_1, A_2, \ldots, A_{n+1}} : G^n \to G^n$ is a PEFN type-1 created by a bijection $f : G \to G$, then $F_{A_1, A_2, \ldots, A_{n+1}}$ is an orthomorphism of the group $(G^n, +)$.

<ロ> <同> <同> < 同> < 同>

Parameterized Generalized Feistel-Non Linear Feedback Shift Register (PGF-NLFSR)

Definition

Let (G, +) be an abelian group, let $f : G \to G$ be a mapping, let $A_1, A_2, \ldots, A_{n+1} \in G$ are constants and let n > 1 be an integer. The **Parameterized Generalized Feistel-Non Linear Feedback Shift Register (PGF-NLFSR)** $F_{A_1,A_2,\ldots,A_{n+1}} : G^n \to G^n$ created by f is defined for every $(x_1, x_2, \ldots, x_n) \in G^n$ by

$$F_{A_1,A_2,\ldots,A_{n+1}}(x_1,x_2,\ldots,x_n) =$$

 $(x_2 + A_1, x_3 + A_2, \dots, x_n + A_{n-1}, x_2 + \dots + x_n + A_n + f(x_1 + A_{n+1})).$

イロト イポト イヨト イヨト

Parameterized Generalized Feistel-Non Linear Feedback Shift Register (PGF-NLFSR)

Aleksandra Mileva and Smile Markovski

On some Constructions of Shapeless Quasigroups

Parameterized Generalized Feistel-Non Linear Feedback Shift Register (PGF-NLFSR)

Theorem

Let we use the abelian group (\mathbb{Z}_2^m, \oplus) , let n = 2k be an integer and $A_1, A_2, \ldots, A_{n+1} \in \mathbb{Z}_2^m$. If $F_{A_1, A_2, \ldots, A_{n+1}} : (\mathbb{Z}_2^m)^n \to (\mathbb{Z}_2^m)^n$ is a PGF-NLFSR created by a bijection $f : \mathbb{Z}_2^m \to \mathbb{Z}_2^m$, then $F_{A_1, A_2, \ldots, A_{n+1}}$ is an orthomorphism of the group $((\mathbb{Z}_2^m)^n, \oplus)$.

(a)

 $\begin{array}{c} \text{Outline}\\ \text{Diagonal method and orthomorphisms}\\ \text{Algebraic properties of the quasigroup (} G, \bullet)\\ \text{Different generalizations of the Feistel Network as orthomorphisms}\\ \text{Some constructions of shapeless quasigroups}\\ \text{Conclusions} \end{array}$

- 2 Algebraic properties of the quasigroup (G, \bullet)
- 3 Different generalizations of the Feistel Network as orthomorphisms

4 Some constructions of shapeless quasigroups

Conclusions

- 4 同 2 4 日 2 4 日 2

Quasigroups derived by the PFN $F_{A,B,C}$

Proposition

Let (G, +) be an abelian group and let $f : G \to G$ be a bijection. Let $F_{A,B,C}$ be a Parameterized Feistel Network created by f, and let (G^2, \bullet) be a quasigroup derived by $F_{A,B,C}$ by the equation (4). If $F_{A,B,C}$ is with the following properties: a) $A \neq 0$ or $B \neq -f(C)$ b) $F_{A,B,C}^k \neq I$ for all $k < 2|G^2|$ c) $(I - F_{A,B,C})^k \neq I$ for all $k < 2|G^2|$ d) $|S| \ge |G^2|/2$, then (G^2, \bullet) is a shapeless quasigroup.

イロト イポト イヨト イヨト

Quasigroups derived by the PFN $F_{A,B,C}$

We made a m-file in MatLab that produce a starting bijection $f: Z_2^n \rightarrow Z_2^n$ and parameters A, B and C for the orthomorphism PFN $F_{A,B,C}$ which produce a shapeless quasigroup. The group operation is XOR. For n = 3, 4, 5, 6 execution time is less than a minute and for n = 7 is less than five minutes. These results correspond to shapeless quasigroups of order $2^6, 2^8, 2^{10}, 2^{12}$ and 2^{14} .

イロト イポト イヨト イヨト

Quasigroups derived by the PEFN type-1 $F_{A_1,A_2,...,A_{n+1}}$

Proposition

Let (G, +) be an abelian group, let n > 1 be an integer, let $A_1, A_2, \ldots, A_{n+1} \in G$ and let $f : G \to G$ be a bijection. Let $F_{A_1, A_2, \ldots, A_{n+1}}$ be a PEFN *type-1* created by f, and let (G^n, \bullet) be a quasigroup derived by $F_{A_1, A_2, \ldots, A_{n+1}}$ by the equation (4). If $F_{A_1, A_2, \ldots, A_{n+1}}$ is with the following properties: a) $A_i \neq 0$ for some $i \in \{3, 4, \ldots, n+1\}$ or $A_2 \neq -f(A_1)$ b) $F_{A_1, A_2, \ldots, A_{n+1}}^k \neq I$ for all $k < 2|G^n|$ c) $(I - F_{A_1, A_2, \ldots, A_{n+1}})^k \neq I$ for all $k < 2|G^n|$ d) $|S| \geq |G^n|/2$, then (G^n, \bullet) is a shapeless quasigroup.

Quasigroups derived by the PGF-NLFSR $F_{A_1,A_2,...,A_{n+1}}$

Proposition

Let we use the abelian group (\mathbb{Z}_2^m, \oplus) , let n = 2k be an integer, let $A_1, A_2, \ldots, A_{n+1} \in \mathbb{Z}_2^m$ and let $f : \mathbb{Z}_2^m \to \mathbb{Z}_2^m$ be a bijection. Let $F_{A_1, A_2, \ldots, A_{n+1}}$ be a PGF-NLFSR created by f, and let $((\mathbb{Z}_2^m)^n, \bullet)$ be a quasigroup derived by $F_{A_1, A_2, \ldots, A_{n+1}}$ by the equation (4). If $F_{A_1, A_2, \ldots, A_{n+1}}$ is with the following properties: a) $A_i \neq 0$ for some $i \in \{1, 2, \ldots, n-1\}$ or $A_n \neq -f(A_{n+1})$ b) $F_{A_1, A_2, \ldots, A_{n+1}}^k \neq I$ for all $k < 2|G^n|$ c) $(I - F_{A_1, A_2, \ldots, A_{n+1}})^k \neq I$ for all $k < 2|G^n|$ d) $|S| \ge |G^n|/2$, then $((\mathbb{Z}_2^m)^n, \bullet)$ is a shapeless quasigroup.

 $\begin{array}{c} \text{Outline}\\ \text{Diagonal method and orthomorphisms}\\ \text{Algebraic properties of the quasigroup } (G, \bullet)\\ \text{Different generalizations of the Feistel Network as orthomorphisms}\\ \text{Some constructions of shapeless quasigroups}\\ \text{Conclusions} \end{array}$

Diagonal method and orthomorphisms

- 2 Algebraic properties of the quasigroup (G, \bullet)
- 3 Different generalizations of the Feistel Network as orthomorphisms
- 4 Some constructions of shapeless quasigroups

5 Conclusions

- 4 同 2 4 日 2 4 日 2

 $\begin{array}{c} & \text{Outline} \\ & \text{Diagonal method and orthomorphisms} \\ & \text{Algebraic properties of the quasigroup } (G, \bullet) \\ & \text{Different generalizations of the Feistel Network as orthomorphisms} \\ & \text{Some constructions of shapeless quasigroups} \\ & \text{Conclusions} \end{array}$

Conclusions

We give some constructions of shapeless quasigroups of different orders by using quasigroups produced by diagonal method from orthomorphisms. We show that PEFN *type-1* produced by a bijection is an orthomorphism of the abelian group $(G^n, +)$ and that PGF-NLFSR produced by a bijection is an orthomorphism of the $((\mathbb{Z}_2^m)^n, \oplus)$. Also, we parameterized these orthomorphisms for the need of cryptography, so we can work with different quasigroups in every iterations of the future cryptographic primitives.

(a)

 $\begin{array}{c} \text{Outline}\\ \text{Diagonal method and orthomorphisms}\\ \text{Algebraic properties of the quasigroup (}G, \bullet)\\ \text{Different generalizations of the Feistel Network as orthomorphisms}\\ \text{Some constructions of shapeless quasigroups}\\ \text{Conclusions}\end{array}$

THANKS

FOR

YOUR ATTENTION !!!

Aleksandra Mileva and Smile Markovski On some Constructions of Shapeless Quasigroups

<ロ> <同> <同> < 同> < 同>

э