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Banach spaces

I Banach spaces `np, `p, Lp(0, 1), denoted just Lp, Lp(Ω,Σ, µ),
1 ≤ p ≤ ∞.
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Metric spaces

I Important example: Graphs with graph distances.
I Let G = (V (G ),E (G )) be a graph, so V is a set of objects

called vertices and E is some set of unordered pairs of vertices
called edges. We denote an unordered pair consisting of
vertices u and v by uv and say that u and v are ends of uv .

I A walk in G is a finite sequence of the form
W = v0, e1, v1, e2, . . . , ek , vk whose terms are alternately
vertices and edges such that, for 1 ≤ i ≤ k, the edge ei has
ends vi−1 and vi . We say that W starts at v0 and ends at vk ,
and that W is a v0vk -walk. The number k is called the lengths
of the walk.

I A graph G is called connected if for each u, v ∈ V (G ) there is
a uv -walk in G .

I If G is connected, we endow V (G ) with the metric dG (u, v) =
the length of the shortest uv -walk in G . The metric dG is
called the graph distance.

I When we say “graph G with its graph distance” we mean the
metric space (V (G ), dG ).
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Semimetric spaces

I A semimetric is like metric except that the separation axiom is
not required.

I Example. Cut semimetrics. Let S be a subset of a set A, S̄
be the complement of S . The pair (S , S̄) is called a cut in A
and S , S̄ are called parts of this cut. The cut semimetric on A
corresponding to the cut (S , S̄) is defined by

dS(u, v) =

{
0 if u and v are in the same part

1 if u and v are in different parts
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Semimetrics and embeddings in combinatorial optimization

I We are going to describe the sparsest cut problem. In this
problem we are given a connected graph G = (V ,E ), with a
positive weight (called a capacity) c(e) associated to each
edge e ∈ E , and a nonnegative weight (called a demand)
D(u, v) associated to each (unordered) pair of vertices
u, v ∈ V .

I By a cut of G we mean a partition of the vertex set V into
two disjoint sets: S and its complement S̄ . The sparsity of
the cut (S , S̄) is defined as∑

u∈S ,v∈S̄ ,uv∈E c(uv)∑
u∈S ,v∈S̄ D(u, v)

, (1)

that is, the sparsity is the ratio between the capacities and the
demands which “cross” the cut.
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Sparsest cut problem

I The sparsest cut problem is: find a polynomial time algorithm
which produces a cut of minimum sparsity for each such
situation.

I Polynomial time algorithm means that the number of steps in
the algorithm can be estimated from above by a polynomial of
the size of the problem. The size of the problem in this
context is (the number of vertices in the graph)+(the number
of digits needed to write the capacities of edges and the
demands).

I It was proved that in a certain sense there is no hope to find
such an algorithm. In Computer Science there is a rigorously
defined meaning of this statement. In the corresponding
terminology it was proved that the sparsest cut problem is NP
hard.

I For this reason its approximate version is also of interest: to
approximate the minimum sparsity.
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Approximation of the sparsest cut

I One of the approaches to the approximate version of the
problem comes from writing the quantity (1) in terms of a cut
semimetric dS : ∑

uv∈E c(uv)dS(u, v)∑
u,v∈V D(u, v)dS(u, v)

. (2)

(The quantities in (1) and (2) are not equal, their quotient is
equal to 2, but for the problem in question this does not
matter.)

I Obviously, the minimum decreases if instead of the minimum
over cut metrics dS we consider the minimum over all
nontrivial semimetrics d on V (by a nontrivial semimetric here
we mean a semimetric for which

∑
u,v∈V D(u, v)d(u, v) 6= 0).
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I The point is that the problem of minimization of∑
uv∈E c(uv)d(u, v)∑

u,v∈V D(u, v)d(u, v)
. (3)

over the set of all nontrivial semimetrics d on V belongs to
the class of so-called Linear Programming (LP) problems for
which reasonably fast algorithms are known.

I In more detail, by homogeneity, we may restrict our attention
to the metrics satisfying

∑
u,v∈V D(u, v)d(u, v) = 1. Then we

can write the problem as: Minimize the sum∑
uv∈E c(uv)d(u, v) over the set of all collections

{d(u, v)}u,v∈V ,u 6=v satisfying the conditions∑
u,v∈V

D(u, v)d(u, v) = 1

∀u, v ,w ∈ V d(u,w) ≤ d(u, v) + d(v ,w)

∀u, v ∈ V d(u, v) = d(v , u)

∀u, v ∈ V d(u, v) ≥ 0.

(4)
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I The last problem on the previous slide is a problem of
minimization of a linear form subject to finitely many linear
inequalities, this is a definition of a Linear Programming
problem.

I Of course, it is not immediately clear how to estimate the
sparsest cut from above in terms of the minimum computed
for this Linear Programming problem (and the corresponding
semimetric dmin).

I It turns out that the ratio between the minimum computed for
this Linear Programming problem and the sparsest cut can be
estimated from above in terms of the possible quality of
embeddings of the semimetric space (V , dmin) into the
Banach space `1.

I This result and some other similar results led to a very strong
interest of Computer Scientists to the theory of embeddings of
metric spaces into Banach spaces and to a very active
development of the area.
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Embeddings

I By an embedding of a set X into Y we mean any (not
necessarily injective or surjective) map of X into Y .

I We are interested in the case when X and Y are metric (or at
least semimetric) spaces and we are interested in embeddings
which do not “distort too much” the metric structure.

I We start with embeddings which preserve distances.
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Isometric embeddings

I A map f : X → Y between two metric spaces is called an
isometric embedding if it preserves distances, that is
dY (f (u), f (v)) = dX (u, v) for all u, v ∈ X .

I If there exists an isometric embedding of X into Y we say
that X is isometric to a subset (subspace) of Y .

I If an isometric embedding of X into Y is a bijection of X and
Y , we say that X and Y are isometric.
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I The theory of isometric embeddings is a very rich theory
which was developed from several different perspectives.

I We prove only a very simple result of this theory. This result
was proved in one of the first papers (if not the first paper)
dealing with abstract metric spaces (Fréchet, Math. Ann.,
1910).

I Proposition (Fréchet). Each countable metric space embeds
isometrically into `∞. Each metric space with n elements
embeds isometrically into `n∞.
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Proof of the Fréchet proposition

I Let X = {ui}∞i=0 be a countable metric space. We introduce a
map f : X → `∞ by

f (v) = {d(v , ui )− d(ui , u0)}∞i=1.

Observe that

||f (v)− f (w)|| = sup
i∈N
|d(v , ui )− d(w , ui )|.

I The triangle inequality implies

sup
i∈N
|d(v , ui )− d(w , ui )| ≤ d(v ,w).

I On the other hand, if v 6= w , then at least one of v ,w is
among {ui}∞i=1. Suppose that v ∈ {ui}∞i=1. We get

sup
i∈N
|d(v , ui )− d(w , ui )| ≥ |d(v , v)− d(w , v)| = d(v ,w).

This proves the first statement.
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I The second statement can be proved similarly.

I We can make its proof simpler if we observe that for a
bounded metric space X = {ui} (that is, for a space X for
which supu,v∈X d(u, v) is finite) the definition of f (v) can be
simplified to f (v) = {d(v , ui )}i .

I In particular, if X = {ui}ni=1, then f (v) = {d(v , ui )}ni=1

defines an isometric embedding into `n∞.

Mikhail Ostrovskii, St. John’s University Bilipschitz and coarse embeddings



I The second statement can be proved similarly.

I We can make its proof simpler if we observe that for a
bounded metric space X = {ui} (that is, for a space X for
which supu,v∈X d(u, v) is finite) the definition of f (v) can be
simplified to f (v) = {d(v , ui )}i .

I In particular, if X = {ui}ni=1, then f (v) = {d(v , ui )}ni=1

defines an isometric embedding into `n∞.

Mikhail Ostrovskii, St. John’s University Bilipschitz and coarse embeddings



I The second statement can be proved similarly.

I We can make its proof simpler if we observe that for a
bounded metric space X = {ui} (that is, for a space X for
which supu,v∈X d(u, v) is finite) the definition of f (v) can be
simplified to f (v) = {d(v , ui )}i .

I In particular, if X = {ui}ni=1, then f (v) = {d(v , ui )}ni=1

defines an isometric embedding into `n∞.

Mikhail Ostrovskii, St. John’s University Bilipschitz and coarse embeddings



I In many cases, in particular, in many important applications
of embeddings there is no hope for isometric embeddings.

I For example, only very few graphs admit isometric
embeddings into `2.

I Definition (More Graph Theory)

A complete graph with n vertices in which any two distinct vertices
are joined by exactly one edge is denoted Kn. A path with n
vertices is a graph whose vertices form a sequence {vi}ni=1 and
edges are determined by the following: vk , k = 2, . . . , n − 1 is
joined by exactly one edge with vk−1 and vk+1. The vertex v1 is
joined with v2 only and the vertex vn is joined with vn−1 only. The
path with n vertices is denoted Pn. If we add an edge joining v1

and vn we get a graph called a cycle of length n and denoted by
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the number of edges incident to it.

Mikhail Ostrovskii, St. John’s University Bilipschitz and coarse embeddings



I In many cases, in particular, in many important applications
of embeddings there is no hope for isometric embeddings.

I For example, only very few graphs admit isometric
embeddings into `2.

I Definition (More Graph Theory)

A complete graph with n vertices in which any two distinct vertices
are joined by exactly one edge is denoted Kn. A path with n
vertices is a graph whose vertices form a sequence {vi}ni=1 and
edges are determined by the following: vk , k = 2, . . . , n − 1 is
joined by exactly one edge with vk−1 and vk+1. The vertex v1 is
joined with v2 only and the vertex vn is joined with vn−1 only. The
path with n vertices is denoted Pn. If we add an edge joining v1

and vn we get a graph called a cycle of length n and denoted by
Cn. A graph is called simple if any two vertices in it are joined by
at most one edge and there are no loops. The degree of a vertex is
the number of edges incident to it.

Mikhail Ostrovskii, St. John’s University Bilipschitz and coarse embeddings



I In many cases, in particular, in many important applications
of embeddings there is no hope for isometric embeddings.

I For example, only very few graphs admit isometric
embeddings into `2.

I Definition (More Graph Theory)

A complete graph with n vertices in which any two distinct vertices
are joined by exactly one edge is denoted Kn. A path with n
vertices is a graph whose vertices form a sequence {vi}ni=1 and
edges are determined by the following: vk , k = 2, . . . , n − 1 is
joined by exactly one edge with vk−1 and vk+1. The vertex v1 is
joined with v2 only and the vertex vn is joined with vn−1 only. The
path with n vertices is denoted Pn. If we add an edge joining v1

and vn we get a graph called a cycle of length n and denoted by
Cn. A graph is called simple if any two vertices in it are joined by
at most one edge and there are no loops. The degree of a vertex is
the number of edges incident to it.

Mikhail Ostrovskii, St. John’s University Bilipschitz and coarse embeddings



I Proposition. A finite simple connected graph G admits an
isometric embedding into `2 if and only if it is either Kn or Pn

for some n.

I Proof. It is easy to find isometric embeddings of Kn and Pn

into `2. Let {ek}∞k=1 be the unit vector basis in `2. For Kn we
map vk 7→ ek√

2
. For Pn we map vk 7→ ke1. It is easy to see

that both maps are isometric embeddings.

I To prove the “only if” part of the statement we assume that
G is a finite simple connected graph, which is not a path, but
is such that (V (G ), dG ) is isometric to a subset of `2, denote
the isometric embedding by f . Our goal is to show that these
conditions imply that G is a complete graph.
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I The fact that G is not a path immediately implies that G is
either a cycle or has a vertex of degree 3. (Recall that G is
connected.)

I In the case when G is a cycle we observe that the cycle C3 is
simultaneously a complete graph K3, and we are done in this
case.

I As for longer cycles we prove that they do not admit isometric
embeddings into `2 in the following way.

I Since vertices vk−1, vk , vk+1 in a cycle satisfy
dG (vi−1, vi+1) = dG (vi−1, vi ) + dG (vi , vi+1), we get that the
images of vk−1, vk , vk+1 should be on the same line, with the
image of vk being a midpoint.

I Since this observation is applicable also for vn, v1, v2, we get a
contradiction.
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I Now let v ∈ V (G ) be a vertex of degree ≥ 3, and let
u1, u2, u3 be its neighbors. We show that ui are pairwise
adjacent. If two pairs of them (say u1, u2 and u2, u3) are not
adjacent, we get a contradiction because f (v) should be
simultaneously a midpoint of the line segment f (u1) and f (u2)
and a midpoint of the line segment joining f (u2) and f (u3).

I If only one edge, say u1u3, is missing then both f (u2) and
f (v) should be midpoints of the line segment joining f (u1)
and f (u3).

I Therefore v and all of its neighbors should form a complete
subgraph in G . Since the same should hold for each of the
neighbors of v , we get that G should be a complete graph.
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A wider class of embeddings

I Definition
Let C <∞. A map f : (X , dX )→ (Y , dY ) between two metric
spaces is called C -Lipschitz if

∀u, v ∈ X dY (f (u), f (v)) ≤ CdX (u, v).

A map f is called Lipschitz if it is C -Lipschitz for some C <∞.
For a Lipschitz map f we define its Lipschitz constant by

Lipf := sup
dX (u,v)6=0

dY (f (u), f (v))

dX (u, v)
.

Mikhail Ostrovskii, St. John’s University Bilipschitz and coarse embeddings



A wider class of embeddings

I Definition
A map f : X → Y is called a C -bilipschitz embedding if there
exists r > 0 such that

∀u, v ∈ X rdX (u, v) ≤ dY (f (u), f (v)) ≤ rCdX (u, v). (5)

A bilipschitz embedding is an embedding which is C -bilipschitz for
some C <∞. The smallest constant C for which there exist r > 0
such that (5) is satisfied is called the distortion of f . (It is easy to
see that such smallest constant exists.)

I It is easy to see that each bijective embedding of a finite
metric space is bilipschitz (possibly with very large distortion).
So for bilipschitz embeddings of finite spaces the main focus is
shifted to either finding low-distortion embeddings or finding
bilipschitz embeddings of families of spaces with uniformly
bounded distortions.
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Exercise of the day

I As we can derive from our proposition on isometric
embeddings of graphs into `2, an isometric image of a graph
in `2 is either a set of points on one line or a set of vertices of
a simplex.

I The point of this exercise is to show that if we allow larger
distortions, we can get images of graphs which are ε-nets in
balls of finite-dimensional Hilbert spaces.

I A standard argument implies that for each ε > 0 we can find
a finite set {vi}ki=1 in the unit ball Bn

2 = {x ∈ `n2 : ||x || ≤ 1}
satisfying the conditions

I ||vi − vj || > ε
I ∀u ∈ Bn

2 ∃i ∈ {1, . . . , k} ||u − vi || ≤ ε.

I We introduce the following graph structure on the set {vi}ki=1:
vi and vj are joined by an edge if and only if ||vi − vj || ≤ 3ε.

I Exercise. Show that the identical embedding of this graph
into `n2 has distortion ≤ 3.
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I Let (X , dX ) and (Y , dY ) be metric spaces. The infimum of
distortions of bilipschitz embeddings of X into Y is denoted
cY (X ). We let cY (X ) =∞ if there are no bilipschitz
embeddings of X into Y . When Y = Lp we use the notation
cY (·) = cp(·) and call this number the Lp-distortion of X .
The parameter c2(X ) is called the Euclidean distortion of X .

I Let me recall our discussion of the sparsest cut problem.
Instead of finding some minimum of certain quotient over cut
metrics we found minimum of similar quotient over all
semimetrics. It turns out that the ratio (the desired
minimum)/(the minimum which we found) is bounded by 1
from below (trivial) and by c1(the optimal semimetric space)
from above.

I You can find argument proving the last statement from the
previous paragraph in Section 3 of Chapter 1 at:
http://facpub.stjohns.edu/ostrovsm/Czech2011.html

I Thus, it is interesting to study the distortion.
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Open problem of the day

I Is it possible to find an (infinite) metric space M such that a
Banach space X is nonreflexive if and only if M admits a
bilipschitz embeddings into X ?
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Question to Logic experts

I I try to introduce a general but meaningful notion of a metric
characterization of a class of Banach spaces. It should include
such examples as:

I A Banach space M has Enflo type p if there exists a constant
T such that for every n ∈ N and every f : {−1, 1}n → M,

Average dM (f (e), f (−e))p

≤ T p
n∑

j=1

Average dM(f (e1, . . . , ej−1, ej , ej+1, . . . , en),

f (e1, . . . , ej−1,−ej , ej+1, . . . , en))p.

(6)

I A Banach space is nonsuperreflexive if and only if it contains a
bilipschitz image of an infinite binary tree.
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More examples

I A Banach space does not have type > 1 if and only if it
contains uniformly bilipschitz images of Hamming cubes of all
sizes.

I A Banach space X has James tree property (whatever this
means) if and only if there exists a mapping of the metric
space called infinite diamond which has the bilipschitz
property on certain set of distances (explicitly describable).
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I I tried the following notion of a metric characterization:

I By a metric characterization we mean a set of formulas with
some variables, quantifiers and inequalities, where the
inequalities contain only the variables and the distances
between them (for variables which are elements of spaces).
We say that such set of formulas characterizes a class P of
Banach spaces if X ∈ P if and only if all of the formulas of
the set hold for X .

I The problem with this notion is that it seems to include trivial
characterizations of the type: A Banach space is nonreflexive
if and only if it contains a bilipschitz image of a nonreflexive
Banach space.

I Question: Is it possible to give a general definition of a
metric characterization which is (1) Short; (2) Includes all
examples given above; (3) Excludes trivial characterizations?
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I Let (X , dX ) and (Y , dY ) be metric spaces. The infimum of
distortions of bilipschitz embeddings of X into Y is denoted
cY (X ). We let cY (X ) =∞ if there are no bilipschitz
embeddings of X into Y . When Y = Lp we use the notation
cY (·) = cp(·) and call this number the Lp-distortion of X .
The parameter c2(X ) is called the Euclidean distortion of X .

I Let me recall our discussion of the sparsest cut problem.
Instead of finding some minimum of certain quotient over cut
metrics we found minimum of similar quotient over all
semimetrics. It turns out that the ratio (the desired
minimum)/(the minimum which we found) is bounded by 1
from below (trivial) and by c1(the optimal semimetric space)
from above.

I You can find argument proving the last statement from the
previous paragraph in Section 3 of Chapter 1 at:
http://facpub.stjohns.edu/ostrovsm/Czech2011.html

I Thus, it is interesting to study the distortion.
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I The purpose of this lecture is to develop some techniques for
estimates of distortion cY (X ) from below.

I We start with a simple example: consider a 4-cycle C4 and
label its vertices in the cyclic order: v1, v2, v3, v4. We are
going to show that the Euclidean distortion of C4 can be
estimated using the following inequality

||f (v1)− f (v3)||2 + ||f (v2)− f (v4)||2

≤ ||f (v1)− f (v2)||2 + ||f (v2)− f (v3)||2

+ ||f (v3)− f (v4)||2 + ||f (v4)− f (v1)||2,
(1)

which holds for an arbitrary collection
f (v1), f (v2), f (v3), f (v4) of elements of a Hilbert space.
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I To prove (1) we use the identity
||a− b||2 = ||a||2− 2〈a, b〉+ ||b||2 for each of the terms in (1).
Then we move everything to the right-hand side and observe
that the obtained inequality can be written in the form

0 ≤ ||f (v1)− f (v2) + f (v3)− f (v4)||2.

I We postpone the computation of c2(C4) slightly, introducing
some terminology first. Inequality (1) can be considered as
one of the simplest Poincaré inequalities for embeddings of
metric spaces.
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Poincaré inequalities

I Definition
Let (X , dX ) and (Y , dY ) be a metric space, Ψ : [0,∞)→ [0,∞)
be a non-decreasing function, au,v , bu,v , u, v ∈ X be arrays of
nonnegative real numbers. If for an arbitrary function f : X → Y
the inequality∑

u,v∈X
au,vΨ(dY (f (u), f (v))) ≥

∑
u,v∈X

bu,vΨ(dY (f (u), f (v))) (2)

holds, we say that Y -valued functions on X satisfy the Poincaré
inequality (2).

I Observe that in this inequality the structure of X plays no
role, we use X just as a set of labels for elements f (u) ∈ Y .
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I The inequality (2) is useful for the theory of embeddings only
if a similar inequality does not hold for the identical map on
X , that is, if∑

u,v∈X
au,vΨ(dX (u, v)) <

∑
u,v∈X

bu,vΨ(dX (u, v)). (3)

I In such a case we get immediately that X is not isometric to a
subset of Y .

I Definition
We call the quotient ∑

u,v∈X bu,vΨ(dX (u, v))∑
u,v∈X au,vΨ(dX (u, v))

the Poincaré ratio of the metric space X corresponding to the
Poincaré inequality (2) and denote it Pa,b,Ψ(t)(X ).
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I Having more information on the values of sides of (3) and on
the function Ψ, we can get an estimate for the distortion
cY (X ). The corresponding estimate of cY (X ) is quite simple
if Ψ(t) = tp for some p > 0.

I In fact, the following can be obtained by simple manipulations
with the definitions:
Proposition. If Y -valued functions on X satisfy the Poincaré
inequality (2) with Ψ(t) = tp, then

cY (X ) ≥ (Pa,b,tp(X ))1/p . (4)
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I Now we are ready to estimate c2(C4). It is clear that
||f (v1)− f (v3)||2 + ||f (v2)− f (v4)||2 ≤ ||f (v1)− f (v2)||2 +
||f (v2)− f (v3)||2 + ||f (v3)− f (v4)||2 + ||f (v4)− f (v1)||2
is a Poincaré inequality for `2-valued functions on C4 (more
precisely: for `2-valued functions on V (C4)).

I The corresponding Poincaré ratio is:

dC4(v1, v3)2 + dC4(v2, v4)2

dC4(v1, v2)2 + dC4(v2, v3)2 + dC4(v3, v4)2 + dC4(v4, v1)2
= 2.

I By the Proposition from the previous slide we get
c2(C4) ≥

√
2.

I This estimate is sharp, this can be shown by an embedding
whose image is the set of all points in R2 with coordinates 0
and 1.
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Expanders

I Definition
For a graph G with vertex set V and a subset F ⊂ V by ∂F we
denote the set of edges connecting F and V \F . The expanding
constant (a.k.a. Cheeger constant) of G is

h(G ) = inf

{
|∂F |

min{|F |, |V \F |}
: F ⊂ V , 0 < |F | < +∞

}
(where |A| denotes the cardinality of a set A.)

I Definition
A sequence {Gn} of graphs is called a family of expanders if all of
Gn are finite, connected, k-regular for some k ∈ N (this means
that each vertex is incident with exactly k edges), their expanding
constants h(Gn) are bounded away from 0 (that is, there exists
ε > 0 such that h(Gn) ≥ ε for all n), and their sizes (numbers of
vertices) tend to ∞ as n→∞.
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Examples of expanders

I The easiest and historically the first constructions are random
graphs (Kolmogorov–Bardzin’ (1967), Pinsker (1973)).

I If we do not mind or graphs to have parallel edges, that is,
edges with the same pairs of ends, we can get expanders using
the following simple construction.

I Consider a set A of cardinality 2n. Let A = A1 ∪ A2 be a
partition of A into two equal parts of cardinality n each. Let
π1, π2, π3, π4, π5 be 5 bijections of A1 onto A2. Consider the
graph with the vertex set A and the edge set defined by the
rule: each edge uv has one end vertex in A1, say u ∈ A1, the
other vertex in A2 (v ∈ A2) and is such that v = πi (u) for
some i in the set {1, 2, 3, 4, 5}
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Exercise of the day

I Let us denote by A the number of 5-tuples of permutations
for which the expansion constant of the obtained graph is
≥ 1

4 . The total number of permutations is obviously (n!)5.

I Exercise. Show that lim
n→∞

A

(n!)5
= 1.

I Remark. You are expected to use the Stirling formula.

I Many explicit constructions of expanders are also known, but
their expanding properties are more difficult to prove.
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Poincaré inequalities for expanders

I The following is a Poincaré inequality for L1-valued functions
on a vertex set of a graph.

I We denote the adjacency matrix of a graph G = (V ,E ) by
{au,v}u,v∈V , that is

au,v =

{
1 if u and v are adjacent

0 otherwise.

Let h be the expanding constant of G .

I Theorem
The following Poincaré inequality holds for L1-valued functions on
V : ∑

u,v∈V
au,v ||f (u)− f (v)|| ≥

∑
u,v∈V

h

|V |
||f (u)− f (v)||. (5)
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I If I will not have time to prove this Theorem today, you can
find its proof in Section 2 of Chapter 4 at:
http://facpub.stjohns.edu/ostrovsm/Czech2011.html

I The Poincaré inequality for expanders is very powerful, it and
its versions for Lp-spaces have shown that expanders produce
classes of metric spaces which are the most resistant to
embeddings into ‘reasonably good’ Banach spaces.

I The Poincaré inequality (5) can be used to get an estimate for
L1-distortion of a k-regular graph with expansion constant h.
In fact, to estimate such distortion from below we need to
estimate from below the corresponding Poincaré ratio:∑

u,v∈V
h
|V | dG (u, v)∑

u,v∈V au,vdG (u, v)
. (6)
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I The Poincaré inequality (5) can be used to get an estimate for
L1-distortion of a k-regular graph with expansion constant h.
In fact, to estimate such distortion from below we need to
estimate from below the corresponding Poincaré ratio:∑
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I The denominator
∑

u,v∈V au,vdG (u, v) of the ratio is equal to
2|E |, where |E | is the number of edges in G . Since the graph
is k-regular, we have 2|E | = k |V |.

I On the other hand, the number of vertices at distance D to a
given vertex in a k-regular graph is at most

1 + k + k(k − 1) + · · ·+ k(k − 1)D−1 ≤ kD + 1.

I Let D = logk

(
|V |
2 − 1

)
. Then there are at most |V |2 vertices

with distance ≤ D to a given vertex. Therefore∑
u,v∈V

h

|V |
dG (u, v) ≥ h

|V |
· |V |

2

2
· logk

(
|V |
2
− 1

)
and the Poincaré quotient (6) is

≥ h

2k
logk

(
|V |
2
− 1

)
≥ c ln |V |.

I We get that distortions of members of a family of expanders
grow as logarithms of their sizes.
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I Remark. It is known that the logarithmic distortion is the
largest possible. Bourgain (1985) proved that there exists an
absolute constant C such c1(X ) ≤ c2(X ) ≤ C ln n for each
n-element set X .

I Expanders were also used to answer an important for
applications in Algebraic Topology question of Gromov.

I Gromov introduced the following class of embeddings:

Definition
A map f : (X , dX )→ (Y , dY ) between two metric spaces is called
a coarse embedding if there exist non-decreasing functions
ρ1, ρ2 : [0,∞)→ [0,∞) (observe that this condition implies that
ρ2 has finite values) such that limt→∞ ρ1(t) =∞ and

∀u, v ∈ X ρ1(dX (u, v)) ≤ dY (f (u), f (v)) ≤ ρ2(dX (u, v)).
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I For applications in Topology the following class of infinite
metric spaces is important:

I Definition
A discrete metric space A is said to have a bounded geometry if
for each r > 0 there exist a positive integer M(r) such that each
ball in A of radius r contains at most M(r) elements.

I It was important to know: are there spaces with bounded
geometry which are not coarsely embeddable into a Hilbert
space? Gromov observed that the Poincaré inequality for
expanders implies that each metric space containing isometric
copies of all elements of a family of expanders does not admit
a coarse embedding into L1.

I It is well known that L2 is isometric to a subspace of L1 and it
is not difficult to see how to construct a space with bounded
geometry containing isometric copies of all elements of a
family of expanders. Therefore this observation of Gromov
answers the question above.
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expanders implies that each metric space containing isometric
copies of all elements of a family of expanders does not admit
a coarse embedding into L1.

I It is well known that L2 is isometric to a subspace of L1 and it
is not difficult to see how to construct a space with bounded
geometry containing isometric copies of all elements of a
family of expanders. Therefore this observation of Gromov
answers the question above.

Mikhail Ostrovskii, St. John’s University Bilipschitz and coarse embeddings



I For applications in Topology the following class of infinite
metric spaces is important:

I Definition
A discrete metric space A is said to have a bounded geometry if
for each r > 0 there exist a positive integer M(r) such that each
ball in A of radius r contains at most M(r) elements.

I It was important to know: are there spaces with bounded
geometry which are not coarsely embeddable into a Hilbert
space? Gromov observed that the Poincaré inequality for
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Proof of Gromov’s observation

I In fact, suppose that there is an embedding f : V → L1

satisfying

∀u, v ∈ V ρ1(dG (u, v)) ≤ ||f (u)− f (v)|| ≤ ρ2(dG (u, v))

I Combining this inequality with the Poincaré inequality for
expanders (5) we get∑
u,v∈V

h

|V |
ρ1(dG (u, v)) ≤

∑
u,v∈V

au,v ||f (u)−f (v)|| ≤ k |V |ρ2(1).

I Now we recall that ρ1 is nondecreasing and that we have

already proved that at least for |V |
2

2 out of |V |2 terms in the
left-hand side of the last inequality we have

dG (u, v) ≥ logk

(
|V |
2 − 1

)
. We get

|V |2

2
· h

|V |
· ρ1(logk

(
|V |
2
− 1

)
) ≤ k |V |ρ2(1)
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I We can rewrite the last inequality (I repeat it)

|V |2

2
· h

|V |
· ρ1(logk

(
|V |
2
− 1

)
) ≤ k |V |ρ2(1)

as

ρ1(logk

(
|V |
2
− 1

)
) ≤ 2kρ2(1)

h
. (7)

I It is clear that a function ρ1 satisfying limt→∞ ρ1(t) =∞
cannot satisfy the inequality (7) for a sequence {|Vk |}∞k=1

with |Vk | → ∞ (if we plug each |Vk | instead of |V |).
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Open problem of the day

I We say that a Banach space X has a nontrivial type if there
exists ε ∈ (0, 1) and k ∈ N such that for each set {xi}ki=1 of
vectors in X

inf
ωi=±1

∥∥∥∥∥
k∑

i=1

ωixi

∥∥∥∥∥ ≤ k(1− ε) sup
i
||xi ||.

I The existence of nonreflexive spaces with nontrivial type was a
well-known open problem in the period 1964-1974. After that
several examples were constructed. The first example is due
to James (1974). An example with the simplest (in my
opinion) formula for the norm is due to Pisier–Xu (1987).

I Problem. Let X be a nonreflexive space with nontrivial type
and M be a metric space containing isometric copies of all
elements of some family of expanders. Does it always follow
that M does not admit a coarse embedding into X ? (The
problem is open for all known examples of X .)
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Proof of the Poincaré inequality for expanders

I Lemma
Let G = (V ,E ) be a connected graph with the expanding constant
h, and f : V → R be a real-valued function on V . Then∑

v∈V
|f (v)−M| ≤ 1

h

∑
uv∈E

|f (u)− f (v)|, (8)

where M is a median of the set {f (v)}v∈V .

I Replacing f by f̃ = f −M, we may assume that M = 0. Also
we assume (for simplicity) that the number of vertices is odd.
(Only a slight modification is needed in the even case.)

I Let f1 ≤ f2 ≤ · · · ≤ fk ≤ 0 = fk+1 ≤ fk+2 ≤ · · · ≤ f2k+1 be
the values of the function. Then∑

v∈V
|f (v)| =

2k+1∑
i=1

|fi |.
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I We introduce level sets of the function f as

L−i := {v : f (v) ≤ fi , i = 1, . . . , k}

and

L+
i = {v : f (v) ≥ fi , i = k + 2, . . . , 2k + 1}.

I We define also

f ∆
i := fi+1 − fi , i = 1, . . . , k

and
f ∇i := fi − fi−1, i = k + 2, . . . , 2k + 1.

I We have

2k+1∑
i=1

|fi | =
k∑

i=1

|L−i |f
∆
i +

2k+1∑
i=k+2

|L+
i |f
∇
i . (9)
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I Cardinalities of the sets L−i and L+
i do not exceed k . Observe

that the definition of the expanding constant implies
|∂F | ≥ h(G )|F | for each F with |F | ≤ |V |/2.

I Hence we have
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|L−i |f
∆
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∇
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h
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I Observe that the contribution of the edge uv to the sum(
k∑

i=1

|∂(L−i )|f ∆
i +

2k+1∑
i=k+2

|∂(L+
i )|f ∇i

)

is equal to |f (u)− f (v)|.

I Therefore we have

1

h

(
k∑

i=1

|∂(L−i )|f ∆
i +

2k+1∑
i=k+2

|∂(L+
i )|f ∇i

)

=
1

h

∑
uv∈E(G)

|f (u)− f (v)|.
(11)

I This proves the lemma.
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Proof of the theorem

I Since continuous functions are dense in L1(0, 1), it suffices to
prove the inequality (5) in the case when the functions f (u, t)
are continuous as functions of t, and so f (u, t) is well-defined
for all t ∈ [0, 1]. For each t ∈ [0, 1] we let M(t) be a median
of the set {f (u, t)}u∈V . It is easy to show that the medians
can be selected in such a way that M(t) is a continuous
function on [0, 1].

I Applying Lemma 8 for each value of t, we get∑
uv∈E

|f (u, t)− f (v , t)| ≥ h
∑
v∈V
|f (v , t)−M(t)|.

Integrating this inequality over [0, 1] we get∑
uv∈E

||f (u)− f (v)|| ≥ h
∑
v∈V
||f (v)−M||. (12)
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I By the triangle inequality we have

||f (u)− f (v)|| ≤ ||f (u)−M||+ ||f (v)−M||.

Therefore∑
u,v∈V

h

|V |
||f (u)−f (v)|| ≤ h

∑
u∈V
||f (u)−M||+h

∑
v∈V
||f (v)−M||.

I Combining this inequality with (12) and the definition of the
adjacency matrix we get (5).
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Definitions, Examples

I Definition
Let ρ1, ρ2 : [0,∞)→ [0,∞) be two non-decreasing functions
(important: ρ2 has finite values), and let F : (X , dX )→ (Y , dY )
be a mapping between two metric spaces such that
∀u, v ∈ X ρ1(dX (u, v)) ≤ dY (F (u),F (v)) ≤ ρ2(dX (u, v)).
The mapping F is called a coarse embedding if ρ1 can be chosen
to satisfy limt→∞ ρ1(t) =∞.

I Example 1. The mapping F : R→ N given by F (x) = bxc is
a coarse embedding.

I Example 2. The vertex set V of an infinite dyadic tree T
with its graph distance can be coarsely embedded into `2 in
the following way: we consider a bijection between the set of
all edges of T and vectors of an orthonormal basis {ei} in `2,
and map each vertex from V onto the sum of those vectors
from {ei} which correspond to a path from a root O of T to
the vertex, O is mapped to 0.
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Applications of coarse embeddings

I The idea of Gromov was to approach some well-known
problems in Topology using coarse embeddings of certain
finitely generated groups with their word metrics into “good”
Banach spaces.

I This idea turned out to be very fruitful, see the survey of Yu
[in: International Congress of Mathematicians. Vol. II,
1623–1639, Eur. Math. Soc., Zürich, 2006].

I We need to recall that a discrete metric space A is said to
have a bounded geometry if for each r > 0 there exist a
positive integer M(r) such that each ball in A of radius r
contains at most M(r) elements.
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Exercise and Open Problem of the day

I Definition
Let X be a space with bounded geometry and {Yn}∞n=1 be a family
of expanders. We say that X weakly contains {Yn} if there are
maps fn : Yn → X satisfying (with some abuse of notation we use
Yn to denote the vertex set of Yn)

I Lipschitz constants Lip(fn) are uniformly bounded

I lim
n→∞

max
y∈Yn

|f −1n (fn(y))|
|Yn|

= 0.

The images of Yn in X are called weak expanders.

I Open Problem. Suppose that a metric space M with
bounded geometry is not coarsely embeddable into `2. Does it
follow that M weakly contains a family of expanders?

I Exercise. Suppose that a metric space M weakly contains a
family of expanders. Show that M does not embed coarsely
into L1 (and therefore into `2).
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I The following more vague problem is also of interest: Find
some expander-like structures in a metric space which is not
coarsely embeddable into a Hilbert space.

I The purpose of this lecture is to present some results on this
problem.

I We are going to work with L1 instead of L2. Let me explain
why.

Mikhail Ostrovskii, St. John’s University Bilipschitz and coarse embeddings



I The following more vague problem is also of interest: Find
some expander-like structures in a metric space which is not
coarsely embeddable into a Hilbert space.

I The purpose of this lecture is to present some results on this
problem.

I We are going to work with L1 instead of L2. Let me explain
why.

Mikhail Ostrovskii, St. John’s University Bilipschitz and coarse embeddings



I The following more vague problem is also of interest: Find
some expander-like structures in a metric space which is not
coarsely embeddable into a Hilbert space.

I The purpose of this lecture is to present some results on this
problem.

I We are going to work with L1 instead of L2. Let me explain
why.

Mikhail Ostrovskii, St. John’s University Bilipschitz and coarse embeddings



Some remarks before presenting the example: L2 vs L1

I It turns out that coarse embeddability into L2 is equivalent to
coarse embeddability into L1. This statement follows from the
following well-known facts:

I L2 is linearly isometric to a subspace of L1 (can be proved
using independent Gaussian variables).

I The metric space (L1, || · ||1/21 ) is isometric to a subset of L2.
I We define the embedding in the following way: we map each

function from L1(R) to the indicator function of the set
between the graph of the function and the x-axis. This
indicator function is considered as an element of L2(R2). One
can check that this mapping has the desired properties. (The
observation is due to Schoenberg, the presented proof was
suggested by Naor.)

I These results show that to prove coarse
embeddability/non-embeddability results for a Hilbert space it
suffices to prove similar results for L1.
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I The following result is the first attempt to find expander-like
structures in spaces which do not admit coarse embeddings
into `2. Recall that a metric space is called locally finite is all
balls in it have finitely many elements.

I Theorem (MO (2009), Tessera (2009))
Let M be a locally finite metric space which is not coarsely
embeddable into L1. Then there exists a constant D, depending on
M only, such that for each n ∈ N there exists a finite set
Bn ⊂ M ×M and a probability measure µ on Bn such that

I dM(u, v) ≥ n for each (u, v) ∈ Bn.
I For each Lipschitz function f : M → L1 we have∫

Bn

||f (u)− f (v)||L1dµ(u, v) ≤ DLip(f ). (1)
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I Lemma
Let M be a locally finite metric space which is not coarsely
embeddable into L1. There exists a constant C depending on M
only such that for each Lipschitz function f : M → L1 there exists
a subset Bf ⊂ M ×M such that sup

(x ,y)∈Bf

dM(x , y) =∞, but

sup
(x ,y)∈Bf

||f (x)− f (y)||L1 ≤ CLip(f ).

I Proof. Assume the contrary. Then, for each n ∈ N, the
number n3 cannot serve as C . This means, that for each
n ∈ N there exists a Lipschitz mapping fn : M → L1 such that
for each subset U ⊂ M ×M with

sup
(x ,y)∈U

dM(x , y) =∞,

we have
sup

(x ,y)∈U
||fn(x)− fn(y)|| > n3Lip(fn).
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I We choose a point in M and denote it by O. Without loss of
generality we may assume that fn(O) = 0.

I Consider the mapping

f : M →

( ∞∑
k=1

⊕L1

)
1

⊂ L1

given by

f (x) =
∞∑
k=1

1

Kk2
· fk(x)

Lip(fk)
,

where K =
∑∞

k=1
1
k2 .

I It is clear that the series converges and Lip(f ) ≤ 1.
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I Let us show that f is a coarse embedding. We need an
estimate from below only (the estimate from above is satisfied
because f is Lipschitz).

I The assumption implies that for each n ∈ N there is N ∈ N
such that

dM(x , y) ≥ N ⇒ ||fn(x)− fn(y)|| > n3Lip(fn).

On the other hand

||fn(x)− fn(y)|| > n3Lip(fn)⇒

||f (x)− f (y)|| =
∞∑
k=1

1

Kk2
· ||fk(x)− fk(y)||

Lip(fk)
>

n

K
.

Hence f : M → L1 is a coarse embedding and we get a
contradiction.
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I Lemma
Let C be the constant whose existence is proved in the previous
Lemma and let ε > be arbitrary. For each n ∈ N we can find a
finite subset Mn ⊂ M such that for each Lipschitz mapping
f : M → L1 there is a pair (uf ,n, vf ,n) ∈ Mn ×Mn such that

I dM(uf ,n, vf ,n) ≥ n.
I ||f (uf ,n)− f (vf ,n)|| ≤ (C + ε)Lip(f ).

I Proof. The ball in M of radius R centered at O will be
denoted by B(R). It is clear that it suffices to prove the result
for 1-Lipschitz mappings satisfying f (O) = 0.

I Assume the contrary. Since M is locally finite, this implies
that for each R ∈ N there is a 1-Lipschitz mapping
fR : M → L1 such that fR(O) = 0 and, for u, v ∈ B(R), the
inequality dM(u, v) ≥ n implies ||fR(u)− fR(v)||L1 > C + ε.
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I We form an ultraproduct of the mappings {fR}∞R=1, that is, a
mapping f : M → (L1)U , given by f (m) = {fR(m)}∞R=1, where
U is a non-trivial ultrafilter on N and (L1)U is the
corresponding ultrapower.

I It is well-known that each ultrapower of L1 is isometric to an
L1 space on some measure space, and its separable subspaces
are isometric to subspaces of L1(0, 1). Therefore we can
consider f as a mapping into L1(0, 1). It is easy to verify that
Lip(f ) ≤ 1 and that f satisfies the condition

dM(u, v) ≥ n⇒ ||f (u)− f (v)||L1 ≥ (C + ε).

We get a contradiction with the definition of C .
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I Proof of the Theorem. Let D be a number satisfying
D > C , and let B be a number satisfying C < B < D.

I According to the second Lemma, there is a finite subset
Mn ⊂ M such that for each 1-Lipschitz function f on M there
is a pair (u, v) in Mn such that dM(u, v) ≥ n and
||f (u)− f (v)|| ≤ B.

I Let αn be the cardinality of Mn, we choose a point in Mn and
denote it by O. Proving the theorem it is enough to consider
1-Lipschitz functions f : Mn → L1 satisfying f (O) = 0. Each

αn-element subset of L1 is isometric to a subset in `
αn(αn−1)/2
1

(Witsenhausen (1986), Ball (1990)). Therefore it suffices to

prove the result for 1-Lipschitz embeddings into `
αn(αn−1)/2
1 .
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I It is clear that it suffices to prove the inequality∫
Bn

||f (u)− f (v)||dµ(u, v) ≤ B

for a
(
D−B
2

)
-net in the set of all functions satisfying the

conditions mentioned above, endowed with the metric

τ(f , g) = max
m∈Mn

||f (m)− g(m)||

I By compactness there exists a finite net satisfying the
condition. Let N be such a net.

I We are going to use the minimax theorem.
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I Let A be the matrix whose columns are labelled by functions
belonging to N, whose rows are labelled by pairs (u, v) of
elements of Mn satisfying dM(u, v) ≥ n, and whose entry on
the intersection of the column corresponding to f , and the
row corresponding to (u, v) is ||f (u)− f (v)||.

I Then, for each column vector x = {xf }f ∈N with xf ≥ 0 and∑
f ∈N xf = 1, the entries of the product Ax are the differences

||F (u)− F (v)||, where F : M →

(∑
f ∈N
⊕`αn(αn−1)/2

1

)
1

is

given by F (m) =
∑
f ∈N

xf f (m). The function F can be

considered as a function into L1. It satisfies Lip(F ) ≤ 1.
Hence there is a pair (u, v) in Mn satisfying dM(u, v) ≥ n and
||F (u)− F (v)|| ≤ B. Therefore we have maxx minµ µAx ≤ B,
where the minimum is taken over all vectors µ = {µ(u, v)},
indexed by u, v ∈ Mn, dM(u, v) ≥ n, and satisfying the
conditions µ(u, v) ≥ 0 and

∑
µ(u, v) = 1.
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I By the von Neumann minimax theorem we have

min
µ

max
x
µAx ≤ B,

which is exactly the inequality we need to prove because µ
can be regarded as a probability measure on the set of pairs
from Mn with distance ≥ n.

I The proof above can be summarized in the following way: we
can consider our situation as a kind of a two-person game:
one person picks a 1-Lipschitz function and the other picks a
pair of points in Mn at distance ≥ n. The second person wins
if ||f (u)− f (v)|| ≤ B.

I By the minimax theorem the second person has always a
winning weighted strategy.
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I This is still far from the desired result. In fact, one can prove
an analogue of the Poincaré inequality (introduced in the
previous lecture) for Lp-valued functions on expander graphs,
and show that metric spaces containing families of expanders
do not embed coarsely into Lp for 1 ≤ p <∞ (the same is
true for weak expanders).

I On the other hand, using the result of
Johnson-Randrianarivony (2006) (or its strengthening due to
Mendel-Naor (2008)) one can construct a locally finite metric
space which is a subset of `p, p is some number satisfying
p > 2, which is not coarsely embeddable into `2, and thus
contains structures described above.

I Therefore properties of the structures whose existence we
proved today are quite different from properties of real
expanders.

I The following result was proved with the purpose to get from
the previous result some more satisfactory expander-like
structures.
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Expansion properties of sets Mn.

I Let s be a positive integer. We consider graphs
G (n, s) = (Mn,E (Mn, s)), where the edge set E (Mn, s) is
obtained by joining those pairs of vertices of Mn which are at
distance ≤ s. The graphs G (n, s) have uniformly bounded
degrees if the metric space M has bounded geometry.
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I Consider the following condition:

I (*) For some s ∈ N there is a number hs > 0 and subgraphs
Hn of G (n, s) of indefinitely growing sizes (as n→∞) such
that the expansion constants of {Hn} are uniformly bounded
from below by hs .

I If we would prove that in the bounded geometry case the
condition (*) is satisfied, it would solve the problem
mentioned at the beginning of the talk: whether each metric
space with bounded geometry which does not embed coarsely
into a Hilbert space contains weak expanders?
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I At this point we are able to prove only the following weaker
expansion property of the graphs G (n, s). We introduce the
measure νn on Mn by νn(A) = µn(A×Mn). Let F be an
induced subgraph of G (n, s). We denote the vertex boundary
of a set A of vertices in F by δFA. (The vertex boundary of A
is the set of vertices which are not in A but are adjacent to
some vertices of A.)

I Theorem (MO (2009))

Let s and n be such that 2n > s > 8D. Let ϕ(D, s) = s
4D − 2.

Then G (n, s) contains an induced subgraph F with dM -diameter
≥ n − s

2 , such that each subset A ⊂ F of dM -diameter < n − s
2

satisfies the condition: νn(δFA) > ϕ(D, s)νn(A).

I The proof uses the exhaustion process similar to the one used
by Linial-Saks (1993) and “random” signing of functions
similar to the way it was used by Rao (1999) in his work on
Lipschitz embeddings of planar graphs into `2.
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Final comment

I The problem on relation between the expansion condition
from the last theorem and the desired expansion resembles the
well-known open problem: whether each sequence {Gn} of
k-regular (k ≥ 3) graphs with indefinitely growing girth
contains weak expanders?

I Recall that the girth of a graph is the length of the shortest
cycle in it.
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