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Motivation

Today, we can already speak about quasigroup based cryptography,
because the number of new defined cryptographic primitives that
use quasigroups is growing up:

stream cipher EDON-80 (Gligoroski et al. (eSTREAM 2008)),

hash functions EDON-R (Gligoroski et al. (SHA-3 2008)) and
NaSHA (Markovski and Mileva (SHA-3 2008)),

digital signature algorithm MQQ-DSA (Gligoroski et al.

(ACAM 2008)),

public key cryptosystem LQLP-s (for s ∈ {104, 128, 160})
(Markovski et al. (SCC 2010)), etc.
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Motivation

Different authors seek quasigroups with different properties.

Definition (Gligoroski et al (2006))

A quasigroup (Q, ∗) of order r is said to be shapeless iff it is
non-idempotent, non-commutative, non-associative, it does not
have neither left nor right unit, it does not contain proper
sub-quasigroups, and there is no k < 2r such that identities of the
kinds

x ∗ (x · · · ∗ (x︸ ︷︷ ︸
k

∗y)) = y , y = ((y ∗ x) ∗ · · · x) ∗ x︸ ︷︷ ︸
k

(1)
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Complete mappings and orthomorphisms

Definition (Mann (1949), Johnson et al (1961), Evans (1989))

A complete mapping of a quasigroup (group) (G ,+) is a
permutation φ : G → G such that the mapping θ : G → G defined
by θ(x) = x + φ(x) (θ = I + φ, where I is the identity mapping) is
again a permutation of G . The mapping θ is the orthomorphism
associated to the complete mapping φ. A quasigroup (group) G is
admissible if there is a complete mapping φ : G → G .
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Complete mappings and orthomorphisms

If θ is the orthomorphism associated to the complete mapping
φ, then −φ is the orthomorphism associated to the complete
mapping −θ,

The inverse of the complete mapping (orthomorphism) is also
a complete mapping (orthomorphism) (Johnson et al (1961)),

Two orthomorphisms θ1 and θ2 of G are said to be orthogonal
if and only if θ1θ

−1
2 is an orthomorphism of G too.

Even more, every orthomorphism is orthogonal to I and θ−1 is
orthogonal to θ if and only if θ2 is an orthomorphism
(Johnson et al (1961))
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Sade’s Diagonal method

(Sade (1957)) Consider the group (Zn,+) and let θ be a
permutation of the set Zn, such that φ(x) = x − θ(x) is also a
permutation. Define an operation ◦ on Zn by:

x ◦ y = θ(x − y) + y (2)

where x , y ∈ Zn. Then (Zn, ◦) is a quasigroup (and we say that
(Zn, ◦) is derived by θ).
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Generalization

Theorem

Let φ be a complete mapping of the admissible group (G ,+) and
let θ be an orthomorphism associated to φ. Define operations ◦
and • on G by

x ◦ y = φ(y − x) + y = θ(y − x) + x , (3)

x • y = θ(x − y) + y = φ(x − y) + x , (4)

where x , y ∈ G . Then (G , ◦) and (G , •) are quasigroups, opposite
to each other, i.e., x ◦ y = y • x for every x , y ∈ G .
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Quasigroup conjugates

Theorem

Let φ : G → G be a complete mapping of the abelian group (G ,+)
with associated orthomorphism θ : G → G . Then all the
conjugates of the quasigroup (G , •) can be obtain by the equation
(4) and the following statements are true.
a) The quasigroup (G , /) is derived by the orthomorphism θ−1

associated to the complete mapping −φθ−1.
b) The quasigroup (G , \) is derived by the orthomorphism
−θ(−φ)−1 associated to the complete mapping −(−φ)−1.
c) The quasigroup (G , //) is derived by the orthomorphism
−φ(−θ)−1 associated to the complete mapping (−θ)−1.
d) The quasigroup (G , \\) is derived by the orthomorphism −φ−1

associated to the complete mapping −θφ−1.
e) (G , ·) = (G , ◦).
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Algebraic properties of the quasigroup (G , •)

If θ(0) 6= 0 then the quasigroup (G , •) has no idempotent
elements.

(G , •) does not have a left unit and if θ is different to the
identity mapping it does not have a right unit either.

(G , •) is non-associative quasigroup.

If θ(z)− θ(−z) 6= z for some z ∈ G then (G , •) is
non-commutative quasigroup.
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Algebraic properties of the quasigroup (G , •)

The identity
y = ((y • x) • . . . ) • x︸ ︷︷ ︸

l

holds true in (G , •) iff θl = I .

The identity
x • (· · · • (x︸ ︷︷ ︸

l

•y)) = y

holds true in (G , •) iff (−φ)l = I = (I − θ)l .
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Algebraic properties of the quasigroup (G , •)

If θ has a cycle containing 0 of length greater than |G |/2, then the

quasigroup (G , •) cannot have a proper subquasigroup.

The quasigroup (G , •) is without a proper subquasigroup if
|S | ≥ |G |/2, where

S =

i=p+1⋃
i=1

{θi (0)}∪
i=p+1⋃
i=1

{θ(0) + θi (0)}∪
i=p+1⋃
i=1

{θ(−θi (0)) + θi (0)}∪

i=p+1⋃
i=1

{λi (0)} ∪
i=p+1⋃
i=1

{λ(0) + λi (0)} ∪
i=p+1⋃
i=1

{λ(−λi (0)) + λi (0)},

p = [|G |/2] and λ = −θ(−φ)−1.
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Algebraic properties of the quasigroup (G , •)

((x • x) • . . . ) • x︸ ︷︷ ︸
l

= θl(0) + x , x • (· · · • (x︸ ︷︷ ︸
l

•x)) = −(−φ)l(0) + x . (5)

((x/ x)/ . . . )/x︸ ︷︷ ︸
l

= (θ−1)l(0) + x , x/(. . . (x︸ ︷︷ ︸
l

/x)) = −(φθ−1)l(0) + x , (6)

((x\x) \ . . . ) \ x︸ ︷︷ ︸
l

= (−θ(−φ)−1)l(0)+x , x \ (· · · \ (x︸ ︷︷ ︸
l

\x)) = −((−φ)−1)l(0)+x ,

(7)
((x// x)// . . . )//x︸ ︷︷ ︸

l

= (−φ(−θ)−1)l(0)+x , x//(. . . //(x︸ ︷︷ ︸
l

//x)) = −(−(−θ)−1)l(0)+x ,

(8)
((x \\ x) \\ . . . ) \\x︸ ︷︷ ︸

l

= (−φ−1)l(0) + x , x \\(· · · \\(x︸ ︷︷ ︸
l

\\ x)) = −(θφ−1)l(0) + x .

(9)
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(G , •) as an shapeless quasigroup

Theorem

Let θ be an orthomorphism of the abelian group (G ,+), and let
(G , •) be a quasigroup derived by θ by the equation (4). If θ is
with the following properties:
a) θ(0) 6= 0
b) θk 6= I for all k < 2|G |
c) (I − θ)k 6= I for all k < 2|G |
d) θ(Z )− θ(−Z ) 6= Z for some Z ∈ G
e) |S | ≥ |G |/2,
then (G , •) is a shapeless quasigroup.
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Example of a shapeless quasigroup

The abelian group (Z 4
2 ,⊕) is given.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
θ(x) 3 9 15 2 13 7 1 11 14 6 4 0 12 8 10 5

φ(x) = x ⊕ θ(x) 3 8 13 1 9 2 7 12 6 15 14 11 0 5 4 10

We define the quasigroup operation as

x • y = θ(x ⊕ y)⊕ y
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Example of a shapeless quasigroup

• 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 3 8 13 1 9 2 7 12 6 15 14 11 0 5 4 10
1 9 2 0 12 3 8 13 6 14 7 10 15 4 1 11 5
2 15 3 1 10 5 14 11 0 12 9 4 13 6 8 2 7
3 2 14 11 0 15 4 1 10 8 13 12 5 9 7 6 3
4 13 6 3 8 7 12 9 5 4 1 0 14 2 11 10 15
5 7 12 9 2 13 6 4 8 0 5 15 1 10 3 14 11
6 1 10 15 4 11 7 5 14 2 12 6 3 8 13 0 9
7 11 0 5 14 6 10 15 4 13 3 2 7 12 9 8 1
8 14 7 6 3 8 13 12 2 11 0 5 9 1 10 15 4
9 6 15 2 7 12 9 3 13 1 10 8 4 11 0 5 14

10 4 1 12 5 14 0 10 15 7 11 9 2 13 6 3 8
11 0 5 4 13 1 15 14 11 10 6 3 8 7 12 9 2
1212 9 8 6 10 3 2 7 5 14 11 0 15 4 1 13
13 8 13 7 9 2 11 6 3 15 4 1 10 5 14 12 0
1410 4 14 11 0 5 8 1 9 2 7 12 3 15 13 6
15 5 11 10 15 4 1 0 9 3 8 13 6 14 2 7 12
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Different generalizations of the Feistel Network

Feistel Networks are introduced by H. Feistel (Scientific American,
1973).

Parameterized Feistel Network (PFN) (Markovski and Mileva

(QRS 2009)),

Extended Feistel networks type-1, type-2 and type-3 (Zheng

et al (CRYPTO 1989)),

Generalized Feistel-Non Linear Feedback Shift Register
(GF-NLFSR) (Choy et al (ACISP 2009)).

We will redefine the last two generalizations with parameters and
over abelian groups.
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Parameterized Feistel Network (PFN)

Definition

Let (G ,+) be an abelian group, let f : G → G be a mapping and let
A,B,C ∈ G are constants. The Parameterized Feistel Network
FA,B,C : G 2 → G 2 created by f is defined for every l , r ∈ G by

FA,B,C (l , r) = (r + A, l + B + f (r + C)).
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Parameterized Feistel Network (PFN)

In (Markovski and Mileva (QRS 2009)) is shown that if starting
mapping f is bijection, the Parameterized Feistel Network FA,B,C

and its square F 2
A,B,C are orthomorphisms of the group (G 2,+).

More over, they are orthogonal orthomorphisms.

Aleksandra Mileva and Smile Markovski On some Constructions of Shapeless Quasigroups



Outline
Diagonal method and orthomorphisms

Algebraic properties of the quasigroup (G , •)
Different generalizations of the Feistel Network as orthomorphisms

Some constructions of shapeless quasigroups
Conclusions

Parameterized Extended Feistel Network (PEFN) type-1

Definition

Let (G ,+) be an abelian group, let f : G → G be a mapping, let
A1,A2, . . . ,An+1 ∈ G are constants and let n > 1 be an integer.
The Parameterized Extended Feistel Network (PEFN) type-1
FA1,A2,...,An+1 : Gn → Gn created by f is defined for every
(x1, x2, . . . , xn) ∈ Gn by

FA1,A2,...,An+1(x1, x2, . . . , xn) =

(x2 + f (x1 + A1) + A2, x3 + A3, . . . , xn + An, x1 + An+1).
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Parameterized Extended Feistel Network (PEFN) type-1
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Parameterized Extended Feistel Network (PEFN) type-1

Theorem

Let (G ,+) be an abelian group, let n > 1 be an integer and
A1,A2, . . . ,An+1 ∈ G . If FA1,A2,...,An+1 : Gn → Gn is a PEFN
type-1 created by a bijection f : G → G , then FA1,A2,...,An+1 is an
orthomorphism of the group (Gn,+).
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Parameterized Generalized Feistel-Non Linear Feedback
Shift Register (PGF-NLFSR)

Definition

Let (G ,+) be an abelian group, let f : G → G be a mapping, let
A1,A2, . . . ,An+1 ∈ G are constants and let n > 1 be an integer.
The Parameterized Generalized Feistel-Non Linear Feedback
Shift Register (PGF-NLFSR) FA1,A2,...,An+1 : Gn → Gn created
by f is defined for every (x1, x2, . . . , xn) ∈ Gn by

FA1,A2,...,An+1(x1, x2, . . . , xn) =

(x2 + A1, x3 + A2, . . . , xn + An−1, x2 + . . .+ xn + An + f (x1 + An+1)).
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Parameterized Generalized Feistel-Non Linear Feedback
Shift Register (PGF-NLFSR)
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Parameterized Generalized Feistel-Non Linear Feedback
Shift Register (PGF-NLFSR)

Theorem

Let we use the abelian group (Zm
2 ,⊕), let n = 2k be an integer

and A1,A2, . . . ,An+1 ∈ Zm
2 . If FA1,A2,...,An+1 : (Zm

2 )n → (Zm
2 )n is a

PGF-NLFSR created by a bijection f : Zm
2 → Zm

2 , then
FA1,A2,...,An+1 is an orthomorphism of the group ((Zm

2 )n,⊕).
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Quasigroups derived by the PFN FA,B,C

Proposition

Let (G ,+) be an abelian group and let f : G → G be a bijection. Let FA,B,C be
a Parameterized Feistel Network created by f , and let (G 2, •) be a quasigroup
derived by FA,B,C by the equation (4). If FA,B,C is with the following properties:
a)A 6= 0 or B 6= −f (C)
b) F k

A,B,C 6= I for all k < 2|G 2|
c) (I − FA,B,C )k 6= I for all k < 2|G 2|
d) |S | ≥ |G 2|/2,

then (G 2, •) is a shapeless quasigroup.
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Quasigroups derived by the PFN FA,B,C

We made a m-file in MatLab that produce a starting bijection
f : Zn

2 → Zn
2 and parameters A,B and C for the orthomorphism

PFN FA,B,C which produce a shapeless quasigroup. The group
operation is XOR. For n = 3, 4, 5, 6 execution time is less than a
minute and for n = 7 is less than five minutes. These results
correspond to shapeless quasigroups of order 26, 28, 210, 212 and
214.
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Quasigroups derived by the PEFN type-1 FA1,A2,...,An+1

Proposition

Let (G ,+) be an abelian group, let n > 1 be an integer, let
A1,A2, . . . ,An+1 ∈ G and let f : G → G be a bijection. Let FA1,A2,...,An+1 be a
PEFN type-1 created by f , and let (G n, •) be a quasigroup derived by
FA1,A2,...,An+1 by the equation (4). If FA1,A2,...,An+1 is with the following
properties:
a)Ai 6= 0 for some i ∈ {3, 4, . . . , n + 1} or A2 6= −f (A1)
b) F k

A1,A2,...,An+1
6= I for all k < 2|G n|

c) (I − FA1,A2,...,An+1 )k 6= I for all k < 2|G n|
d) |S | ≥ |G n|/2,

then (G n, •) is a shapeless quasigroup.
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Quasigroups derived by the PGF-NLFSR FA1,A2,...,An+1

Proposition

Let we use the abelian group (Zm
2 ,⊕), let n = 2k be an integer, let

A1,A2, . . . ,An+1 ∈ Zm
2 and let f : Zm

2 → Zm
2 be a bijection. Let FA1,A2,...,An+1 be

a PGF-NLFSR created by f , and let ((Zm
2 )n, •) be a quasigroup derived by

FA1,A2,...,An+1 by the equation (4). If FA1,A2,...,An+1 is with the following
properties:
a) Ai 6= 0 for some i ∈ {1, 2, . . . , n − 1} or An 6= −f (An+1)
b) F k

A1,A2,...,An+1
6= I for all k < 2|G n|

c) (I − FA1,A2,...,An+1 )k 6= I for all k < 2|G n|
d) |S | ≥ |G n|/2,

then ((Zm
2 )n, •) is a shapeless quasigroup.
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Conclusions

We give some constructions of shapeless quasigroups of different
orders by using quasigroups produced by diagonal method from
orthomorphisms. We show that PEFN type-1 produced by a
bijection is an orthomorphism of the abelian group (Gn,+) and
that PGF-NLFSR produced by a bijection is an orthomorphism of
the ((Zm

2 )n,⊕). Also, we parameterized these orthomorphisms for
the need of cryptography, so we can work with different
quasigroups in every iterations of the future cryptographic
primitives.
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THANKS

FOR

YOUR ATTENTION!!!
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