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What it is about

X topological vector space

L(X ) = the continuous linear operators on X

Definition. An operator T ∈ L(X ) is hypercyclic if there is some
x ∈ X such that Orb(x ,T ) := {T n(x); n ∈ N} is dense in X .

Starting point: PhD thesis of C. Kitai (1982).
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Some trivial and less trivial remarks

• The space X has to be separable.

• The space X has to be infinite-dimensional.

• No contraction can be hypercyclic.

• No normal operator can be hypercyclic.

• No compact operator can be hypercyclic.
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Fact 1. If T is hypercyclic, then HC (T ) is dense in X .

Fact 2. Assume that the tvs X is separable and metrizable, and let
(Vj)j∈N be a countable basis of open sets for X . If T ∈ L(X ) then

HC (T ) =
⋂

j

⋃

n∈N

T−n(Vj) .

Consequence. On a Polish tvs X , an operator T is hypercyclic iff
it is topologically transitive, i.e. for any U,V ⊂ X open 6= ∅, one
can find n ∈ N such that T n(U)∩V 6= ∅. Then HC (T ) is a dense
Gδ subset of X .

Remark. hypercyclic=⇒ topologically transitive is always true.
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How to detect hypercyclicity

Theorem. (Hypercyclicity Criterion)

Let T ∈ L(X ), where X is Polish. Assume that one can find an
infinite set N ⊂ N, two dense sets D,D ′ ⊂ X, and for each n ∈ N a
map Sn : D ′ → X, such that the following hold as n → ∞, n ∈ N:

• T n(x) → 0 (x ∈ D);

• Sn(x
′) → 0 (x ′ ∈ D ′);

• T nSn(x
′) → x ′ (x ′ ∈ D ′).

Then T is hypercyclic.
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Example 1. Weighted backward shifts

X = c0(N) or ℓp(N), 1 ≤ p < ∞

w = (wn)n≥1 bounded sequence of nonzero scalars

Bw : X → X

Bw(x0, x1, x2, · · · ) = (w1x1,w2x2,w3x3, · · · )

Proposition. (Salas)

A weighted shift Bw is hypercyclic iff supn |w1w2 · · ·wn| = ∞.

Corollary. If B is the unweighted backward shift on X , then λB is
hypercyclic whenever |λ| > 1 (Rolewicz 1969).
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Example 2. Composition operators

ϕ ∈ H(D, D)

Cϕ : H2(D) → H2(D)

Cϕf = f ◦ ϕ

Theorem. (Bourdon–Shapiro)

Assume that ϕ is a linear fractional map (ϕ(z) = az+b
cz+d

) and has
no fixed point in D. Then Cϕ is hypercyclic iff either ϕ has 2 fixed
points in C ∪ {∞}, or ϕ is an automorphism of D.
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Lemma. Let T ∈ L(X ), where the tvs X is Polish and complex.

Put E+(T ) :=
⋃

|λ|>1

ker(T − λI ) and E−(T ) :=
⋃

|λ|<1

ker(T − λI ).

If both E+(T ) and E−(T ) span a dense subspace of X , then T is
hypercyclic.

Corollary. Assume that there exists an analytic or anti-analytic
map s 7→ es from some open set Ω ⊂ C into X such that

• span {es ; s ∈ Ω} = X;

• each es is an eigenvector of T ;

• for at least one s, the associated eigenvalue has modulus 1.

Then T is hypercyclic (unless T = λI ).
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Mφ(f ) = φf

Proposition. The adjoint operator M∗
φ is hypercyclic iff φ is

non-constant and φ(D) ∩ T 6= ∅.

Key fact: If ks ∈ H2 is the reproducing kernel at s ∈ D, then

M∗
φ(ks) = φ(s) ks
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H(C) = {entire functions on C}

τa : H(C) → H(C)

τaf (z) = f (z + a)

Theorem. Let T be a continuous operator on H(C). Assume that
T commutes with every translation operator τa and is not a scalar
multiple of the identity. Then T is hypercyclic.

Corollary. (1) Every nontrivial translation operator on H(C) is
hypercyclic (Birkhoff 1929). (2) The derivation operator Df = f ′

is hypercyclic (McLane 1952).
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Definition. A continuous map T : X → X is said to be mixing if
for any U,V ⊂ X open 6= ∅, one can find N ∈ N such that
T n(U) ∩ V 6= ∅ for all n ≥ N.

Example. If T ∈ L(X ) satisfies Kitai’s criterion, i.e. the
Hypercyclicity Criterion with N = N, then T is mixing.

Exercise. A weighted backward shift Bw with weight sequence
w = (wn)n≥1 is mixing iff |w1 · · ·wn| → ∞.



Existence of mixing operators



Existence of mixing operators

Theorem 1.



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)

Let B ∈ L(X ),



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)

Let B ∈ L(X ), where X is an arbitrary topological vector space.



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)

Let B ∈ L(X ), where X is an arbitrary topological vector space.
Assume that ker∗(B) :=

⋃
N∈N

ker(BN) is dense in X



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)

Let B ∈ L(X ), where X is an arbitrary topological vector space.
Assume that ker∗(B) :=

⋃
N∈N

ker(BN) is dense in X and that
ker∗(B) ⊂ Ran(B).



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)

Let B ∈ L(X ), where X is an arbitrary topological vector space.
Assume that ker∗(B) :=

⋃
N∈N

ker(BN) is dense in X and that
ker∗(B) ⊂ Ran(B). Then I + B is mixing.



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)

Let B ∈ L(X ), where X is an arbitrary topological vector space.
Assume that ker∗(B) :=

⋃
N∈N

ker(BN) is dense in X and that
ker∗(B) ⊂ Ran(B). Then I + B is mixing.

Corollary.



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)

Let B ∈ L(X ), where X is an arbitrary topological vector space.
Assume that ker∗(B) :=

⋃
N∈N

ker(BN) is dense in X and that
ker∗(B) ⊂ Ran(B). Then I + B is mixing.

Corollary. If Bw is any weighted backward shift on X = c0(N) or
ℓp(N),



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)

Let B ∈ L(X ), where X is an arbitrary topological vector space.
Assume that ker∗(B) :=

⋃
N∈N

ker(BN) is dense in X and that
ker∗(B) ⊂ Ran(B). Then I + B is mixing.

Corollary. If Bw is any weighted backward shift on X = c0(N) or
ℓp(N), then I + Bw is mixing



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)

Let B ∈ L(X ), where X is an arbitrary topological vector space.
Assume that ker∗(B) :=

⋃
N∈N

ker(BN) is dense in X and that
ker∗(B) ⊂ Ran(B). Then I + B is mixing.

Corollary. If Bw is any weighted backward shift on X = c0(N) or
ℓp(N), then I + Bw is mixing (Salas).



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)

Let B ∈ L(X ), where X is an arbitrary topological vector space.
Assume that ker∗(B) :=

⋃
N∈N

ker(BN) is dense in X and that
ker∗(B) ⊂ Ran(B). Then I + B is mixing.

Corollary. If Bw is any weighted backward shift on X = c0(N) or
ℓp(N), then I + Bw is mixing (Salas).

Theorem 2.



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)

Let B ∈ L(X ), where X is an arbitrary topological vector space.
Assume that ker∗(B) :=

⋃
N∈N

ker(BN) is dense in X and that
ker∗(B) ⊂ Ran(B). Then I + B is mixing.

Corollary. If Bw is any weighted backward shift on X = c0(N) or
ℓp(N), then I + Bw is mixing (Salas).

Theorem 2. (Ansari, Bernal-Gonzalez, Bonet–Peris)



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)

Let B ∈ L(X ), where X is an arbitrary topological vector space.
Assume that ker∗(B) :=

⋃
N∈N

ker(BN) is dense in X and that
ker∗(B) ⊂ Ran(B). Then I + B is mixing.

Corollary. If Bw is any weighted backward shift on X = c0(N) or
ℓp(N), then I + Bw is mixing (Salas).

Theorem 2. (Ansari, Bernal-Gonzalez, Bonet–Peris)

Every (infinite-dimensional) tvs
supports a mixing operator,



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)

Let B ∈ L(X ), where X is an arbitrary topological vector space.
Assume that ker∗(B) :=

⋃
N∈N

ker(BN) is dense in X and that
ker∗(B) ⊂ Ran(B). Then I + B is mixing.

Corollary. If Bw is any weighted backward shift on X = c0(N) or
ℓp(N), then I + Bw is mixing (Salas).

Theorem 2. (Ansari, Bernal-Gonzalez, Bonet–Peris)

Every (infinite-dimensional) Polish and locally convex tvs
supports a mixing operator,



Existence of mixing operators

Theorem 1. (Grivaux–Shkarin)

Let B ∈ L(X ), where X is an arbitrary topological vector space.
Assume that ker∗(B) :=

⋃
N∈N

ker(BN) is dense in X and that
ker∗(B) ⊂ Ran(B). Then I + B is mixing.

Corollary. If Bw is any weighted backward shift on X = c0(N) or
ℓp(N), then I + Bw is mixing (Salas).

Theorem 2. (Ansari, Bernal-Gonzalez, Bonet–Peris)

Every (infinite-dimensional) Polish and locally convex tvs
supports a mixing operator, and hence a hypercyclic operator.
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Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.

Example 2. Let X = (c00, τ), where τ is the strongest locally
convex topology on c00. Then X is complete and separable, there
are mixing operators on X , but no hypercyclic operators.

Example 3. There are no topologically transitive operators on ℓ∞,
and in fact on any von Neumann algebra (Bermudez–Kalton).

Questions. Characterize the tvs on which one can find hypercyclic
operators. (Very general results by Shkarin). Characterize the tvs
on which every topologically transitive operator is hypercyclic.
Characterize the (nonseparable) Banach spaces on which one can
find topologically transitive or mixing operators.
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Weakly mixing maps

Definition. A continuous map T : X → X is said to be weakly
mixing if T × T is topologically transitive on X × X .

N(U,V ) := {n ∈ N; T n(U) ∩ V 6= ∅}

T weakly mixing⇐⇒ N(U1,V1) ∩ N(U2,V2) 6= ∅

∀Ui ,Vi open 6= ∅

mixing=⇒weakly mixing=⇒ topologically transitive

Examples. (1) Irrational rotations of the circle are topologically
transitive but not weakly mixing. (2) There are weakly mixing
backward shifts which are not mixing.
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(2) the sets N(U,V ) form a filterbase;

(3) T × · · · × T
︸ ︷︷ ︸

L times

is topologically transitive for any L ≥ 1;

(4) all sets N(U,V ) are thick, i.e. they contain arbitrarily long

intervals.

Corollary. A linear continuous map T is weakly mixing iff it

satisfies the 3 open sets condition: N(U,W ) ∩N(W ,V ) 6= ∅ for

any U,V and every W neighbourhood of 0.
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Definition. An operator T ∈ L(X ) is said to be

• frequently hypercyclic if there is some x ∈ X such that all sets
N(x ,V ) := {n ∈ N; T n(x) ∈ V } have positive lower density;

• chaotic if it is hypercyclic and has a dense set of periodic
points.

Example. A weighted shift Bw acting on ℓp(N) is chaotic iff
∑

n≥1

1

|w1 · · ·wn|p
< ∞, iff it is frequently hypercyclic.

Proposition. (Grosse-Erdmann–Peris)

Frequently hypercyclic operators and chaotic operators are weakly

mixing.
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Another characterization

Theorem. (Bès–Peris)

Let T ∈ L(X ), where the tvs X is Polish. Then the following are

equivalent:

(1) T is weakly mixing;

(2) T satisfies the Hypercyclicity Criterion.
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The Hypercyclicity Criterion problem

Does every hypercyclic operator on a Polish topological vector
space satisfy the Hypercyclicity Criterion? Equivalently, is every
hypercyclic operator necessarily weakly mixing? (Herrero 1991).

Theorem 1. (De La Rosa–Read 2006)

There exists a Banach space X and a hypercyclic operator T on X

which is not weakly mixing.

X =completion of c00 for some ad hoc norm ‖ · ‖

T = forward shift on X

Tei = ei+1
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What about “classical spaces”?

Theorem 2. (Bayart–M)

Assume that X is a Banach space with a normalized unconditional

basis (ei )i≥0 such that the associated forward shift S : c00 → c00 is

bounded. Then there is a hypercyclic operator T on X which is

not weakly mixing.

Corollary. The same is true if X has a complemented subspace X0

with the above property.

Examples. Hilbert space; c0, ℓp; L1(0, 1); any universal separable
Banach space.
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How to ensure non-weak mixing

T ∈ L(X ) hypercyclic

e0 ∈ HC (T )

Lemma. Assume that there exists a non-constant continuous map

B : Orb(T , e0) × Orb(T , e0) → K such that B(Tx , y) = B(x ,Ty)
for any x , y ∈ Orb(T , e0). Then T is not weakly mixing.

K[T ]e0 := span {T ie0; i ∈ N}

(P(T )e0) · (Q(T )e0) := PQ(T )e0

Corollary. For T to be non-weakly mixing, it is enough to have a

nonzero linear functional φ : K[T ]e0 → K such that the bilinear

functional (x , y) 7→ φ(x · y) is continuous on K[T ]e0 × K[T ]e0.
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• a0 = 1, an = n + 1 (n ≥ 1)

• b0 = 0, bn = 3n (n ≥ 1)

• w(n) = 4
(

1 − 1
2
√

n

)

(n ≥ 1)

• P = (Pn)n≥0 admissible sequence of polynomials, i.e. P0 = 0
and P enumerates all polynomials with rational coefficients
(not in a 1-1 way).

dn := deg(Pn) < bn − 1

• The sequence P is controlled by some sequence (cn) ⊂ (0,∞) if
deg(Pn) < cn and |Pn|1 < cn for all n.
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Definition of T

(ei )i≥0 the good unconditional basis of X

c00 = span {ei ; i ≥ 0}

Fact. There is a unique linear map T : c00 → c00 such that the
following hold for all n ≥ 1:







Tei = w(i + 1)ei+1 , i ∈ [bn−1, bn − 1)

T bne0 = Pn(T )e0 +
1

an

ebn



Formulas

Tebn−1 := εnebn
+ fn

εn =
an−1

an w(bn−1 + 1) · · ·w(bn − 1)

fn =
an−1

w(bn−1 + 1) · · ·w(bn − 1)

(

Pn(T )e0 − T bn−bn−1Pn−1(T )e0

)
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Properties of T

(1) K[T ]e0 = c00.

(2) The closure of {T ie0; i ∈ N} contains K[T ]e0.

Moreover, there is a control sequence (cn) such that if the
admissible sequence P is controlled by (cn), then

(3) T is bounded;

(4) one can construct a nonzero linear functional φ : c00 → K

with the required continuity property.
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(a) εn ≤ 1;

(b) if ‖fk‖1 ≤ 1 for all k < n, then

‖fn‖1 ≤ n 4max(dn,dn−1)+1

[
|Pn|1
2bn−1

+ |Pn−1|1 exp
(
− c

√

bn−1

)
]

where c > 0 is a numerical constant.

Consequence. There is a control sequence (un) tending to infinity

such that T is bounded whenever the admissible sequence P is

controlled by (un).
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Formula. Write p = bk + u, q = bl + v with u ∈ [0, bk+1 − bk)
and v ∈ [0, bl+1 − bl). Then

ep =
k + 1

w(bk + 1) . . . w(bk + u)
(T bk − Pk(T ))T ue0 ,

eq =
l + 1

w(bl + 1) . . . w(bl + v)
(T bl − Pl(T ))T v e0 .

Consequence. For any linear functional φ : c00 → K, we have

|φ(ep · eq)| ≤
(k + 1)(l + 1)

2u+v
|φ(y(k,u)(l ,v))| ,

y(k,u)(l ,v) = (T bk − Pk(T ))(T bl − Pl(T ))T u+v e0 .
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Basic idea. The estimate for |φ(ep · eq)| is good if u + v is large.
If u + v is not large, declare that φ(y(k,u)(l ,v)) = 0.

Official definition. Put φ(e0) = 1 and φ(T i e0) = 0 if i ∈ (0, b1).
If i ∈ [bn, bn+1) for some n ≥ 1, set

φ(T ie0) =

{
φ(Pn(T )T i−bne0) if i ∈ [bn,

3
2bn) ∪ [2bn,

5
2bn)

0 otherwise

(This makes sense because Pn(T )T i−bne0 is supported on [0, i).)

Observation. φ((T bk − Pk(T ))z) = 0 whenever z ∈ c00 is
supported on [0, 1

2bk) ∪ [bk , 3
2bk).
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Estimate 2. Assume that deg Pn < 1
3bn for all n. Then the

following properties hold whenever 0 ≤ k ≤ l .

(a) φ(y(k,u)(l ,v)) = 0 if u + v < 1
6bl .

(b) |φ(y(k,u)(l ,v))| ≤ Ml(P)
:= max

0≤j≤l
(1 + |Pj |1)

2
∏

0<j≤l+1

max(1, |Pj |1)
2.

Consequence. There is a control sequence (vn) such that the map

(x , y) 7→ φ(x · y) is continuous whenever the admissible sequence

P is controlled by (vn).
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n=0

µ(A ∩ T−n(B)) → µ(A)µ(B)

for any measurable sets A, B . Equivalently:

1

N

N−1∑

i=0

〈f ◦ T n, g〉L2(µ) → 0

for any f , g ∈ L2(µ) such that
∫

f dµ = 0 =
∫

g dµ.
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A measure-preserving T : (X ,B, µ) → (X ,B, µ) is said to be

• mixing if 〈f ◦ T n, g〉L2(µ) → 0 for any f , g ∈ L2
0(µ);

• weakly mixing if
1

N

N−1∑

n=0

|〈f ◦T n, g〉| → 0 for any f , g ∈ L2
0(µ).

mixing=⇒weakly mixing=⇒ ergodic

Remark. T is weakly mixing wrt µ iff T ×T is ergodic wrt µ⊗ µ.
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T ∈ L(X )

If there exists a Borel probability measure µ on X such that µ has
full support and T is ergodic wrt µ, then T is hypercyclic, and
even frequently hypercyclic. In fact, almost every x ∈ X (relative
to µ) is a frequently hypercyclic vector for T .

Goal: conditions on T ensuring that one can find such a µ.

Basic idea: this will depend on the T-eigenvectors of T , i.e. the
eigenvectors associated with unimodular eigenvalues.
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Definition. A Borel probability measure µ on X is said to be
Gaussian if it is the distribution of a random variable of the form

∞∑

n=0

gnxn ,

where

• (xn) ⊂ X ;

• (gn) is a standard complex Gaussian sequence;

• the series
∑

gnxn is almost surely convergent.
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• If µ ∼
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0 gnxn, then supp(µ) = span {xn; n ≥ 0}.
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ek := Ê (−k)
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T ∈ L(X )

Exercise 1. If the T-eigenvectors of T span a dense subspace of
X , then T admits an invariant Gaussian measure with full support.

Hint: Choose a sequence of T-eigenvectors {xn; n ≥ 0} with
span {xn; n ≥ 0} = X and ‖xn‖ ≤ 2−n.

Exercise 2. If there exists a continuous map E : T → X such that
TE (λ) = λE (λ) for every λ ∈ T and span {E (λ); λ ∈ T} is dense
in X , then T satisfies Kitai’s criterion, and hence T is hypercyclic.

Hint: Put D = span {ek ; k ∈ Z} = D ′, where

ek := Ê (−k) =

∫

T

λkE (λ) dλ .
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Theorem. (Flytzanis, Bayart–Grivaux)

Let X be a complex separable Banach space, and let T ∈ L(X ).

(1) If the T-eigenvectors of T are perfectly spanning, then there

is a Gaussian measure µ on X with full support such that T is

weakly mixing wrt µ.

(2) The converse is true if X has cotype 2.
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Definition. An operator K : H → X from some separable Hilbert
space H into X is said to be γ-radonifying if for some (equivalently,
for any) orthonormal basis (en)n≥0 of H, the series

∑
gnK (en) is

a.s. convergent. The corresponding Gaussian measure does not
depend on the orthonormal basis (en) and is denoted by µK .

µK ∼

∞∑

n=0

gnK (en) .

Example 1. If X is a Hilbert space, then an operator K : H → X

is γ-radonifying iff it is Hilbert-Schmidt.

Example 2. If
∑∞

0 ‖K (en)‖ < ∞, then K is γ-radonifying.
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Some (other) useful facts

µK ∼

∞∑

n=0

gnK (en)

• The Fourier transform of µK is given by

µ̂K (x∗) = exp
(
−1

4‖K
∗(x∗)‖2

)

• If x∗, y∗ ∈ X ∗, then

〈x∗, y∗〉L2(µK ) = 〈K ∗(y∗),K ∗(x∗)〉H

• The support of µK is the closure of Ran(K ); in particular, µK

has full support iff K has dense range.
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An operator criterion for weak mixing

Lemma. Let T ∈ L(X ), and let K : H → X be γ-radonifying.

(1) The measure µ = µK is T -invariant iff one can find an

operator M : H → H such that M∗ is an isometry on

HK := H⊖ ker(K ) and TK = KM.

(2) T is weakly mixing wrt µ iff M∗ is weakly mixing to 0 on HK

i.e.
1

N

N−1∑

n=0

|〈M∗nu, v〉H| → 0 for any u, v ∈ HK .



The spectral mixing theorem



The spectral mixing theorem

Theorem.



The spectral mixing theorem

Theorem. (Halmos–von Neumann)



The spectral mixing theorem

Theorem. (Halmos–von Neumann)

Let M = Mφ be a unitary multiplication operator on H = L2(Ω, ν)



The spectral mixing theorem

Theorem. (Halmos–von Neumann)

Let M = Mφ be a unitary multiplication operator on H = L2(Ω, ν)
associated with a measurable function φ : Ω → T.



The spectral mixing theorem

Theorem. (Halmos–von Neumann)

Let M = Mφ be a unitary multiplication operator on H = L2(Ω, ν)
associated with a measurable function φ : Ω → T. The following

are equivalent:



The spectral mixing theorem

Theorem. (Halmos–von Neumann)

Let M = Mφ be a unitary multiplication operator on H = L2(Ω, ν)
associated with a measurable function φ : Ω → T. The following

are equivalent:

(i) M∗ is weakly mixing to 0 on H;



The spectral mixing theorem

Theorem. (Halmos–von Neumann)

Let M = Mφ be a unitary multiplication operator on H = L2(Ω, ν)
associated with a measurable function φ : Ω → T. The following

are equivalent:

(i) M∗ is weakly mixing to 0 on H;

(ii) M has no eigenvalue;



The spectral mixing theorem

Theorem. (Halmos–von Neumann)

Let M = Mφ be a unitary multiplication operator on H = L2(Ω, ν)
associated with a measurable function φ : Ω → T. The following

are equivalent:

(i) M∗ is weakly mixing to 0 on H;

(ii) M has no eigenvalue;

(iii) the measure ν ◦ φ−1 is continuous,



The spectral mixing theorem

Theorem. (Halmos–von Neumann)

Let M = Mφ be a unitary multiplication operator on H = L2(Ω, ν)
associated with a measurable function φ : Ω → T. The following

are equivalent:

(i) M∗ is weakly mixing to 0 on H;

(ii) M has no eigenvalue;

(iii) the measure ν ◦ φ−1 is continuous, i.e. ν({s; φ(s) = λ}) = 0
for every λ ∈ T.



All measure spaces (Ω,A, ν) are sigma-finite



All measure spaces (Ω,A, ν) are sigma-finite

All L2 spaces are separable



Spanning T-eigenfields



Spanning T-eigenfields

Definition 1.



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.

• A vector field on (Ω,A, ν)



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.

• A vector field on (Ω,A, ν) (with values in X )



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.

• A vector field on (Ω,A, ν) (with values in X ) is a measurable
map E : Ω → X



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.

• A vector field on (Ω,A, ν) (with values in X ) is a measurable
map E : Ω → X which is in L2(Ω, ν,X ).



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.

• A vector field on (Ω,A, ν) (with values in X ) is a measurable
map E : Ω → X which is in L2(Ω, ν,X ).

• A T-eigenfield for T on (Ω,A, ν)



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.

• A vector field on (Ω,A, ν) (with values in X ) is a measurable
map E : Ω → X which is in L2(Ω, ν,X ).

• A T-eigenfield for T on (Ω,A, ν) is a pair (E , φ)



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.

• A vector field on (Ω,A, ν) (with values in X ) is a measurable
map E : Ω → X which is in L2(Ω, ν,X ).

• A T-eigenfield for T on (Ω,A, ν) is a pair (E , φ) where
E : Ω → X is a vector field,



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.

• A vector field on (Ω,A, ν) (with values in X ) is a measurable
map E : Ω → X which is in L2(Ω, ν,X ).

• A T-eigenfield for T on (Ω,A, ν) is a pair (E , φ) where
E : Ω → X is a vector field, φ : Ω → T is a measurable map



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.

• A vector field on (Ω,A, ν) (with values in X ) is a measurable
map E : Ω → X which is in L2(Ω, ν,X ).

• A T-eigenfield for T on (Ω,A, ν) is a pair (E , φ) where
E : Ω → X is a vector field, φ : Ω → T is a measurable map
and TE (s) = φ(s)E (s) for every s ∈ Ω.



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.

• A vector field on (Ω,A, ν) (with values in X ) is a measurable
map E : Ω → X which is in L2(Ω, ν,X ).

• A T-eigenfield for T on (Ω,A, ν) is a pair (E , φ) where
E : Ω → X is a vector field, φ : Ω → T is a measurable map
and TE (s) = φ(s)E (s) for every s ∈ Ω.

Definition 2.



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.

• A vector field on (Ω,A, ν) (with values in X ) is a measurable
map E : Ω → X which is in L2(Ω, ν,X ).

• A T-eigenfield for T on (Ω,A, ν) is a pair (E , φ) where
E : Ω → X is a vector field, φ : Ω → T is a measurable map
and TE (s) = φ(s)E (s) for every s ∈ Ω.

Definition 2. A vector field E : Ω → X is said to be ν-spanning if,



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.

• A vector field on (Ω,A, ν) (with values in X ) is a measurable
map E : Ω → X which is in L2(Ω, ν,X ).

• A T-eigenfield for T on (Ω,A, ν) is a pair (E , φ) where
E : Ω → X is a vector field, φ : Ω → T is a measurable map
and TE (s) = φ(s)E (s) for every s ∈ Ω.

Definition 2. A vector field E : Ω → X is said to be ν-spanning if,
for any ω ⊂ Ω with ν(ω) = 0,



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.

• A vector field on (Ω,A, ν) (with values in X ) is a measurable
map E : Ω → X which is in L2(Ω, ν,X ).

• A T-eigenfield for T on (Ω,A, ν) is a pair (E , φ) where
E : Ω → X is a vector field, φ : Ω → T is a measurable map
and TE (s) = φ(s)E (s) for every s ∈ Ω.

Definition 2. A vector field E : Ω → X is said to be ν-spanning if,
for any ω ⊂ Ω with ν(ω) = 0, the linear span of {E (s); s ∈ Ω \ ω}
is dense in X .



Spanning T-eigenfields

Definition 1. Let (Ω,A, ν) be a measure space.

• A vector field on (Ω,A, ν) (with values in X ) is a measurable
map E : Ω → X which is in L2(Ω, ν,X ).

• A T-eigenfield for T on (Ω,A, ν) is a pair (E , φ) where
E : Ω → X is a vector field, φ : Ω → T is a measurable map
and TE (s) = φ(s)E (s) for every s ∈ Ω.

Definition 2. A vector field E : Ω → X is said to be ν-spanning if,
for any ω ⊂ Ω with ν(ω) = 0, the linear span of {E (s); s ∈ Ω \ ω}
is dense in X . Likewise for a T-eigenfield (E , φ).
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The operator associated with a vector field

E : Ω → X vector field on (Ω, ν)

KE : L2(Ω, ν) → X

KE (u) =

∫

Ω
u(s)E (s) dν(s)

Exercise. The operator KE is compact. If X is a Hilbert space,
then KE is Hilbert-Schmidt.
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Observation. If (E , φ) is a ν-spanning T-eigenfield for T on
(Ω, ν), then the operator KE : L2(Ω, ν) → X has dense range and
satisfies the equation TKE = KEMφ, where Mφ is the unitary
multiplication operator on L2(Ω, ν) associated with φ.

Consequence. If one can find a ν-spanning T-eigenfield (E , φ) for
T on some (Ω, ν) such that the measure ν ◦ φ−1 is continuous and

the operator KE is γ-radonifying, then one has proved that T is
weakly mixing wrt some Gaussian measure µ with full support,
namely µ = µKE

.
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Lemma 1. Put V := {(x , λ) ∈ X × T; T (x) = λx}, and let

Z ⊂ V. Assume that for any O ⊂ Z open 6= ∅, the set

{λ ∈ T; ∃x : (x , λ) ∈ O} is uncountable. Then, for any (x0, λ0) in

Z and ε > 0, one can construct a T-eigenfield (E0, φ0) for T on

(2ω,m) such that ‖E0(s) − x0‖ < ε for all s ∈ 2ω and with the

following additional properties:

• φ0 : 2ω → T is a homeomorphic embedding;

• E : 2ω → X is “super-Lipschitz”.

Lemma 2. If E : 2ω → X is super-Lipschitz, then E has an

absolutely convergent Fourier series, i.e.
∑

γ∈c2ω

‖Ê (γ)‖ < ∞.
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T weakly mixing wrt some µ

Fact 1. One can find a γ-radonifying operator K : H → X such
that µ = µK and a unitary operator M on H such that TK = KM.

WLOG: H = L2(Ω, ν) and M = Mφ for some φ : Ω → T.

Fact 2. Let V : H → H be an isometry on some invariant
subspace H1 ⊂ H. Then V is weakly mixing to 0 on H1 iff all
T-eigenvectors of V ∗ are orthogonal to H1. In the case V = M∗

φ

and H1 = H⊖ ker(K ), this means that Kπ{φ=λ} = 0 for every
λ ∈ T.

Fact 3. If X has cotype 2, then one can find a vector field
E ∈ L2(Ω, ν,X ) such that K = KE .
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Examples

• Weighted backward shifts Bw on ℓp(N) whose weight sequence
satisfies

∞∑

n=1

1

|w1 · · ·wn|p
< ∞ .

• Adjoints of multipliers on H2(D).

• Operators commuting with translations on H(C).
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Tf (t) = φ(t)f (t) −

∫ t

0
φ′(s)f (s) ds

φ(t) = e it

Fact. T has no unimodular eigenvalue. Yet, there is a Gaussian
measure with full support wrt which T is mixing.

K : L2(T) → X

Ku(t) =

∫ t

0
u(φ(s)) ds

TK = KMz

K has dense range and is γ-radonifying
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One question

Let T be a chaotic operator on X , i.e. T is hypercyclic with a
dense set of periodic points. Does there exist a Gaussian measure
µ with full support such that T is weakly mixing wrt µ?


