Introduction to linear dynamics

Introduction to linear dynamics

Part 1: basic facts

What it is about

What it is about

X topological vector space

What it is about

X topological vector space
$\mathcal{L}(X)=$ the continuous linear operators on X

What it is about

$$
\begin{gathered}
X \text { topological vector space } \\
\mathcal{L}(X)=\text { the continuous linear operators on } X
\end{gathered}
$$

Definition.

What it is about

$$
\begin{gathered}
X \text { topological vector space } \\
\mathcal{L}(X)=\text { the continuous linear operators on } X
\end{gathered}
$$

Definition. An operator $T \in \mathcal{L}(X)$ is hypercyclic

What it is about

X topological vector space
 $\mathcal{L}(X)=$ the continuous linear operators on X

Definition. An operator $T \in \mathcal{L}(X)$ is hypercyclic if there is some $x \in X$ such that $\operatorname{Orb}(x, T):=\left\{T^{n}(x) ; n \in \mathbb{N}\right\}$ is dense in X.

What it is about

X topological vector space
 $\mathcal{L}(X)=$ the continuous linear operators on X

Definition. An operator $T \in \mathcal{L}(X)$ is hypercyclic if there is some $x \in X$ such that $\operatorname{Orb}(x, T):=\left\{T^{n}(x) ; n \in \mathbb{N}\right\}$ is dense in X.

Starting point:

What it is about

X topological vector space
$\mathcal{L}(X)=$ the continuous linear operators on X

Definition. An operator $T \in \mathcal{L}(X)$ is hypercyclic if there is some $x \in X$ such that $\operatorname{Orb}(x, T):=\left\{T^{n}(x) ; n \in \mathbb{N}\right\}$ is dense in X.

Starting point: PhD thesis of C. Kitai (1982).

Some trivial and less trivial remarks

Some trivial and less trivial remarks

- The space X has to be separable.

Some trivial and less trivial remarks

- The space X has to be separable.
- The space X has to be infinite-dimensional.

Some trivial and less trivial remarks

- The space X has to be separable.
- The space X has to be infinite-dimensional.
- No contraction can be hypercyclic.

Some trivial and less trivial remarks

- The space X has to be separable.
- The space X has to be infinite-dimensional.
- No contraction can be hypercyclic.
- No normal operator can be hypercyclic.

Some trivial and less trivial remarks

- The space X has to be separable.
- The space X has to be infinite-dimensional.
- No contraction can be hypercyclic.
- No normal operator can be hypercyclic.
- No compact operator can be hypercyclic.

Topological transitivity

Topological transitivity

Fact 1.

Topological transitivity

Fact 1. If T is hypercyclic,

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2.

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2. Assume that the tvs X is separable and metrizable,

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2. Assume that the tvs X is separable and metrizable, and let $\left(V_{j}\right)_{j \in \mathbb{N}}$ be a countable basis of open sets for X.

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2. Assume that the tvs X is separable and metrizable, and let $\left(V_{j}\right)_{j \in \mathbb{N}}$ be a countable basis of open sets for X. If $T \in \mathcal{L}(X)$ then

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2. Assume that the tvs X is separable and metrizable, and let $\left(V_{j}\right)_{j \in \mathbb{N}}$ be a countable basis of open sets for X. If $T \in \mathcal{L}(X)$ then

$$
H C(T)=\bigcap_{j} \bigcup_{n \in \mathbb{N}} T^{-n}\left(V_{j}\right)
$$

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2. Assume that the tvs X is separable and metrizable, and let $\left(V_{j}\right)_{j \in \mathbb{N}}$ be a countable basis of open sets for X. If $T \in \mathcal{L}(X)$ then

$$
H C(T)=\bigcap_{j} \bigcup_{n \in \mathbb{N}} T^{-n}\left(V_{j}\right)
$$

Consequence.

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2. Assume that the tvs X is separable and metrizable, and let $\left(V_{j}\right)_{j \in \mathbb{N}}$ be a countable basis of open sets for X. If $T \in \mathcal{L}(X)$ then

$$
H C(T)=\bigcap_{j} \bigcup_{n \in \mathbb{N}} T^{-n}\left(V_{j}\right)
$$

Consequence. On a Polish tvs X,

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2. Assume that the tvs X is separable and metrizable, and let $\left(V_{j}\right)_{j \in \mathbb{N}}$ be a countable basis of open sets for X. If $T \in \mathcal{L}(X)$ then

$$
H C(T)=\bigcap_{j} \bigcup_{n \in \mathbb{N}} T^{-n}\left(V_{j}\right)
$$

Consequence. On a Polish tvs X, an operator T is hypercyclic iff

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2. Assume that the tvs X is separable and metrizable, and let $\left(V_{j}\right)_{j \in \mathbb{N}}$ be a countable basis of open sets for X. If $T \in \mathcal{L}(X)$ then

$$
H C(T)=\bigcap_{j} \bigcup_{n \in \mathbb{N}} T^{-n}\left(V_{j}\right)
$$

Consequence. On a Polish tvs X, an operator T is hypercyclic iff it is topologically transitive,

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2. Assume that the tvs X is separable and metrizable, and let $\left(V_{j}\right)_{j \in \mathbb{N}}$ be a countable basis of open sets for X. If $T \in \mathcal{L}(X)$ then

$$
H C(T)=\bigcap_{j} \bigcup_{n \in \mathbb{N}} T^{-n}\left(V_{j}\right)
$$

Consequence. On a Polish tvs X, an operator T is hypercyclic iff it is topologically transitive, i.e.

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2. Assume that the tvs X is separable and metrizable, and let $\left(V_{j}\right)_{j \in \mathbb{N}}$ be a countable basis of open sets for X. If $T \in \mathcal{L}(X)$ then

$$
H C(T)=\bigcap_{j} \bigcup_{n \in \mathbb{N}} T^{-n}\left(V_{j}\right)
$$

Consequence. On a Polish tvs X, an operator T is hypercyclic iff it is topologically transitive, i.e. for any $U, V \subset X$ open $\neq \varnothing$,

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2. Assume that the tvs X is separable and metrizable, and let $\left(V_{j}\right)_{j \in \mathbb{N}}$ be a countable basis of open sets for X. If $T \in \mathcal{L}(X)$ then

$$
H C(T)=\bigcap_{j} \bigcup_{n \in \mathbb{N}} T^{-n}\left(V_{j}\right)
$$

Consequence. On a Polish tvs X, an operator T is hypercyclic iff it is topologically transitive, i.e. for any $U, V \subset X$ open $\neq \varnothing$, one can find $n \in \mathbb{N}$ such that $T^{n}(U) \cap V \neq \varnothing$.

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2. Assume that the tvs X is separable and metrizable, and let $\left(V_{j}\right)_{j \in \mathbb{N}}$ be a countable basis of open sets for X. If $T \in \mathcal{L}(X)$ then

$$
H C(T)=\bigcap_{j} \bigcup_{n \in \mathbb{N}} T^{-n}\left(V_{j}\right)
$$

Consequence. On a Polish tvs X, an operator T is hypercyclic iff it is topologically transitive, i.e. for any $U, V \subset X$ open $\neq \varnothing$, one can find $n \in \mathbb{N}$ such that $T^{n}(U) \cap V \neq \varnothing$. Then $H C(T)$ is a dense G_{δ} subset of X.

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2. Assume that the tvs X is separable and metrizable, and let $\left(V_{j}\right)_{j \in \mathbb{N}}$ be a countable basis of open sets for X. If $T \in \mathcal{L}(X)$ then

$$
H C(T)=\bigcap_{j} \bigcup_{n \in \mathbb{N}} T^{-n}\left(V_{j}\right)
$$

Consequence. On a Polish tvs X, an operator T is hypercyclic iff it is topologically transitive, i.e. for any $U, V \subset X$ open $\neq \varnothing$, one can find $n \in \mathbb{N}$ such that $T^{n}(U) \cap V \neq \varnothing$. Then $H C(T)$ is a dense G_{δ} subset of X.

Remark.

Topological transitivity

Fact 1. If T is hypercyclic, then $H C(T)$ is dense in X.
Fact 2. Assume that the tvs X is separable and metrizable, and let $\left(V_{j}\right)_{j \in \mathbb{N}}$ be a countable basis of open sets for X. If $T \in \mathcal{L}(X)$ then

$$
H C(T)=\bigcap_{j} \bigcup_{n \in \mathbb{N}} T^{-n}\left(V_{j}\right)
$$

Consequence. On a Polish tvs X, an operator T is hypercyclic iff it is topologically transitive, i.e. for any $U, V \subset X$ open $\neq \varnothing$, one can find $n \in \mathbb{N}$ such that $T^{n}(U) \cap V \neq \varnothing$. Then $H C(T)$ is a dense G_{δ} subset of X.

Remark. hypercyclic \Longrightarrow topologically transitive is always true.

How to detect hypercyclicity

How to detect hypercyclicity

Theorem.

How to detect hypercyclicity

Theorem. (Hypercyclicity Criterion)

How to detect hypercyclicity

Theorem. (Hypercyclicity Criterion)
Let $T \in \mathcal{L}(X)$, where X is Polish.

How to detect hypercyclicity

Theorem. (Hypercyclicity Criterion)
Let $T \in \mathcal{L}(X)$, where X is Polish. Assume that one can find an infinite set $\mathbf{N} \subset \mathbb{N}$,

How to detect hypercyclicity

Theorem. (Hypercyclicity Criterion)
Let $T \in \mathcal{L}(X)$, where X is Polish. Assume that one can find an infinite set $\mathbf{N} \subset \mathbb{N}$, two dense sets $D, D^{\prime} \subset X$,

How to detect hypercyclicity

Theorem. (Hypercyclicity Criterion)
Let $T \in \mathcal{L}(X)$, where X is Polish. Assume that one can find an infinite set $\mathbf{N} \subset \mathbb{N}$, two dense sets $D, D^{\prime} \subset X$, and for each $n \in \mathbf{N}$ a $\operatorname{map} S_{n}: D^{\prime} \rightarrow X$,

How to detect hypercyclicity

Theorem. (Hypercyclicity Criterion)
Let $T \in \mathcal{L}(X)$, where X is Polish. Assume that one can find an infinite set $\mathbf{N} \subset \mathbb{N}$, two dense sets $D, D^{\prime} \subset X$, and for each $n \in \mathbf{N}$ a map $S_{n}: D^{\prime} \rightarrow X$, such that the following hold as $n \rightarrow \infty, n \in \mathbf{N}$:

How to detect hypercyclicity

Theorem. (Hypercyclicity Criterion)
Let $T \in \mathcal{L}(X)$, where X is Polish. Assume that one can find an infinite set $\mathbf{N} \subset \mathbb{N}$, two dense sets $D, D^{\prime} \subset X$, and for each $n \in \mathbf{N}$ a map $S_{n}: D^{\prime} \rightarrow X$, such that the following hold as $n \rightarrow \infty, n \in \mathbf{N}$:

- $T^{n}(x) \rightarrow 0 \quad(x \in D)$;

How to detect hypercyclicity

Theorem. (Hypercyclicity Criterion)
Let $T \in \mathcal{L}(X)$, where X is Polish. Assume that one can find an infinite set $\mathbf{N} \subset \mathbb{N}$, two dense sets $D, D^{\prime} \subset X$, and for each $n \in \mathbf{N}$ a map $S_{n}: D^{\prime} \rightarrow X$, such that the following hold as $n \rightarrow \infty, n \in \mathbf{N}$:

- $T^{n}(x) \rightarrow 0 \quad(x \in D)$;
- $S_{n}\left(x^{\prime}\right) \rightarrow 0 \quad\left(x^{\prime} \in D^{\prime}\right)$;

How to detect hypercyclicity

Theorem. (Hypercyclicity Criterion)
Let $T \in \mathcal{L}(X)$, where X is Polish. Assume that one can find an infinite set $\mathbf{N} \subset \mathbb{N}$, two dense sets $D, D^{\prime} \subset X$, and for each $n \in \mathbf{N}$ a map $S_{n}: D^{\prime} \rightarrow X$, such that the following hold as $n \rightarrow \infty, n \in \mathbf{N}$:

- $T^{n}(x) \rightarrow 0 \quad(x \in D)$;
- $S_{n}\left(x^{\prime}\right) \rightarrow 0 \quad\left(x^{\prime} \in D^{\prime}\right)$;
- $T^{n} S_{n}\left(x^{\prime}\right) \rightarrow x^{\prime} \quad\left(x^{\prime} \in D^{\prime}\right)$.

How to detect hypercyclicity

Theorem. (Hypercyclicity Criterion)
Let $T \in \mathcal{L}(X)$, where X is Polish. Assume that one can find an infinite set $\mathbf{N} \subset \mathbb{N}$, two dense sets $D, D^{\prime} \subset X$, and for each $n \in \mathbf{N}$ a map $S_{n}: D^{\prime} \rightarrow X$, such that the following hold as $n \rightarrow \infty, n \in \mathbf{N}$:

- $T^{n}(x) \rightarrow 0 \quad(x \in D)$;
- $S_{n}\left(x^{\prime}\right) \rightarrow 0 \quad\left(x^{\prime} \in D^{\prime}\right)$;
- $T^{n} S_{n}\left(x^{\prime}\right) \rightarrow x^{\prime} \quad\left(x^{\prime} \in D^{\prime}\right)$.

Then T is hypercyclic.

Example 1.

Example 1. Weighted backward shifts

Example 1. Weighted backward shifts

$$
X=c_{0}(\mathbb{N}) \text { or } \ell^{p}(\mathbb{N}), 1 \leq p<\infty
$$

Example 1. Weighted backward shifts

$$
\begin{gathered}
X=c_{0}(\mathbb{N}) \text { or } \ell^{p}(\mathbb{N}), 1 \leq p<\infty \\
\mathbf{w}=\left(w_{n}\right)_{n \geq 1} \text { bounded sequence of nonzero scalars }
\end{gathered}
$$

Example 1. Weighted backward shifts

$$
X=c_{0}(\mathbb{N}) \text { or } \ell^{p}(\mathbb{N}), 1 \leq p<\infty
$$

$\mathbf{w}=\left(w_{n}\right)_{n \geq 1}$ bounded sequence of nonzero scalars

$$
B_{w}: X \rightarrow X
$$

Example 1. Weighted backward shifts

$$
X=c_{0}(\mathbb{N}) \text { or } \ell^{p}(\mathbb{N}), 1 \leq p<\infty
$$

$\mathbf{w}=\left(w_{n}\right)_{n \geq 1}$ bounded sequence of nonzero scalars

$$
\begin{gathered}
B_{w}: X \rightarrow X \\
B_{w}\left(x_{0}, x_{1}, x_{2}, \cdots\right)=\left(w_{1} x_{1}, w_{2} x_{2}, w_{3} x_{3}, \cdots\right)
\end{gathered}
$$

Example 1. Weighted backward shifts

$$
\begin{gathered}
X=c_{0}(\mathbb{N}) \text { or } \ell^{p}(\mathbb{N}), 1 \leq p<\infty \\
\mathbf{w}=\left(w_{n}\right)_{n \geq 1} \text { bounded sequence of nonzero scalars } \\
B_{\mathbf{w}}: X \rightarrow X \\
B_{\mathbf{w}}\left(x_{0}, x_{1}, x_{2}, \cdots\right)=\left(w_{1} x_{1}, w_{2} x_{2}, w_{3} x_{3}, \cdots\right)
\end{gathered}
$$

Proposition.

Example 1. Weighted backward shifts

$$
\begin{gathered}
X=c_{0}(\mathbb{N}) \text { or } \ell^{\rho}(\mathbb{N}), 1 \leq p<\infty \\
\mathbf{w}=\left(w_{n}\right)_{n \geq 1} \text { bounded sequence of nonzero scalars } \\
B_{\mathbf{w}}: X \rightarrow X \\
B_{\mathbf{w}}\left(x_{0}, x_{1}, x_{2}, \cdots\right)=\left(w_{1} x_{1}, w_{2} x_{2}, w_{3} x_{3}, \cdots\right)
\end{gathered}
$$

Proposition. (Salas)

Example 1. Weighted backward shifts

$$
X=c_{0}(\mathbb{N}) \text { or } \ell^{p}(\mathbb{N}), 1 \leq p<\infty
$$

$$
\mathbf{w}=\left(w_{n}\right)_{n \geq 1} \text { bounded sequence of nonzero scalars }
$$

$$
\begin{gathered}
B_{w}: X \rightarrow X \\
B_{\mathrm{w}}\left(x_{0}, x_{1}, x_{2}, \cdots\right)=\left(w_{1} x_{1}, w_{2} x_{2}, w_{3} x_{3}, \cdots\right)
\end{gathered}
$$

Proposition. (Salas)
A weighted shift B_{w} is hypercyclic iff

Example 1. Weighted backward shifts

$$
X=c_{0}(\mathbb{N}) \text { or } \ell^{p}(\mathbb{N}), 1 \leq p<\infty
$$

$$
\mathbf{w}=\left(w_{n}\right)_{n \geq 1} \text { bounded sequence of nonzero scalars }
$$

$$
\begin{gathered}
B_{w}: X \rightarrow X \\
B_{w}\left(x_{0}, x_{1}, x_{2}, \cdots\right)=\left(w_{1} x_{1}, w_{2} x_{2}, w_{3} x_{3}, \cdots\right)
\end{gathered}
$$

Proposition. (Salas)
A weighted shift B_{w} is hypercyclic iff $\sup _{n}\left|w_{1} w_{2} \cdots w_{n}\right|=\infty$.

Example 1. Weighted backward shifts

$$
X=c_{0}(\mathbb{N}) \text { or } \ell^{p}(\mathbb{N}), 1 \leq p<\infty
$$

$$
\mathbf{w}=\left(w_{n}\right)_{n \geq 1} \text { bounded sequence of nonzero scalars }
$$

$$
\begin{gathered}
B_{w}: X \rightarrow X \\
B_{\mathrm{w}}\left(x_{0}, x_{1}, x_{2}, \cdots\right)=\left(w_{1} x_{1}, w_{2} x_{2}, w_{3} x_{3}, \cdots\right)
\end{gathered}
$$

Proposition. (Salas)
A weighted shift B_{w} is hypercyclic iff $\sup _{n}\left|w_{1} w_{2} \cdots w_{n}\right|=\infty$.
Corollary.

Example 1. Weighted backward shifts

$$
X=c_{0}(\mathbb{N}) \text { or } \ell^{p}(\mathbb{N}), 1 \leq p<\infty
$$

$$
\mathbf{w}=\left(w_{n}\right)_{n \geq 1} \text { bounded sequence of nonzero scalars }
$$

$$
\begin{gathered}
B_{w}: X \rightarrow X \\
B_{w}\left(x_{0}, x_{1}, x_{2}, \cdots\right)=\left(w_{1} x_{1}, w_{2} x_{2}, w_{3} x_{3}, \cdots\right)
\end{gathered}
$$

Proposition. (Salas)
A weighted shift B_{w} is hypercyclic iff $\sup _{n}\left|w_{1} w_{2} \cdots w_{n}\right|=\infty$.
Corollary. If B is the unweighted backward shift on X,

Example 1. Weighted backward shifts

$$
X=c_{0}(\mathbb{N}) \text { or } \ell^{p}(\mathbb{N}), 1 \leq p<\infty
$$

$$
\mathbf{w}=\left(w_{n}\right)_{n \geq 1} \text { bounded sequence of nonzero scalars }
$$

$$
\begin{gathered}
B_{w}: X \rightarrow X \\
B_{w}\left(x_{0}, x_{1}, x_{2}, \cdots\right)=\left(w_{1} x_{1}, w_{2} x_{2}, w_{3} x_{3}, \cdots\right)
\end{gathered}
$$

Proposition. (Salas)
A weighted shift B_{w} is hypercyclic iff $\sup _{n}\left|w_{1} w_{2} \cdots w_{n}\right|=\infty$.
Corollary. If B is the unweighted backward shift on X, then λB is hypercyclic whenever $|\lambda|>1$

Example 1. Weighted backward shifts

$$
X=c_{0}(\mathbb{N}) \text { or } \ell^{p}(\mathbb{N}), 1 \leq p<\infty
$$

$$
\mathbf{w}=\left(w_{n}\right)_{n \geq 1} \text { bounded sequence of nonzero scalars }
$$

$$
\begin{gathered}
B_{w}: X \rightarrow X \\
B_{w}\left(x_{0}, x_{1}, x_{2}, \cdots\right)=\left(w_{1} x_{1}, w_{2} x_{2}, w_{3} x_{3}, \cdots\right)
\end{gathered}
$$

Proposition. (Salas)
A weighted shift B_{w} is hypercyclic iff $\sup _{n}\left|w_{1} w_{2} \cdots w_{n}\right|=\infty$.
Corollary. If B is the unweighted backward shift on X, then λB is hypercyclic whenever $|\lambda|>1$ (Rolewicz 1969).

Example 2. Composition operators

Example 2. Composition operators

$$
\varphi \in H(\mathbb{D} \quad)
$$

Example 2. Composition operators

$$
\varphi \in H(\mathbb{D}, \mathbb{D})
$$

Example 2. Composition operators

$$
\begin{gathered}
\varphi \in H(\mathbb{D}, \mathbb{D}) \\
C_{\varphi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D})
\end{gathered}
$$

Example 2. Composition operators

$$
\begin{gathered}
\varphi \in H(\mathbb{D}, \mathbb{D}) \\
C_{\varphi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
C_{\varphi} f=f \circ \varphi
\end{gathered}
$$

Example 2. Composition operators

$$
\begin{gathered}
\varphi \in H(\mathbb{D}, \mathbb{D}) \\
C_{\varphi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
C_{\varphi} f=f \circ \varphi
\end{gathered}
$$

Theorem.

Example 2. Composition operators

$$
\begin{gathered}
\varphi \in H(\mathbb{D}, \mathbb{D}) \\
C_{\varphi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
C_{\varphi} f=f \circ \varphi
\end{gathered}
$$

Theorem. (Bourdon-Shapiro)

Example 2. Composition operators

$$
\begin{gathered}
\varphi \in H(\mathbb{D}, \mathbb{D}) \\
C_{\varphi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
C_{\varphi} f=f \circ \varphi
\end{gathered}
$$

Theorem. (Bourdon-Shapiro)
Assume that φ is a linear fractional map

Example 2. Composition operators

$$
\begin{gathered}
\varphi \in H(\mathbb{D}, \mathbb{D}) \\
C_{\varphi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
C_{\varphi} f=f \circ \varphi
\end{gathered}
$$

Theorem. (Bourdon-Shapiro)
Assume that φ is a linear fractional map $\left(\varphi(z)=\frac{a z+b}{c z+d}\right)$

Example 2. Composition operators

$$
\begin{gathered}
\varphi \in H(\mathbb{D}, \mathbb{D}) \\
C_{\varphi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
C_{\varphi} f=f \circ \varphi
\end{gathered}
$$

Theorem. (Bourdon-Shapiro)
Assume that φ is a linear fractional map $\left(\varphi(z)=\frac{a z+b}{c z+d}\right)$ and has no fixed point in \mathbb{D}.

Example 2. Composition operators

$$
\begin{gathered}
\varphi \in H(\mathbb{D}, \mathbb{D}) \\
C_{\varphi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
C_{\varphi} f=f \circ \varphi
\end{gathered}
$$

Theorem. (Bourdon-Shapiro)
Assume that φ is a linear fractional map $\left(\varphi(z)=\frac{a z+b}{c z+d}\right)$ and has no fixed point in \mathbb{D}. Then C_{φ} is hypercyclic iff

Example 2. Composition operators

$$
\begin{gathered}
\varphi \in H(\mathbb{D}, \mathbb{D}) \\
C_{\varphi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
C_{\varphi} f=f \circ \varphi
\end{gathered}
$$

Theorem. (Bourdon-Shapiro)
Assume that φ is a linear fractional map $\left(\varphi(z)=\frac{a z+b}{c z+d}\right)$ and has no fixed point in \mathbb{D}. Then C_{φ} is hypercyclic iff either φ has 2 fixed points in $\mathbb{C} \cup\{\infty\}$,

Example 2. Composition operators

$$
\begin{gathered}
\varphi \in H(\mathbb{D}, \mathbb{D}) \\
C_{\varphi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
C_{\varphi} f=f \circ \varphi
\end{gathered}
$$

Theorem. (Bourdon-Shapiro)
Assume that φ is a linear fractional map $\left(\varphi(z)=\frac{a z+b}{c z+d}\right)$ and has no fixed point in \mathbb{D}. Then C_{φ} is hypercyclic iff either φ has 2 fixed points in $\mathbb{C} \cup\{\infty\}$, or φ is an automorphism of \mathbb{D}.

Godefroy-Shapiro

Godefroy-Shapiro

Lemma.

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish and complex.

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish and complex.
Put $E^{+}(T):=\bigcup_{|\lambda|>1} \operatorname{ker}(T-\lambda I)$

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish and complex. Put $E^{+}(T):=\bigcup_{|\lambda|>1} \operatorname{ker}(T-\lambda I)$ and $E^{-}(T):=\bigcup_{|\lambda|<1} \operatorname{ker}(T-\lambda I)$.

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish and complex. Put $E^{+}(T):=\bigcup_{|\lambda|>1} \operatorname{ker}(T-\lambda I)$ and $E^{-}(T):=\bigcup_{|\lambda|<1} \operatorname{ker}(T-\lambda I)$. If both $E^{+}(T)$ and $E^{-}(T)$ span a dense subspace of X,

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish and complex. Put $E^{+}(T):=\bigcup_{|\lambda|>1} \operatorname{ker}(T-\lambda I)$ and $E^{-}(T):=\bigcup_{|\lambda|<1} \operatorname{ker}(T-\lambda I)$. If both $E^{+}(T)$ and $E^{-}(T)$ span a dense subspace of X, then T is hypercyclic.

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish and complex. Put $E^{+}(T):=\bigcup_{|\lambda|>1} \operatorname{ker}(T-\lambda I)$ and $E^{-}(T):=\bigcup_{|\lambda|<1} \operatorname{ker}(T-\lambda I)$. If both $E^{+}(T)$ and $E^{-}(T)$ span a dense subspace of X, then T is hypercyclic.

Corollary.

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish and complex. Put $E^{+}(T):=\bigcup_{|\lambda|>1} \operatorname{ker}(T-\lambda I)$ and $E^{-}(T):=\bigcup_{|\lambda|<1} \operatorname{ker}(T-\lambda I)$. If both $E^{+}(T)$ and $E^{-}(T)$ span a dense subspace of X, then T is hypercyclic.

Corollary. Assume that there exists an analytic or anti-analytic map $s \mapsto e_{s}$

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish and complex. Put $E^{+}(T):=\bigcup_{|\lambda|>1} \operatorname{ker}(T-\lambda I)$ and $E^{-}(T):=\bigcup_{|\lambda|<1} \operatorname{ker}(T-\lambda I)$. If both $E^{+}(T)$ and $E^{-}(T)$ span a dense subspace of X, then T is hypercyclic.

Corollary. Assume that there exists an analytic or anti-analytic map $s \mapsto e_{s}$ from some open set $\Omega \subset \mathbb{C}$ into X

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish and complex. Put $E^{+}(T):=\bigcup_{|\lambda|>1} \operatorname{ker}(T-\lambda I)$ and $E^{-}(T):=\bigcup_{|\lambda|<1} \operatorname{ker}(T-\lambda I)$. If both $E^{+}(T)$ and $E^{-}(T)$ span a dense subspace of X, then T is hypercyclic.

Corollary. Assume that there exists an analytic or anti-analytic map $s \mapsto e_{s}$ from some open set $\Omega \subset \mathbb{C}$ into X such that

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish and complex. Put $E^{+}(T):=\bigcup_{|\lambda|>1} \operatorname{ker}(T-\lambda I)$ and $E^{-}(T):=\bigcup_{|\lambda|<1} \operatorname{ker}(T-\lambda I)$. If both $E^{+}(T)$ and $E^{-}(T)$ span a dense subspace of X, then T is hypercyclic.

Corollary. Assume that there exists an analytic or anti-analytic map $s \mapsto e_{s}$ from some open set $\Omega \subset \mathbb{C}$ into X such that

- $\overline{\operatorname{span}}\left\{e_{s} ; s \in \Omega\right\}=X$;

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish and complex. Put $E^{+}(T):=\bigcup_{|\lambda|>1} \operatorname{ker}(T-\lambda I)$ and $E^{-}(T):=\bigcup_{|\lambda|<1} \operatorname{ker}(T-\lambda I)$. If both $E^{+}(T)$ and $E^{-}(T)$ span a dense subspace of X, then T is hypercyclic.

Corollary. Assume that there exists an analytic or anti-analytic map $s \mapsto e_{s}$ from some open set $\Omega \subset \mathbb{C}$ into X such that

- $\overline{\operatorname{span}}\left\{e_{s} ; s \in \Omega\right\}=X$;
- each e_{s} is an eigenvector of T;

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish and complex. Put $E^{+}(T):=\bigcup_{|\lambda|>1} \operatorname{ker}(T-\lambda I)$ and $E^{-}(T):=\bigcup_{|\lambda|<1} \operatorname{ker}(T-\lambda I)$. If both $E^{+}(T)$ and $E^{-}(T)$ span a dense subspace of X, then T is hypercyclic.

Corollary. Assume that there exists an analytic or anti-analytic map $s \mapsto e_{s}$ from some open set $\Omega \subset \mathbb{C}$ into X such that

- $\overline{\operatorname{span}}\left\{e_{s} ; s \in \Omega\right\}=X$;
- each e_{s} is an eigenvector of T;
- for at least one s, the associated eigenvalue has modulus 1 .

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish and complex. Put $E^{+}(T):=\bigcup_{|\lambda|>1} \operatorname{ker}(T-\lambda I)$ and $E^{-}(T):=\bigcup_{|\lambda|<1} \operatorname{ker}(T-\lambda I)$. If both $E^{+}(T)$ and $E^{-}(T)$ span a dense subspace of X, then T is hypercyclic.

Corollary. Assume that there exists an analytic or anti-analytic map $s \mapsto e_{s}$ from some open set $\Omega \subset \mathbb{C}$ into X such that

- $\overline{\operatorname{span}}\left\{e_{s} ; s \in \Omega\right\}=X$;
- each e_{s} is an eigenvector of T;
- for at least one s, the associated eigenvalue has modulus 1 .

Then T is hypercyclic

Godefroy-Shapiro

Lemma. Let $T \in \mathcal{L}(X)$, where the tvs X is Polish and complex. Put $E^{+}(T):=\bigcup_{|\lambda|>1} \operatorname{ker}(T-\lambda I)$ and $E^{-}(T):=\bigcup_{|\lambda|<1} \operatorname{ker}(T-\lambda I)$. If both $E^{+}(T)$ and $E^{-}(T)$ span a dense subspace of X, then T is hypercyclic.

Corollary. Assume that there exists an analytic or anti-analytic map $s \mapsto e_{s}$ from some open set $\Omega \subset \mathbb{C}$ into X such that

- $\overline{\operatorname{span}}\left\{e_{s} ; s \in \Omega\right\}=X$;
- each e_{s} is an eigenvector of T;
- for at least one s, the associated eigenvalue has modulus 1.

Then T is hypercyclic (unless $T=\lambda I$).

Example 3. Adjoints of multiplication operators

Example 3. Adjoints of multiplication operators

$$
\phi \in H^{\infty}(\mathbb{D})
$$

Example 3. Adjoints of multiplication operators

$$
\begin{gathered}
\phi \in H^{\infty}(\mathbb{D}) \\
M_{\phi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D})
\end{gathered}
$$

Example 3. Adjoints of multiplication operators

$$
\begin{gathered}
\phi \in H^{\infty}(\mathbb{D}) \\
M_{\phi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
M_{\phi}(f)=\phi f
\end{gathered}
$$

Example 3. Adjoints of multiplication operators

$$
\begin{gathered}
\phi \in H^{\infty}(\mathbb{D}) \\
M_{\phi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
M_{\phi}(f)=\phi f
\end{gathered}
$$

Proposition.

Example 3. Adjoints of multiplication operators

$$
\begin{gathered}
\phi \in H^{\infty}(\mathbb{D}) \\
M_{\phi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
M_{\phi}(f)=\phi f
\end{gathered}
$$

Proposition. The adjoint operator M_{ϕ}^{*} is hypercyclic iff

Example 3. Adjoints of multiplication operators

$$
\begin{gathered}
\phi \in H^{\infty}(\mathbb{D}) \\
M_{\phi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
M_{\phi}(f)=\phi f
\end{gathered}
$$

Proposition. The adjoint operator M_{ϕ}^{*} is hypercyclic iff ϕ is non-constant

Example 3. Adjoints of multiplication operators

$$
\begin{gathered}
\phi \in H^{\infty}(\mathbb{D}) \\
M_{\phi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
M_{\phi}(f)=\phi f
\end{gathered}
$$

Proposition. The adjoint operator M_{ϕ}^{*} is hypercyclic iff ϕ is non-constant and $\phi(\mathbb{D}) \cap \mathbb{T} \neq \varnothing$.

Example 3. Adjoints of multiplication operators

$$
\begin{gathered}
\phi \in H^{\infty}(\mathbb{D}) \\
M_{\phi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
M_{\phi}(f)=\phi f
\end{gathered}
$$

Proposition. The adjoint operator M_{ϕ}^{*} is hypercyclic iff ϕ is non-constant and $\phi(\mathbb{D}) \cap \mathbb{T} \neq \varnothing$.

Key fact:

Example 3. Adjoints of multiplication operators

$$
\begin{gathered}
\phi \in H^{\infty}(\mathbb{D}) \\
M_{\phi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
M_{\phi}(f)=\phi f
\end{gathered}
$$

Proposition. The adjoint operator M_{ϕ}^{*} is hypercyclic iff ϕ is non-constant and $\phi(\mathbb{D}) \cap \mathbb{T} \neq \varnothing$.

Key fact: If $k_{s} \in H^{2}$ is the reproducing kernel at $s \in \mathbb{D}$,

Example 3. Adjoints of multiplication operators

$$
\begin{gathered}
\phi \in H^{\infty}(\mathbb{D}) \\
M_{\phi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
M_{\phi}(f)=\phi f
\end{gathered}
$$

Proposition. The adjoint operator M_{ϕ}^{*} is hypercyclic iff ϕ is non-constant and $\phi(\mathbb{D}) \cap \mathbb{T} \neq \varnothing$.

Key fact: If $k_{s} \in H^{2}$ is the reproducing kernel at $s \in \mathbb{D}$, then

Example 3. Adjoints of multiplication operators

$$
\begin{gathered}
\phi \in H^{\infty}(\mathbb{D}) \\
M_{\phi}: H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}) \\
M_{\phi}(f)=\phi f
\end{gathered}
$$

Proposition. The adjoint operator M_{ϕ}^{*} is hypercyclic iff ϕ is non-constant and $\phi(\mathbb{D}) \cap \mathbb{T} \neq \varnothing$.

Key fact: If $k_{s} \in H^{2}$ is the reproducing kernel at $s \in \mathbb{D}$, then

$$
M_{\phi}^{*}\left(k_{s}\right)=\overline{\phi(s)} k_{s}
$$

Example 4.

Example 4. Operators commuting with translations

Example 4. Operators commuting with translations

$$
H(\mathbb{C})=\{\text { entire functions on } \mathbb{C}\}
$$

Example 4. Operators commuting with translations

$$
\begin{gathered}
H(\mathbb{C})=\{\text { entire functions on } \mathbb{C}\} \\
\tau_{a}: H(\mathbb{C}) \rightarrow H(\mathbb{C})
\end{gathered}
$$

Example 4. Operators commuting with translations

$$
\begin{aligned}
H(\mathbb{C}) & =\{\text { entire functions on } \mathbb{C}\} \\
& \tau_{a}: H(\mathbb{C}) \rightarrow H(\mathbb{C}) \\
& \tau_{a} f(z)=f(z+a)
\end{aligned}
$$

Example 4. Operators commuting with translations

$$
\begin{aligned}
H(\mathbb{C}) & =\{\text { entire functions on } \mathbb{C}\} \\
& \tau_{a}: H(\mathbb{C}) \rightarrow H(\mathbb{C}) \\
& \tau_{a} f(z)=f(z+a)
\end{aligned}
$$

Theorem.

Example 4. Operators commuting with translations

$$
\begin{gathered}
H(\mathbb{C})=\{\text { entire functions on } \mathbb{C}\} \\
\tau_{a}: H(\mathbb{C}) \rightarrow H(\mathbb{C}) \\
\tau_{a} f(z)=f(z+a)
\end{gathered}
$$

Theorem. Let T be a continuous operator on $H(\mathbb{C})$.

Example 4. Operators commuting with translations

$$
\begin{gathered}
H(\mathbb{C})=\{\text { entire functions on } \mathbb{C}\} \\
\tau_{a}: H(\mathbb{C}) \rightarrow H(\mathbb{C}) \\
\tau_{a} f(z)=f(z+a)
\end{gathered}
$$

Theorem. Let T be a continuous operator on $H(\mathbb{C})$. Assume that T commutes with every translation operator τ_{a}

Example 4. Operators commuting with translations

$$
\begin{gathered}
H(\mathbb{C})=\{\text { entire functions on } \mathbb{C}\} \\
\tau_{a}: H(\mathbb{C}) \rightarrow H(\mathbb{C}) \\
\tau_{a} f(z)=f(z+a)
\end{gathered}
$$

Theorem. Let T be a continuous operator on $H(\mathbb{C})$. Assume that T commutes with every translation operator τ_{a} and is not a scalar multiple of the identity.

Example 4. Operators commuting with translations

$$
\begin{gathered}
H(\mathbb{C})=\{\text { entire functions on } \mathbb{C}\} \\
\tau_{a}: H(\mathbb{C}) \rightarrow H(\mathbb{C}) \\
\tau_{a} f(z)=f(z+a)
\end{gathered}
$$

Theorem. Let T be a continuous operator on $H(\mathbb{C})$. Assume that T commutes with every translation operator τ_{a} and is not a scalar multiple of the identity. Then T is hypercyclic.

Example 4. Operators commuting with translations

$$
\begin{gathered}
H(\mathbb{C})=\{\text { entire functions on } \mathbb{C}\} \\
\tau_{a}: H(\mathbb{C}) \rightarrow H(\mathbb{C}) \\
\tau_{a} f(z)=f(z+a)
\end{gathered}
$$

Theorem. Let T be a continuous operator on $H(\mathbb{C})$. Assume that T commutes with every translation operator τ_{a} and is not a scalar multiple of the identity. Then T is hypercyclic.

Corollary.

Example 4. Operators commuting with translations

$$
\begin{gathered}
H(\mathbb{C})=\{\text { entire functions on } \mathbb{C}\} \\
\tau_{a}: H(\mathbb{C}) \rightarrow H(\mathbb{C}) \\
\tau_{a} f(z)=f(z+a)
\end{gathered}
$$

Theorem. Let T be a continuous operator on $H(\mathbb{C})$. Assume that T commutes with every translation operator τ_{a} and is not a scalar multiple of the identity. Then T is hypercyclic.

Corollary. (1) Every nontrivial translation operator on $H(\mathbb{C})$ is hypercyclic

Example 4. Operators commuting with translations

$$
\begin{gathered}
H(\mathbb{C})=\{\text { entire functions on } \mathbb{C}\} \\
\tau_{a}: H(\mathbb{C}) \rightarrow H(\mathbb{C}) \\
\tau_{a} f(z)=f(z+a)
\end{gathered}
$$

Theorem. Let T be a continuous operator on $H(\mathbb{C})$. Assume that T commutes with every translation operator τ_{a} and is not a scalar multiple of the identity. Then T is hypercyclic.

Corollary. (1) Every nontrivial translation operator on $H(\mathbb{C})$ is hypercyclic (Birkhoff 1929).

Example 4. Operators commuting with translations

$$
\begin{gathered}
H(\mathbb{C})=\{\text { entire functions on } \mathbb{C}\} \\
\tau_{a}: H(\mathbb{C}) \rightarrow H(\mathbb{C}) \\
\tau_{a} f(z)=f(z+a)
\end{gathered}
$$

Theorem. Let T be a continuous operator on $H(\mathbb{C})$. Assume that T commutes with every translation operator τ_{a} and is not a scalar multiple of the identity. Then T is hypercyclic.

Corollary. (1) Every nontrivial translation operator on $H(\mathbb{C})$ is hypercyclic (Birkhoff 1929). (2) The derivation operator Df $=f^{\prime}$ is hypercyclic

Example 4. Operators commuting with translations

$$
\begin{gathered}
H(\mathbb{C})=\{\text { entire functions on } \mathbb{C}\} \\
\tau_{a}: H(\mathbb{C}) \rightarrow H(\mathbb{C}) \\
\tau_{a} f(z)=f(z+a)
\end{gathered}
$$

Theorem. Let T be a continuous operator on $H(\mathbb{C})$. Assume that T commutes with every translation operator τ_{a} and is not a scalar multiple of the identity. Then T is hypercyclic.

Corollary. (1) Every nontrivial translation operator on $H(\mathbb{C})$ is hypercyclic (Birkhoff 1929). (2) The derivation operator Df $=f^{\prime}$ is hypercyclic (McLane 1952).

Mixing operators

Mixing operators

Definition.

Mixing operators

Definition. A continuous map $T: X \rightarrow X$ is said to be mixing

Mixing operators

Definition. A continuous map $T: X \rightarrow X$ is said to be mixing if for any $U, V \subset X$ open $\neq \varnothing$,

Mixing operators

Definition. A continuous map $T: X \rightarrow X$ is said to be mixing if for any $U, V \subset X$ open $\neq \varnothing$, one can find $N \in \mathbb{N}$ such that

Mixing operators

Definition. A continuous map $T: X \rightarrow X$ is said to be mixing if for any $U, V \subset X$ open $\neq \varnothing$, one can find $N \in \mathbb{N}$ such that $T^{n}(U) \cap V \neq \varnothing$ for all $n \geq N$.

Mixing operators

Definition. A continuous map $T: X \rightarrow X$ is said to be mixing if for any $U, V \subset X$ open $\neq \varnothing$, one can find $N \in \mathbb{N}$ such that $T^{n}(U) \cap V \neq \varnothing$ for all $n \geq N$.

Example.

Mixing operators

Definition. A continuous map $T: X \rightarrow X$ is said to be mixing if for any $U, V \subset X$ open $\neq \varnothing$, one can find $N \in \mathbb{N}$ such that $T^{n}(U) \cap V \neq \varnothing$ for all $n \geq N$.

Example. If $T \in \mathcal{L}(X)$ satisfies Kitai's criterion,

Mixing operators

Definition. A continuous map $T: X \rightarrow X$ is said to be mixing if for any $U, V \subset X$ open $\neq \varnothing$, one can find $N \in \mathbb{N}$ such that $T^{n}(U) \cap V \neq \varnothing$ for all $n \geq N$.

Example. If $T \in \mathcal{L}(X)$ satisfies Kitai's criterion, i.e. the Hypercyclicity Criterion with $\mathbf{N}=\mathbb{N}$,

Mixing operators

Definition. A continuous map $T: X \rightarrow X$ is said to be mixing if for any $U, V \subset X$ open $\neq \varnothing$, one can find $N \in \mathbb{N}$ such that $T^{n}(U) \cap V \neq \varnothing$ for all $n \geq N$.

Example. If $T \in \mathcal{L}(X)$ satisfies Kitai's criterion, i.e. the Hypercyclicity Criterion with $\mathbf{N}=\mathbb{N}$, then T is mixing.

Mixing operators

Definition. A continuous map $T: X \rightarrow X$ is said to be mixing if for any $U, V \subset X$ open $\neq \varnothing$, one can find $N \in \mathbb{N}$ such that $T^{n}(U) \cap V \neq \varnothing$ for all $n \geq N$.

Example. If $T \in \mathcal{L}(X)$ satisfies Kitai's criterion, i.e. the Hypercyclicity Criterion with $\mathbf{N}=\mathbb{N}$, then T is mixing.

Exercise.

Mixing operators

Definition. A continuous map $T: X \rightarrow X$ is said to be mixing if for any $U, V \subset X$ open $\neq \varnothing$, one can find $N \in \mathbb{N}$ such that $T^{n}(U) \cap V \neq \varnothing$ for all $n \geq N$.

Example. If $T \in \mathcal{L}(X)$ satisfies Kitai's criterion, i.e. the Hypercyclicity Criterion with $\mathbf{N}=\mathbb{N}$, then T is mixing.

Exercise. A weighted backward shift B_{w} with weight sequence $\mathbf{w}=\left(w_{n}\right)_{n \geq 1}$ is mixing iff

Mixing operators

Definition. A continuous map $T: X \rightarrow X$ is said to be mixing if for any $U, V \subset X$ open $\neq \varnothing$, one can find $N \in \mathbb{N}$ such that $T^{n}(U) \cap V \neq \varnothing$ for all $n \geq N$.

Example. If $T \in \mathcal{L}(X)$ satisfies Kitai's criterion, i.e. the Hypercyclicity Criterion with $\mathbf{N}=\mathbb{N}$, then T is mixing.

Exercise. A weighted backward shift B_{w} with weight sequence $\mathbf{w}=\left(w_{n}\right)_{n \geq 1}$ is mixing iff $\left|w_{1} \cdots w_{n}\right| \rightarrow \infty$.

Existence of mixing operators

Existence of mixing operators

Theorem 1.

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)
Let $B \in \mathcal{L}(X)$,

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)
Let $B \in \mathcal{L}(X)$, where X is an arbitrary topological vector space.

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)
Let $B \in \mathcal{L}(X)$, where X is an arbitrary topological vector space. Assume that $\operatorname{ker}^{*}(B):=\bigcup_{N \in \mathbb{N}} \operatorname{ker}\left(B^{N}\right)$ is dense in X

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)
Let $B \in \mathcal{L}(X)$, where X is an arbitrary topological vector space. Assume that $\operatorname{ker}^{*}(B):=\bigcup_{N \in \mathbb{N}} \operatorname{ker}\left(B^{N}\right)$ is dense in X and that $\operatorname{ker}^{*}(B) \subset \operatorname{Ran}(B)$.

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)
Let $B \in \mathcal{L}(X)$, where X is an arbitrary topological vector space. Assume that $\operatorname{ker}^{*}(B):=\bigcup_{N \in \mathbb{N}} \operatorname{ker}\left(B^{N}\right)$ is dense in X and that $\operatorname{ker}^{*}(B) \subset \operatorname{Ran}(B)$. Then $I+B$ is mixing.

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)
Let $B \in \mathcal{L}(X)$, where X is an arbitrary topological vector space. Assume that $\operatorname{ker}^{*}(B):=\bigcup_{N \in \mathbb{N}} \operatorname{ker}\left(B^{N}\right)$ is dense in X and that $\operatorname{ker}^{*}(B) \subset \operatorname{Ran}(B)$. Then $I+B$ is mixing.

Corollary.

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)
Let $B \in \mathcal{L}(X)$, where X is an arbitrary topological vector space. Assume that $\operatorname{ker}^{*}(B):=\bigcup_{N \in \mathbb{N}} \operatorname{ker}\left(B^{N}\right)$ is dense in X and that $\operatorname{ker}^{*}(B) \subset \operatorname{Ran}(B)$. Then $I+B$ is mixing.

Corollary. If B_{w} is any weighted backward shift on $X=c_{0}(\mathbb{N})$ or $\ell^{p}(\mathbb{N})$,

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)
Let $B \in \mathcal{L}(X)$, where X is an arbitrary topological vector space. Assume that $\operatorname{ker}^{*}(B):=\bigcup_{N \in \mathbb{N}} \operatorname{ker}\left(B^{N}\right)$ is dense in X and that $\operatorname{ker}^{*}(B) \subset \operatorname{Ran}(B)$. Then $I+B$ is mixing.

Corollary. If B_{w} is any weighted backward shift on $X=c_{0}(\mathbb{N})$ or $\ell^{p}(\mathbb{N})$, then $I+B_{\mathrm{w}}$ is mixing

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)
Let $B \in \mathcal{L}(X)$, where X is an arbitrary topological vector space. Assume that $\operatorname{ker}^{*}(B):=\bigcup_{N \in \mathbb{N}} \operatorname{ker}\left(B^{N}\right)$ is dense in X and that $\operatorname{ker}^{*}(B) \subset \operatorname{Ran}(B)$. Then $I+B$ is mixing.

Corollary. If B_{w} is any weighted backward shift on $X=c_{0}(\mathbb{N})$ or $\ell^{p}(\mathbb{N})$, then $I+B_{\mathbf{w}}$ is mixing (Salas).

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)
Let $B \in \mathcal{L}(X)$, where X is an arbitrary topological vector space. Assume that $\operatorname{ker}^{*}(B):=\bigcup_{N \in \mathbb{N}} \operatorname{ker}\left(B^{N}\right)$ is dense in X and that $\operatorname{ker}^{*}(B) \subset \operatorname{Ran}(B)$. Then $I+B$ is mixing.

Corollary. If B_{w} is any weighted backward shift on $X=c_{0}(\mathbb{N})$ or $\ell^{p}(\mathbb{N})$, then $I+B_{\mathbf{w}}$ is mixing (Salas).

Theorem 2.

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)
Let $B \in \mathcal{L}(X)$, where X is an arbitrary topological vector space. Assume that $\operatorname{ker}^{*}(B):=\bigcup_{N \in \mathbb{N}} \operatorname{ker}\left(B^{N}\right)$ is dense in X and that $\operatorname{ker}^{*}(B) \subset \operatorname{Ran}(B)$. Then $I+B$ is mixing.

Corollary. If B_{w} is any weighted backward shift on $X=c_{0}(\mathbb{N})$ or $\ell^{p}(\mathbb{N})$, then $I+B_{\mathbf{w}}$ is mixing (Salas).

Theorem 2. (Ansari, Bernal-Gonzalez, Bonet-Peris)

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)
Let $B \in \mathcal{L}(X)$, where X is an arbitrary topological vector space. Assume that $\operatorname{ker}^{*}(B):=\bigcup_{N \in \mathbb{N}} \operatorname{ker}\left(B^{N}\right)$ is dense in X and that $\operatorname{ker}^{*}(B) \subset \operatorname{Ran}(B)$. Then $I+B$ is mixing.

Corollary. If B_{w} is any weighted backward shift on $X=c_{0}(\mathbb{N})$ or $\ell^{p}(\mathbb{N})$, then $I+B_{\mathbf{w}}$ is mixing (Salas).

Theorem 2. (Ansari, Bernal-Gonzalez, Bonet-Peris)
Every (infinite-dimensional)
supports a mixing operator,

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)
Let $B \in \mathcal{L}(X)$, where X is an arbitrary topological vector space. Assume that $\operatorname{ker}^{*}(B):=\bigcup_{N \in \mathbb{N}} \operatorname{ker}\left(B^{N}\right)$ is dense in X and that $\operatorname{ker}^{*}(B) \subset \operatorname{Ran}(B)$. Then $I+B$ is mixing.

Corollary. If B_{w} is any weighted backward shift on $X=c_{0}(\mathbb{N})$ or $\ell^{p}(\mathbb{N})$, then $I+B_{\mathbf{w}}$ is mixing (Salas).

Theorem 2. (Ansari, Bernal-Gonzalez, Bonet-Peris)
Every (infinite-dimensional) Polish and locally convex tvs supports a mixing operator,

Existence of mixing operators

Theorem 1. (Grivaux-Shkarin)
Let $B \in \mathcal{L}(X)$, where X is an arbitrary topological vector space. Assume that $\operatorname{ker}^{*}(B):=\bigcup_{N \in \mathbb{N}} \operatorname{ker}\left(B^{N}\right)$ is dense in X and that $\operatorname{ker}^{*}(B) \subset \operatorname{Ran}(B)$. Then $I+B$ is mixing.

Corollary. If B_{w} is any weighted backward shift on $X=c_{0}(\mathbb{N})$ or $\ell^{p}(\mathbb{N})$, then $I+B_{\mathbf{w}}$ is mixing (Salas).

Theorem 2. (Ansari, Bernal-Gonzalez, Bonet-Peris)
Every (infinite-dimensional) Polish and locally convex tvs supports a mixing operator, and hence a hypercyclic operator.

Three examples and some questions

Three examples and some questions

Example 1.

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.

Example 2.

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.
Example 2. Let $X=\left(c_{00}, \tau\right)$,

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.
Example 2. Let $X=\left(c_{00}, \tau\right)$, where τ is the strongest locally convex topology on c_{00}.

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.
Example 2. Let $X=\left(c_{00}, \tau\right)$, where τ is the strongest locally convex topology on c_{00}. Then X is complete and separable,

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.
Example 2. Let $X=\left(c_{00}, \tau\right)$, where τ is the strongest locally convex topology on c_{00}. Then X is complete and separable, there are mixing operators on X,

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.
Example 2. Let $X=\left(c_{00}, \tau\right)$, where τ is the strongest locally convex topology on c_{00}. Then X is complete and separable, there are mixing operators on X, but no hypercyclic operators.

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.
Example 2. Let $X=\left(c_{00}, \tau\right)$, where τ is the strongest locally convex topology on c_{00}. Then X is complete and separable, there are mixing operators on X, but no hypercyclic operators.

Example 3.

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.
Example 2. Let $X=\left(c_{00}, \tau\right)$, where τ is the strongest locally convex topology on c_{00}. Then X is complete and separable, there are mixing operators on X, but no hypercyclic operators.

Example 3. There are no topologically transitive operators on ℓ^{∞},

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.
Example 2. Let $X=\left(c_{00}, \tau\right)$, where τ is the strongest locally convex topology on c_{00}. Then X is complete and separable, there are mixing operators on X, but no hypercyclic operators.

Example 3. There are no topologically transitive operators on ℓ^{∞}, and in fact on any von Neumann algebra

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.
Example 2. Let $X=\left(c_{00}, \tau\right)$, where τ is the strongest locally convex topology on c_{00}. Then X is complete and separable, there are mixing operators on X, but no hypercyclic operators.

Example 3. There are no topologically transitive operators on ℓ^{∞}, and in fact on any von Neumann algebra (Bermudez-Kalton).

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.
Example 2. Let $X=\left(c_{00}, \tau\right)$, where τ is the strongest locally convex topology on c_{00}. Then X is complete and separable, there are mixing operators on X, but no hypercyclic operators.

Example 3. There are no topologically transitive operators on ℓ^{∞}, and in fact on any von Neumann algebra (Bermudez-Kalton).

Questions.

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.
Example 2. Let $X=\left(c_{00}, \tau\right)$, where τ is the strongest locally convex topology on c_{00}. Then X is complete and separable, there are mixing operators on X, but no hypercyclic operators.

Example 3. There are no topologically transitive operators on ℓ^{∞}, and in fact on any von Neumann algebra (Bermudez-Kalton).

Questions. Characterize the tvs on which one can find hypercyclic operators.

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.
Example 2. Let $X=\left(c_{00}, \tau\right)$, where τ is the strongest locally convex topology on c_{00}. Then X is complete and separable, there are mixing operators on X, but no hypercyclic operators.

Example 3. There are no topologically transitive operators on ℓ^{∞}, and in fact on any von Neumann algebra (Bermudez-Kalton).

Questions. Characterize the tvs on which one can find hypercyclic operators. (Very general results by Shkarin).

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.
Example 2. Let $X=\left(c_{00}, \tau\right)$, where τ is the strongest locally convex topology on c_{00}. Then X is complete and separable, there are mixing operators on X, but no hypercyclic operators.

Example 3. There are no topologically transitive operators on ℓ^{∞}, and in fact on any von Neumann algebra (Bermudez-Kalton).

Questions. Characterize the tvs on which one can find hypercyclic operators. (Very general results by Shkarin). Characterize the tvs on which every topologically transitive operator is hypercyclic.

Three examples and some questions

Example 1. There are mixing operators on any Hilbert space.
Example 2. Let $X=\left(c_{00}, \tau\right)$, where τ is the strongest locally convex topology on c_{00}. Then X is complete and separable, there are mixing operators on X, but no hypercyclic operators.

Example 3. There are no topologically transitive operators on ℓ^{∞}, and in fact on any von Neumann algebra (Bermudez-Kalton).

Questions. Characterize the tvs on which one can find hypercyclic operators. (Very general results by Shkarin). Characterize the tvs on which every topologically transitive operator is hypercyclic. Characterize the (nonseparable) Banach spaces on which one can find topologically transitive or mixing operators.

Introduction to linear dynamics

Introduction to linear dynamics

Part 2: weakly mixing operators

Weakly mixing maps

Weakly mixing maps

Definition.

Weakly mixing maps

Definition. A continuous map $T: X \rightarrow X$ is said to be weakly mixing

Weakly mixing maps

Definition. A continuous map $T: X \rightarrow X$ is said to be weakly mixing if $T \times T$ is topologically transitive on $X \times X$.

Weakly mixing maps

Definition. A continuous map $T: X \rightarrow X$ is said to be weakly mixing if $T \times T$ is topologically transitive on $X \times X$.

$$
\mathbf{N}(U, V):=\left\{n \in \mathbb{N} ; T^{n}(U) \cap V \neq \varnothing\right\}
$$

Weakly mixing maps

Definition. A continuous map $T: X \rightarrow X$ is said to be weakly mixing if $T \times T$ is topologically transitive on $X \times X$.

$$
\mathbf{N}(U, V):=\left\{n \in \mathbb{N} ; T^{n}(U) \cap V \neq \varnothing\right\}
$$

T weakly mixing $\Longleftrightarrow \mathbf{N}\left(U_{1}, V_{1}\right) \cap \mathbf{N}\left(U_{2}, V_{2}\right) \neq \varnothing$

Weakly mixing maps

Definition. A continuous map $T: X \rightarrow X$ is said to be weakly mixing if $T \times T$ is topologically transitive on $X \times X$.

$$
\mathbf{N}(U, V):=\left\{n \in \mathbb{N} ; T^{n}(U) \cap V \neq \varnothing\right\}
$$

T weakly mixing $\Longleftrightarrow \mathbf{N}\left(U_{1}, V_{1}\right) \cap \mathbf{N}\left(U_{2}, V_{2}\right) \neq \varnothing$
$\forall U_{i}, V_{i}$ open $\neq \varnothing$

Weakly mixing maps

Definition. A continuous map $T: X \rightarrow X$ is said to be weakly mixing if $T \times T$ is topologically transitive on $X \times X$.

$$
\mathbf{N}(U, V):=\left\{n \in \mathbb{N} ; T^{n}(U) \cap V \neq \varnothing\right\}
$$

T weakly mixing $\Longleftrightarrow \mathbf{N}\left(U_{1}, V_{1}\right) \cap \mathbf{N}\left(U_{2}, V_{2}\right) \neq \varnothing$
$\forall U_{i}, V_{i}$ open $\neq \varnothing$
mixing

Weakly mixing maps

Definition. A continuous map $T: X \rightarrow X$ is said to be weakly mixing if $T \times T$ is topologically transitive on $X \times X$.

$$
\mathbf{N}(U, V):=\left\{n \in \mathbb{N} ; T^{n}(U) \cap V \neq \varnothing\right\}
$$

T weakly mixing $\Longleftrightarrow \mathbf{N}\left(U_{1}, V_{1}\right) \cap \mathbf{N}\left(U_{2}, V_{2}\right) \neq \varnothing$
$\forall U_{i}, V_{i}$ open $\neq \varnothing$
mixing \Longrightarrow weakly mixing

Weakly mixing maps

Definition. A continuous map $T: X \rightarrow X$ is said to be weakly mixing if $T \times T$ is topologically transitive on $X \times X$.

$$
\mathbf{N}(U, V):=\left\{n \in \mathbb{N} ; T^{n}(U) \cap V \neq \varnothing\right\}
$$

T weakly mixing $\Longleftrightarrow \mathbf{N}\left(U_{1}, V_{1}\right) \cap \mathbf{N}\left(U_{2}, V_{2}\right) \neq \varnothing$
$\forall U_{i}, V_{i}$ open $\neq \varnothing$
mixing \Longrightarrow weakly mixing \Longrightarrow topologically transitive

Weakly mixing maps

Definition. A continuous map $T: X \rightarrow X$ is said to be weakly mixing if $T \times T$ is topologically transitive on $X \times X$.

$$
\mathbf{N}(U, V):=\left\{n \in \mathbb{N} ; T^{n}(U) \cap V \neq \varnothing\right\}
$$

T weakly mixing $\Longleftrightarrow \mathbf{N}\left(U_{1}, V_{1}\right) \cap \mathbf{N}\left(U_{2}, V_{2}\right) \neq \varnothing$
$\forall U_{i}, V_{i}$ open $\neq \varnothing$
mixing \Longrightarrow weakly mixing \Longrightarrow topologically transitive

Examples.

Weakly mixing maps

Definition. A continuous map $T: X \rightarrow X$ is said to be weakly mixing if $T \times T$ is topologically transitive on $X \times X$.

$$
\mathbf{N}(U, V):=\left\{n \in \mathbb{N} ; T^{n}(U) \cap V \neq \varnothing\right\}
$$

T weakly mixing $\Longleftrightarrow \mathbf{N}\left(U_{1}, V_{1}\right) \cap \mathbf{N}\left(U_{2}, V_{2}\right) \neq \varnothing$
$\forall U_{i}, V_{i}$ open $\neq \varnothing$
mixing \Longrightarrow weakly mixing \Longrightarrow topologically transitive

Examples. (1) Irrational rotations of the circle are topologically transitive but not weakly mixing.

Weakly mixing maps

Definition. A continuous map $T: X \rightarrow X$ is said to be weakly mixing if $T \times T$ is topologically transitive on $X \times X$.

$$
\mathbf{N}(U, V):=\left\{n \in \mathbb{N} ; T^{n}(U) \cap V \neq \varnothing\right\}
$$

T weakly mixing $\Longleftrightarrow \mathbf{N}\left(U_{1}, V_{1}\right) \cap \mathbf{N}\left(U_{2}, V_{2}\right) \neq \varnothing$
$\forall U_{i}, V_{i}$ open $\neq \varnothing$
mixing \Longrightarrow weakly mixing \Longrightarrow topologically transitive

Examples. (1) Irrational rotations of the circle are topologically transitive but not weakly mixing. (2) There are weakly mixing backward shifts which are not mixing.

Characterizations

Characterizations

Theorem. (Furstenberg)

Characterizations

Theorem. (Furstenberg)
For a continuous map $T: X \rightarrow X$, the following are equivalent:

Characterizations

Theorem. (Furstenberg)
For a continuous map $T: X \rightarrow X$, the following are equivalent:
(1) T is weakly mixing;

Characterizations

Theorem. (Furstenberg)
For a continuous map $T: X \rightarrow X$, the following are equivalent:
(1) T is weakly mixing;
(2) the sets $\mathbf{N}(U, V)$ form a filterbase;

Characterizations

Theorem. (Furstenberg)
For a continuous map $T: X \rightarrow X$, the following are equivalent:
(1) T is weakly mixing;
(2) the sets $\mathbf{N}(U, V)$ form a filterbase;
(3) $\underbrace{T \times \cdots \times T}_{L \text { times }}$ is topologically transitive for any $L \geq 1$;

Characterizations

Theorem. (Furstenberg)
For a continuous map $T: X \rightarrow X$, the following are equivalent:
(1) T is weakly mixing;
(2) the sets $\mathbf{N}(U, V)$ form a filterbase;
(3) $\underbrace{T \times \cdots \times T}_{L \text { times }}$ is topologically transitive for any $L \geq 1$;
(4) all sets $\mathbf{N}(U, V)$ are thick,

Characterizations

Theorem. (Furstenberg)
For a continuous map $T: X \rightarrow X$, the following are equivalent:
(1) T is weakly mixing;
(2) the sets $\mathbf{N}(U, V)$ form a filterbase;
(3) $\underbrace{T \times \cdots \times T}_{L \text { times }}$ is topologically transitive for any $L \geq 1$;
(4) all sets $\mathbf{N}(U, V)$ are thick, i.e. they contain arbitrarily long intervals.

Characterizations

Theorem. (Furstenberg)
For a continuous map $T: X \rightarrow X$, the following are equivalent:
(1) T is weakly mixing;
(2) the sets $\mathbf{N}(U, V)$ form a filterbase;
(3) $\underbrace{T \times \cdots \times T}_{L \text { times }}$ is topologically transitive for any $L \geq 1$;
(4) all sets $\mathbf{N}(U, V)$ are thick, i.e. they contain arbitrarily long intervals.

Corollary.

Characterizations

Theorem. (Furstenberg)
For a continuous map $T: X \rightarrow X$, the following are equivalent:
(1) T is weakly mixing;
(2) the sets $\mathbf{N}(U, V)$ form a filterbase;
(3) $\underbrace{T \times \cdots \times T}_{L \text { times }}$ is topologically transitive for any $L \geq 1$;
(4) all sets $\mathbf{N}(U, V)$ are thick, i.e. they contain arbitrarily long intervals.

Corollary. A linear continuous map T is weakly mixing iff

Characterizations

Theorem. (Furstenberg)
For a continuous map $T: X \rightarrow X$, the following are equivalent:
(1) T is weakly mixing;
(2) the sets $\mathbf{N}(U, V)$ form a filterbase;
(3) $\underbrace{T \times \cdots \times T}_{L \text { times }}$ is topologically transitive for any $L \geq 1$;
(4) all sets $\mathbf{N}(U, V)$ are thick, i.e. they contain arbitrarily long intervals.

Corollary. A linear continuous map T is weakly mixing iff it satisfies the 3 open sets condition:

Characterizations

Theorem. (Furstenberg)
For a continuous map $T: X \rightarrow X$, the following are equivalent:
(1) T is weakly mixing;
(2) the sets $\mathbf{N}(U, V)$ form a filterbase;
(3) $\underbrace{T \times \cdots \times T}_{L \text { times }}$ is topologically transitive for any $L \geq 1$;
(4) all sets $\mathbf{N}(U, V)$ are thick, i.e. they contain arbitrarily long intervals.

Corollary. A linear continuous map T is weakly mixing iff it satisfies the 3 open sets condition: $\mathbf{N}(U, W) \cap \mathbf{N}(W, V) \neq \varnothing$

Characterizations

Theorem. (Furstenberg)
For a continuous map $T: X \rightarrow X$, the following are equivalent:
(1) T is weakly mixing;
(2) the sets $\mathbf{N}(U, V)$ form a filterbase;
(3) $\underbrace{T \times \cdots \times T}_{L \text { times }}$ is topologically transitive for any $L \geq 1$;
(4) all sets $\mathbf{N}(U, V)$ are thick, i.e. they contain arbitrarily long intervals.

Corollary. A linear continuous map T is weakly mixing iff it satisfies the 3 open sets condition: $\mathbf{N}(U, W) \cap \mathbf{N}(W, V) \neq \varnothing$ for any U,V

Characterizations

Theorem. (Furstenberg)
For a continuous map $T: X \rightarrow X$, the following are equivalent:
(1) T is weakly mixing;
(2) the sets $\mathbf{N}(U, V)$ form a filterbase;
(3) $\underbrace{T \times \cdots \times T}_{L \text { times }}$ is topologically transitive for any $L \geq 1$;
(4) all sets $\mathbf{N}(U, V)$ are thick, i.e. they contain arbitrarily long intervals.

Corollary. A linear continuous map T is weakly mixing iff it satisfies the 3 open sets condition: $\mathbf{N}(U, W) \cap \mathbf{N}(W, V) \neq \varnothing$ for any U, V and every W neighbourhood of 0 .

Two classes of examples

Two classes of examples

Definition.

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

- frequently hypercyclic

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

- frequently hypercyclic if there is some $x \in X$ such that

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

- frequently hypercyclic if there is some $x \in X$ such that all sets $\mathbf{N}(x, V):=\left\{n \in \mathbb{N} ; T^{n}(x) \in V\right\}$

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

- frequently hypercyclic if there is some $x \in X$ such that all sets $\mathbf{N}(x, V):=\left\{n \in \mathbb{N} ; T^{n}(x) \in V\right\}$ have positive lower density;

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

- frequently hypercyclic if there is some $x \in X$ such that all sets $\mathbf{N}(x, V):=\left\{n \in \mathbb{N} ; T^{n}(x) \in V\right\}$ have positive lower density;
- chaotic

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

- frequently hypercyclic if there is some $x \in X$ such that all sets $\mathbf{N}(x, V):=\left\{n \in \mathbb{N} ; T^{n}(x) \in V\right\}$ have positive lower density;
- chaotic if it is hypercyclic and has a dense set of periodic points.

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

- frequently hypercyclic if there is some $x \in X$ such that all sets $\mathbf{N}(x, V):=\left\{n \in \mathbb{N} ; T^{n}(x) \in V\right\}$ have positive lower density;
- chaotic if it is hypercyclic and has a dense set of periodic points.

Example.

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

- frequently hypercyclic if there is some $x \in X$ such that all sets $\mathbf{N}(x, V):=\left\{n \in \mathbb{N} ; T^{n}(x) \in V\right\}$ have positive lower density;
- chaotic if it is hypercyclic and has a dense set of periodic points.

Example. A weighted shift B_{w} acting on $\ell^{p}(\mathbb{N})$

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

- frequently hypercyclic if there is some $x \in X$ such that all sets $\mathbf{N}(x, V):=\left\{n \in \mathbb{N} ; T^{n}(x) \in V\right\}$ have positive lower density;
- chaotic if it is hypercyclic and has a dense set of periodic points.

Example. A weighted shift B_{w} acting on $\ell^{p}(\mathbb{N})$ is chaotic

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

- frequently hypercyclic if there is some $x \in X$ such that all sets $\mathbf{N}(x, V):=\left\{n \in \mathbb{N} ; T^{n}(x) \in V\right\}$ have positive lower density;
- chaotic if it is hypercyclic and has a dense set of periodic points.

Example. A weighted shift B_{w} acting on $\ell^{p}(\mathbb{N})$ is chaotic iff
$\sum_{n \geq 1} \frac{1}{\left|w_{1} \cdots w_{n}\right|^{p}}<\infty$,

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

- frequently hypercyclic if there is some $x \in X$ such that all sets $\mathbf{N}(x, V):=\left\{n \in \mathbb{N} ; T^{n}(x) \in V\right\}$ have positive lower density;
- chaotic if it is hypercyclic and has a dense set of periodic points.

Example. A weighted shift B_{w} acting on $\ell^{p}(\mathbb{N})$ is chaotic iff
$\sum_{n \geq 1} \frac{1}{\left|w_{1} \cdots w_{n}\right|^{p}}<\infty$, iff it is frequently hypercyclic.

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

- frequently hypercyclic if there is some $x \in X$ such that all sets $\mathbf{N}(x, V):=\left\{n \in \mathbb{N} ; T^{n}(x) \in V\right\}$ have positive lower density;
- chaotic if it is hypercyclic and has a dense set of periodic points.

Example. A weighted shift B_{w} acting on $\ell^{p}(\mathbb{N})$ is chaotic iff
$\sum_{n \geq 1} \frac{1}{\left|w_{1} \cdots w_{n}\right|^{p}}<\infty$, iff it is frequently hypercyclic.

Proposition.

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

- frequently hypercyclic if there is some $x \in X$ such that all sets $\mathbf{N}(x, V):=\left\{n \in \mathbb{N} ; T^{n}(x) \in V\right\}$ have positive lower density;
- chaotic if it is hypercyclic and has a dense set of periodic points.

Example. A weighted shift B_{w} acting on $\ell^{p}(\mathbb{N})$ is chaotic iff
$\sum_{n \geq 1} \frac{1}{\left|w_{1} \cdots w_{n}\right|^{p}}<\infty$, iff it is frequently hypercyclic.

Proposition. (Grosse-Erdmann-Peris)

Two classes of examples

Definition. An operator $T \in \mathcal{L}(X)$ is said to be

- frequently hypercyclic if there is some $x \in X$ such that all sets $\mathbf{N}(x, V):=\left\{n \in \mathbb{N} ; T^{n}(x) \in V\right\}$ have positive lower density;
- chaotic if it is hypercyclic and has a dense set of periodic points.

Example. A weighted shift B_{w} acting on $\ell^{p}(\mathbb{N})$ is chaotic iff
$\sum_{n \geq 1} \frac{1}{\left|w_{1} \cdots w_{n}\right|^{p}}<\infty$, iff it is frequently hypercyclic.

Proposition. (Grosse-Erdmann-Peris)
Frequently hypercyclic operators and chaotic operators are weakly mixing.

Another characterization

Another characterization

Theorem.

Another characterization

Theorem. (Bès-Peris)

Another characterization

Theorem. (Bès-Peris)
Let $T \in \mathcal{L}(X)$, where the tvs X is Polish.

Another characterization

Theorem. (Bès-Peris)
Let $T \in \mathcal{L}(X)$, where the tvs X is Polish. Then the following are equivalent:

Another characterization

Theorem. (Bès-Peris)
Let $T \in \mathcal{L}(X)$, where the tvs X is Polish. Then the following are equivalent:
(1) T is weakly mixing;

Another characterization

Theorem. (Bès-Peris)
Let $T \in \mathcal{L}(X)$, where the tvs X is Polish. Then the following are equivalent:
(1) T is weakly mixing;
(2) T satisfies the Hypercyclicity Criterion.

The Hypercyclicity Criterion problem

The Hypercyclicity Criterion problem

Does every hypercyclic operator on a Polish topological vector space satisfy the Hypercyclicity Criterion?

The Hypercyclicity Criterion problem

Does every hypercyclic operator on a Polish topological vector space satisfy the Hypercyclicity Criterion? Equivalently,

The Hypercyclicity Criterion problem

Does every hypercyclic operator on a Polish topological vector space satisfy the Hypercyclicity Criterion? Equivalently, is every hypercyclic operator necessarily weakly mixing?

The Hypercyclicity Criterion problem

Does every hypercyclic operator on a Polish topological vector space satisfy the Hypercyclicity Criterion? Equivalently, is every hypercyclic operator necessarily weakly mixing? (Herrero 1991).

The Hypercyclicity Criterion problem

Does every hypercyclic operator on a Polish topological vector space satisfy the Hypercyclicity Criterion? Equivalently, is every hypercyclic operator necessarily weakly mixing? (Herrero 1991).

Theorem 1.

The Hypercyclicity Criterion problem

Does every hypercyclic operator on a Polish topological vector space satisfy the Hypercyclicity Criterion? Equivalently, is every hypercyclic operator necessarily weakly mixing? (Herrero 1991).

Theorem 1. (De La Rosa-Read 2006)

The Hypercyclicity Criterion problem

Does every hypercyclic operator on a Polish topological vector space satisfy the Hypercyclicity Criterion? Equivalently, is every hypercyclic operator necessarily weakly mixing? (Herrero 1991).

Theorem 1. (De La Rosa-Read 2006)
There exists a Banach space X

The Hypercyclicity Criterion problem

Does every hypercyclic operator on a Polish topological vector space satisfy the Hypercyclicity Criterion? Equivalently, is every hypercyclic operator necessarily weakly mixing? (Herrero 1991).

Theorem 1. (De La Rosa-Read 2006)
There exists a Banach space X and a hypercyclic operator T on X which is not weakly mixing.

The Hypercyclicity Criterion problem

Does every hypercyclic operator on a Polish topological vector space satisfy the Hypercyclicity Criterion? Equivalently, is every hypercyclic operator necessarily weakly mixing? (Herrero 1991).

Theorem 1. (De La Rosa-Read 2006)
There exists a Banach space X and a hypercyclic operator T on X which is not weakly mixing.

$$
X=\text { completion of } c_{00} \text { for some ad hoc norm \| . \| }
$$

The Hypercyclicity Criterion problem

Does every hypercyclic operator on a Polish topological vector space satisfy the Hypercyclicity Criterion? Equivalently, is every hypercyclic operator necessarily weakly mixing? (Herrero 1991).

Theorem 1. (De La Rosa-Read 2006)
There exists a Banach space X and a hypercyclic operator T on X which is not weakly mixing.
$X=$ completion of c_{00} for some ad hoc norm \|. \|

$$
T=\text { forward shift on } X
$$

The Hypercyclicity Criterion problem

Does every hypercyclic operator on a Polish topological vector space satisfy the Hypercyclicity Criterion? Equivalently, is every hypercyclic operator necessarily weakly mixing? (Herrero 1991).

Theorem 1. (De La Rosa-Read 2006)
There exists a Banach space X and a hypercyclic operator T on X which is not weakly mixing.
$X=$ completion of c_{00} for some ad hoc norm \|. \|

$$
\begin{gathered}
T=\text { forward shift on } X \\
T e_{i}=e_{i+1}
\end{gathered}
$$

What about "classical spaces"?

What about "classical spaces"?

Theorem 2.

What about "classical spaces"?

Theorem 2. (Bayart-M)

What about "classical spaces"?

Theorem 2. (Bayart-M)
Assume that X is a Banach space

What about "classical spaces"?

Theorem 2. (Bayart-M)
Assume that X is a Banach space with a normalized unconditional basis $\left(e_{i}\right)_{i \geq 0}$

What about "classical spaces"?

Theorem 2. (Bayart-M)
Assume that X is a Banach space with a normalized unconditional basis $\left(e_{i}\right)_{i \geq 0}$ such that the associated forward shift $S: c_{00} \rightarrow c_{00}$ is bounded.

What about "classical spaces"?

Theorem 2. (Bayart-M)
Assume that X is a Banach space with a normalized unconditional basis $\left(e_{i}\right)_{i \geq 0}$ such that the associated forward shift $S: c_{00} \rightarrow c_{00}$ is bounded. Then there is a hypercyclic operator T on X which is not weakly mixing.

What about "classical spaces"?

Theorem 2. (Bayart-M)
Assume that X is a Banach space with a normalized unconditional basis $\left(e_{i}\right)_{i \geq 0}$ such that the associated forward shift $S: c_{00} \rightarrow c_{00}$ is bounded. Then there is a hypercyclic operator T on X which is not weakly mixing.

Corollary.

What about "classical spaces"?

Theorem 2. (Bayart-M)
Assume that X is a Banach space with a normalized unconditional basis $\left(e_{i}\right)_{i \geq 0}$ such that the associated forward shift $S: c_{00} \rightarrow c_{00}$ is bounded. Then there is a hypercyclic operator T on X which is not weakly mixing.

Corollary. The same is true if X has a complemented subspace X_{0} with the above property.

What about "classical spaces"?

Theorem 2. (Bayart-M)
Assume that X is a Banach space with a normalized unconditional basis $\left(e_{i}\right)_{i \geq 0}$ such that the associated forward shift $S: c_{00} \rightarrow c_{00}$ is bounded. Then there is a hypercyclic operator T on X which is not weakly mixing.

Corollary. The same is true if X has a complemented subspace X_{0} with the above property.

Examples.

What about "classical spaces"?

Theorem 2. (Bayart-M)
Assume that X is a Banach space with a normalized unconditional basis $\left(e_{i}\right)_{i \geq 0}$ such that the associated forward shift $S: c_{00} \rightarrow c_{00}$ is bounded. Then there is a hypercyclic operator T on X which is not weakly mixing.

Corollary. The same is true if X has a complemented subspace X_{0} with the above property.

Examples. Hilbert space;

What about "classical spaces"?

Theorem 2. (Bayart-M)
Assume that X is a Banach space with a normalized unconditional basis $\left(e_{i}\right)_{i \geq 0}$ such that the associated forward shift $S: c_{00} \rightarrow c_{00}$ is bounded. Then there is a hypercyclic operator T on X which is not weakly mixing.

Corollary. The same is true if X has a complemented subspace X_{0} with the above property.

Examples. Hilbert space; c_{0}, ℓ^{p};

What about "classical spaces"?

Theorem 2. (Bayart-M)
Assume that X is a Banach space with a normalized unconditional basis $\left(e_{i}\right)_{i \geq 0}$ such that the associated forward shift $S: c_{00} \rightarrow c_{00}$ is bounded. Then there is a hypercyclic operator T on X which is not weakly mixing.

Corollary. The same is true if X has a complemented subspace X_{0} with the above property.

Examples. Hilbert space; $c_{0}, \ell^{p} ; L^{1}(0,1)$;

What about "classical spaces"?

Theorem 2. (Bayart-M)
Assume that X is a Banach space with a normalized unconditional basis $\left(e_{i}\right)_{i \geq 0}$ such that the associated forward shift $S: c_{00} \rightarrow c_{00}$ is bounded. Then there is a hypercyclic operator T on X which is not weakly mixing.

Corollary. The same is true if X has a complemented subspace X_{0} with the above property.

Examples. Hilbert space; $c_{0}, \ell^{p} ; L^{1}(0,1)$; any universal separable Banach space.

How to ensure non-weak mixing

How to ensure non-weak mixing

$$
T \in \mathcal{L}(X) \text { hypercyclic }
$$

How to ensure non-weak mixing

$$
\begin{gathered}
T \in \mathcal{L}(X) \text { hypercyclic } \\
e_{0} \in H C(T)
\end{gathered}
$$

How to ensure non-weak mixing

$$
\begin{gathered}
T \in \mathcal{L}(X) \text { hypercyclic } \\
e_{0} \in H C(T)
\end{gathered}
$$

Lemma.

How to ensure non-weak mixing

$$
\begin{gathered}
T \in \mathcal{L}(X) \text { hypercyclic } \\
e_{0} \in H C(T)
\end{gathered}
$$

Lemma. Assume that there exists a non-constant continuous map $B: \operatorname{Orb}\left(T, e_{0}\right) \times \operatorname{Orb}\left(T, e_{0}\right) \rightarrow \mathbb{K}$

How to ensure non-weak mixing

$$
\begin{gathered}
T \in \mathcal{L}(X) \text { hypercyclic } \\
e_{0} \in H C(T)
\end{gathered}
$$

Lemma. Assume that there exists a non-constant continuous map $B: \operatorname{Orb}\left(T, e_{0}\right) \times \operatorname{Orb}\left(T, e_{0}\right) \rightarrow \mathbb{K}$ such that $B(T x, y)=B(x, T y)$ for any $x, y \in \operatorname{Orb}\left(T, e_{0}\right)$.

How to ensure non-weak mixing

$T \in \mathcal{L}(X)$ hypercyclic $e_{0} \in H C(T)$

Lemma. Assume that there exists a non-constant continuous map $B: \operatorname{Orb}\left(T, e_{0}\right) \times \operatorname{Orb}\left(T, e_{0}\right) \rightarrow \mathbb{K}$ such that $B(T x, y)=B(x, T y)$ for any $x, y \in \operatorname{Orb}\left(T, e_{0}\right)$. Then T is not weakly mixing.

How to ensure non-weak mixing

$$
\begin{gathered}
T \in \mathcal{L}(X) \text { hypercyclic } \\
e_{0} \in H C(T)
\end{gathered}
$$

Lemma. Assume that there exists a non-constant continuous map $B: \operatorname{Orb}\left(T, e_{0}\right) \times \operatorname{Orb}\left(T, e_{0}\right) \rightarrow \mathbb{K}$ such that $B(T x, y)=B(x, T y)$ for any $x, y \in \operatorname{Orb}\left(T, e_{0}\right)$. Then T is not weakly mixing.

$$
\mathbb{K}[T] e_{0}:=\operatorname{span}\left\{T^{i} e_{0} ; i \in \mathbb{N}\right\}
$$

How to ensure non-weak mixing

$T \in \mathcal{L}(X)$ hypercyclic $e_{0} \in H C(T)$

Lemma. Assume that there exists a non-constant continuous map $B: \operatorname{Orb}\left(T, e_{0}\right) \times \operatorname{Orb}\left(T, e_{0}\right) \rightarrow \mathbb{K}$ such that $B(T x, y)=B(x, T y)$ for any $x, y \in \operatorname{Orb}\left(T, e_{0}\right)$. Then T is not weakly mixing.

$$
\begin{gathered}
\mathbb{K}[T] e_{0}:=\operatorname{span}\left\{T^{i} e_{0} ; i \in \mathbb{N}\right\} \\
\left(P(T) e_{0}\right) \cdot\left(Q(T) e_{0}\right):=P Q(T) e_{0}
\end{gathered}
$$

How to ensure non-weak mixing

$T \in \mathcal{L}(X)$ hypercyclic $e_{0} \in H C(T)$

Lemma. Assume that there exists a non-constant continuous map $B: \operatorname{Orb}\left(T, e_{0}\right) \times \operatorname{Orb}\left(T, e_{0}\right) \rightarrow \mathbb{K}$ such that $B(T x, y)=B(x, T y)$ for any $x, y \in \operatorname{Orb}\left(T, e_{0}\right)$. Then T is not weakly mixing.

$$
\begin{gathered}
\mathbb{K}[T] e_{0}:=\operatorname{span}\left\{T^{i} e_{0} ; i \in \mathbb{N}\right\} \\
\left(P(T) e_{0}\right) \cdot\left(Q(T) e_{0}\right):=P Q(T) e_{0}
\end{gathered}
$$

Corollary.

How to ensure non-weak mixing

$T \in \mathcal{L}(X)$ hypercyclic $e_{0} \in H C(T)$

Lemma. Assume that there exists a non-constant continuous map $B: \operatorname{Orb}\left(T, e_{0}\right) \times \operatorname{Orb}\left(T, e_{0}\right) \rightarrow \mathbb{K}$ such that $B(T x, y)=B(x, T y)$ for any $x, y \in \operatorname{Orb}\left(T, e_{0}\right)$. Then T is not weakly mixing.

$$
\begin{gathered}
\mathbb{K}[T] e_{0}:=\operatorname{span}\left\{T^{i} e_{0} ; i \in \mathbb{N}\right\} \\
\left(P(T) e_{0}\right) \cdot\left(Q(T) e_{0}\right):=P Q(T) e_{0}
\end{gathered}
$$

Corollary. For T to be non-weakly mixing,

How to ensure non-weak mixing

$$
\begin{gathered}
T \in \mathcal{L}(X) \text { hypercyclic } \\
e_{0} \in H C(T)
\end{gathered}
$$

Lemma. Assume that there exists a non-constant continuous map $B: \operatorname{Orb}\left(T, e_{0}\right) \times \operatorname{Orb}\left(T, e_{0}\right) \rightarrow \mathbb{K}$ such that $B(T x, y)=B(x, T y)$ for any $x, y \in \operatorname{Orb}\left(T, e_{0}\right)$. Then T is not weakly mixing.

$$
\begin{gathered}
\mathbb{K}[T] e_{0}:=\operatorname{span}\left\{T^{i} e_{0} ; i \in \mathbb{N}\right\} \\
\left(P(T) e_{0}\right) \cdot\left(Q(T) e_{0}\right):=P Q(T) e_{0}
\end{gathered}
$$

Corollary. For T to be non-weakly mixing, it is enough to have a nonzero linear functional $\phi: \mathbb{K}[T] e_{0} \rightarrow \mathbb{K}$

How to ensure non-weak mixing

$$
\begin{gathered}
T \in \mathcal{L}(X) \text { hypercyclic } \\
e_{0} \in H C(T)
\end{gathered}
$$

Lemma. Assume that there exists a non-constant continuous map $B: \operatorname{Orb}\left(T, e_{0}\right) \times \operatorname{Orb}\left(T, e_{0}\right) \rightarrow \mathbb{K}$ such that $B(T x, y)=B(x, T y)$ for any $x, y \in \operatorname{Orb}\left(T, e_{0}\right)$. Then T is not weakly mixing.

$$
\begin{gathered}
\mathbb{K}[T] e_{0}:=\operatorname{span}\left\{T^{i} e_{0} ; i \in \mathbb{N}\right\} \\
\left(P(T) e_{0}\right) \cdot\left(Q(T) e_{0}\right):=P Q(T) e_{0}
\end{gathered}
$$

Corollary. For T to be non-weakly mixing, it is enough to have a nonzero linear functional $\phi: \mathbb{K}[T] e_{0} \rightarrow \mathbb{K}$ such that the bilinear functional $(x, y) \mapsto \phi(x \cdot y)$ is continuous on $\mathbb{K}[T] e_{0} \times \mathbb{K}[T] e_{0}$.

Parameters

Parameters

- $a_{0}=1$,

Parameters

- $a_{0}=1, a_{n}=n+1 \quad(n \geq 1)$

Parameters

- $a_{0}=1, a_{n}=n+1 \quad(n \geq 1)$
- $b_{0}=0$,

Parameters

- $a_{0}=1, a_{n}=n+1 \quad(n \geq 1)$
- $b_{0}=0, b_{n}=3^{n} \quad(n \geq 1)$

Parameters

- $a_{0}=1, a_{n}=n+1 \quad(n \geq 1)$
- $b_{0}=0, b_{n}=3^{n} \quad(n \geq 1)$
- $w(n)=4\left(1-\frac{1}{2 \sqrt{n}}\right) \quad(n \geq 1)$

Parameters

- $a_{0}=1, a_{n}=n+1 \quad(n \geq 1)$
- $b_{0}=0, b_{n}=3^{n} \quad(n \geq 1)$
- $w(n)=4\left(1-\frac{1}{2 \sqrt{n}}\right) \quad(n \geq 1)$
- $\mathbf{P}=\left(P_{n}\right)_{n \geq 0}$ admissible sequence of polynomials,

Parameters

- $a_{0}=1, a_{n}=n+1 \quad(n \geq 1)$
- $b_{0}=0, b_{n}=3^{n} \quad(n \geq 1)$
- $w(n)=4\left(1-\frac{1}{2 \sqrt{n}}\right) \quad(n \geq 1)$
- $\mathbf{P}=\left(P_{n}\right)_{n \geq 0}$ admissible sequence of polynomials, i.e.

Parameters

- $a_{0}=1, a_{n}=n+1 \quad(n \geq 1)$
- $b_{0}=0, b_{n}=3^{n} \quad(n \geq 1)$
- $w(n)=4\left(1-\frac{1}{2 \sqrt{n}}\right) \quad(n \geq 1)$
- $\mathbf{P}=\left(P_{n}\right)_{n \geq 0}$ admissible sequence of polynomials, i.e. $P_{0}=0$

Parameters

- $a_{0}=1, a_{n}=n+1 \quad(n \geq 1)$
- $b_{0}=0, b_{n}=3^{n} \quad(n \geq 1)$
- $w(n)=4\left(1-\frac{1}{2 \sqrt{n}}\right) \quad(n \geq 1)$
- $\mathbf{P}=\left(P_{n}\right)_{n \geq 0}$ admissible sequence of polynomials, i.e. $P_{0}=0$ and \mathbf{P} enumerates all polynomials with rational coefficients

Parameters

- $a_{0}=1, a_{n}=n+1 \quad(n \geq 1)$
- $b_{0}=0, b_{n}=3^{n} \quad(n \geq 1)$
- $w(n)=4\left(1-\frac{1}{2 \sqrt{n}}\right) \quad(n \geq 1)$
- $\mathbf{P}=\left(P_{n}\right)_{n \geq 0}$ admissible sequence of polynomials, i.e. $P_{0}=0$ and \mathbf{P} enumerates all polynomials with rational coefficients (not in a 1-1 way).

Parameters

- $a_{0}=1, a_{n}=n+1 \quad(n \geq 1)$
- $b_{0}=0, b_{n}=3^{n} \quad(n \geq 1)$
- $w(n)=4\left(1-\frac{1}{2 \sqrt{n}}\right) \quad(n \geq 1)$
- $\mathbf{P}=\left(P_{n}\right)_{n \geq 0}$ admissible sequence of polynomials, i.e. $P_{0}=0$ and \mathbf{P} enumerates all polynomials with rational coefficients (not in a 1-1 way).

$$
d_{n}:=\operatorname{deg}\left(P_{n}\right)<b_{n}-1
$$

Parameters

- $a_{0}=1, a_{n}=n+1 \quad(n \geq 1)$
- $b_{0}=0, b_{n}=3^{n} \quad(n \geq 1)$
- $w(n)=4\left(1-\frac{1}{2 \sqrt{n}}\right) \quad(n \geq 1)$
- $\mathbf{P}=\left(P_{n}\right)_{n \geq 0}$ admissible sequence of polynomials, i.e. $P_{0}=0$ and \mathbf{P} enumerates all polynomials with rational coefficients (not in a 1-1 way).

$$
d_{n}:=\operatorname{deg}\left(P_{n}\right)<b_{n}-1
$$

- The sequence \mathbf{P} is controlled by some sequence $\left(c_{n}\right) \subset(0, \infty)$

Parameters

- $a_{0}=1, a_{n}=n+1 \quad(n \geq 1)$
- $b_{0}=0, b_{n}=3^{n} \quad(n \geq 1)$
- $w(n)=4\left(1-\frac{1}{2 \sqrt{n}}\right) \quad(n \geq 1)$
- $\mathbf{P}=\left(P_{n}\right)_{n \geq 0}$ admissible sequence of polynomials, i.e. $P_{0}=0$ and \mathbf{P} enumerates all polynomials with rational coefficients (not in a 1-1 way).

$$
d_{n}:=\operatorname{deg}\left(P_{n}\right)<b_{n}-1
$$

- The sequence \mathbf{P} is controlled by some sequence $\left(c_{n}\right) \subset(0, \infty)$ if $\operatorname{deg}\left(P_{n}\right)<c_{n}$ and $\left|P_{n}\right|_{1}<c_{n}$ for all n.

Definition of T

Definition of T

$\left(e_{i}\right)_{i \geq 0}$ the good unconditional basis of X

Definition of T

$\left(e_{i}\right)_{i \geq 0}$ the good unconditional basis of X

$$
c_{00}=\operatorname{span}\left\{e_{i} ; \quad i \geq 0\right\}
$$

Definition of T

$\left(e_{i}\right)_{i \geq 0}$ the good unconditional basis of X

$$
c_{00}=\operatorname{span}\left\{e_{i} ; i \geq 0\right\}
$$

Fact.

Definition of T

$\left(e_{i}\right)_{i \geq 0}$ the good unconditional basis of X

$$
c_{00}=\operatorname{span}\left\{e_{i} ; i \geq 0\right\}
$$

Fact. There is a unique linear map $T: c_{00} \rightarrow c_{00}$ such that the following hold for all $n \geq 1$:

Definition of T

$\left(e_{i}\right)_{i \geq 0}$ the good unconditional basis of X

$$
c_{00}=\operatorname{span}\left\{e_{i} ; i \geq 0\right\}
$$

Fact. There is a unique linear map $T: c_{00} \rightarrow c_{00}$ such that the following hold for all $n \geq 1$:

$$
\{
$$

Definition of T

$\left(e_{i}\right)_{i \geq 0}$ the good unconditional basis of X

$$
c_{00}=\operatorname{span}\left\{e_{i} ; i \geq 0\right\}
$$

Fact. There is a unique linear map $T: c_{00} \rightarrow c_{00}$ such that the following hold for all $n \geq 1$:

$$
\left\{\begin{array}{l}
T e_{i}=w(i+1) e_{i+1}, i \in\left[b_{n-1}, b_{n}-1\right) \\
\end{array}\right.
$$

Definition of T

$\left(e_{i}\right)_{i \geq 0}$ the good unconditional basis of X

$$
c_{00}=\operatorname{span}\left\{e_{i} ; i \geq 0\right\}
$$

Fact. There is a unique linear map $T: c_{00} \rightarrow c_{00}$ such that the following hold for all $n \geq 1$:

$$
\left\{\begin{array}{l}
T e_{i}=w(i+1) e_{i+1}, i \in\left[b_{n-1}, b_{n}-1\right) \\
T^{b_{n}} e_{0}=P_{n}(T) e_{0}+\frac{1}{a_{n}} e_{b_{n}}
\end{array}\right.
$$

Formulas

$$
\begin{gathered}
T e_{b_{n}-1}:=\varepsilon_{n} e_{b_{n}}+f_{n} \\
\varepsilon_{n}=\frac{a_{n-1}}{a_{n} w\left(b_{n-1}+1\right) \cdots w\left(b_{n}-1\right)} \\
f_{n}=\frac{a_{n-1}}{w\left(b_{n-1}+1\right) \cdots w\left(b_{n}-1\right)}\left(P_{n}(T) e_{0}-T^{b_{n}-b_{n-1}} P_{n-1}(T) e_{0}\right)
\end{gathered}
$$

Properties of T

Properties of T

(1) $\mathbb{K}[T] e_{0}=c_{00}$.

Properties of T

(1) $\mathbb{K}[T] e_{0}=c_{00}$.
(2) The closure of $\left\{T^{i} e_{0} ; i \in \mathbb{N}\right\}$ contains $\mathbb{K}[T] e_{0}$.

Properties of T

(1) $\mathbb{K}[T] e_{0}=c_{00}$.
(2) The closure of $\left\{T^{i} e_{0} ; i \in \mathbb{N}\right\}$ contains $\mathbb{K}[T] e_{0}$.

Moreover,

Properties of T

(1) $\mathbb{K}[T] e_{0}=c_{00}$.
(2) The closure of $\left\{T^{i} e_{0} ; i \in \mathbb{N}\right\}$ contains $\mathbb{K}[T] e_{0}$.

Moreover, there is a control sequence $\left(c_{n}\right)$ such that if the admissible sequence \mathbf{P} is controlled by $\left(c_{n}\right)$, then

Properties of T

(1) $\mathbb{K}[T] e_{0}=c_{00}$.
(2) The closure of $\left\{T^{i} e_{0} ; i \in \mathbb{N}\right\}$ contains $\mathbb{K}[T] e_{0}$.

Moreover, there is a control sequence $\left(c_{n}\right)$ such that if the admissible sequence \mathbf{P} is controlled by $\left(c_{n}\right)$, then
(3) T is bounded;

Properties of T

(1) $\mathbb{K}[T] e_{0}=c_{00}$.
(2) The closure of $\left\{T^{i} e_{0} ; i \in \mathbb{N}\right\}$ contains $\mathbb{K}[T] e_{0}$.

Moreover, there is a control sequence $\left(c_{n}\right)$ such that if the admissible sequence \mathbf{P} is controlled by $\left(c_{n}\right)$, then
(3) T is bounded;
(4) one can construct a nonzero linear functional $\phi: c_{00} \rightarrow \mathbb{K}$ with the required continuity property.

Boundedness of T

Boundedness of T

Estimate 1.

Boundedness of T

Estimate 1. The following properties hold for any $n \geq 1$:

Boundedness of T

Estimate 1. The following properties hold for any $n \geq 1$:
(a) $\varepsilon_{n} \leq 1$;

Boundedness of T

Estimate 1. The following properties hold for any $n \geq 1$:
(a) $\varepsilon_{n} \leq 1$;
(b) if $\left\|f_{k}\right\|_{1} \leq 1$ for all $k<n$,

Boundedness of T

Estimate 1. The following properties hold for any $n \geq 1$:
(a) $\varepsilon_{n} \leq 1$;
(b) if $\left\|f_{k}\right\|_{1} \leq 1$ for all $k<n$, then

Boundedness of T

Estimate 1. The following properties hold for any $n \geq 1$:
(a) $\varepsilon_{n} \leq 1$;
(b) if $\left\|f_{k}\right\|_{1} \leq 1$ for all $k<n$, then

$$
\left\|f_{n}\right\|_{1} \leq
$$

Boundedness of T

Estimate 1. The following properties hold for any $n \geq 1$:
(a) $\varepsilon_{n} \leq 1$;
(b) if $\left\|f_{k}\right\|_{1} \leq 1$ for all $k<n$, then

$$
\left\|f_{n}\right\|_{1} \leq n 4^{\max \left(d_{n}, d_{n-1}\right)+1}
$$

Boundedness of T

Estimate 1. The following properties hold for any $n \geq 1$:
(a) $\varepsilon_{n} \leq 1$;
(b) if $\left\|f_{k}\right\|_{1} \leq 1$ for all $k<n$, then

$$
\left\|f_{n}\right\|_{1} \leq n 4^{\max \left(d_{n}, d_{n-1}\right)+1}\left[\frac{\left|P_{n}\right|_{1}}{2^{b_{n-1}}}+\right.
$$

Boundedness of T

Estimate 1. The following properties hold for any $n \geq 1$:
(a) $\varepsilon_{n} \leq 1$;
(b) if $\left\|f_{k}\right\|_{1} \leq 1$ for all $k<n$, then

$$
\left\|f_{n}\right\|_{1} \leq n 4^{\max \left(d_{n}, d_{n-1}\right)+1}\left[\frac{\left|P_{n}\right|_{1}}{2^{b_{n-1}}}+\left|P_{n-1}\right|_{1}\right.
$$

Boundedness of T

Estimate 1. The following properties hold for any $n \geq 1$:
(a) $\varepsilon_{n} \leq 1$;
(b) if $\left\|f_{k}\right\|_{1} \leq 1$ for all $k<n$, then

$$
\left\|f_{n}\right\|_{1} \leq n 4^{\max \left(d_{n}, d_{n-1}\right)+1}\left[\frac{\left|P_{n}\right|_{1}}{2^{b_{n-1}}}+\left|P_{n-1}\right|_{1} \exp \left(-c \sqrt{b_{n-1}}\right)\right]
$$

Boundedness of T

Estimate 1. The following properties hold for any $n \geq 1$:
(a) $\varepsilon_{n} \leq 1$;
(b) if $\left\|f_{k}\right\|_{1} \leq 1$ for all $k<n$, then

$$
\left\|f_{n}\right\|_{1} \leq n 4^{\max \left(d_{n}, d_{n-1}\right)+1}\left[\frac{\left|P_{n}\right|_{1}}{2^{b_{n-1}}}+\left|P_{n-1}\right|_{1} \exp \left(-c \sqrt{b_{n-1}}\right)\right]
$$

where $c>0$ is a numerical constant.

Boundedness of T

Estimate 1. The following properties hold for any $n \geq 1$:
(a) $\varepsilon_{n} \leq 1$;
(b) if $\left\|f_{k}\right\|_{1} \leq 1$ for all $k<n$, then

$$
\left\|f_{n}\right\|_{1} \leq n 4^{\max \left(d_{n}, d_{n-1}\right)+1}\left[\frac{\left|P_{n}\right|_{1}}{2^{b_{n-1}}}+\left|P_{n-1}\right|_{1} \exp \left(-c \sqrt{b_{n-1}}\right)\right]
$$

where $c>0$ is a numerical constant.

Consequence.

Boundedness of T

Estimate 1. The following properties hold for any $n \geq 1$:
(a) $\varepsilon_{n} \leq 1$;
(b) if $\left\|f_{k}\right\|_{1} \leq 1$ for all $k<n$, then

$$
\left\|f_{n}\right\|_{1} \leq n 4^{\max \left(d_{n}, d_{n-1}\right)+1}\left[\frac{\left|P_{n}\right|_{1}}{2^{b_{n-1}}}+\left|P_{n-1}\right|_{1} \exp \left(-c \sqrt{b_{n-1}}\right)\right]
$$

where $c>0$ is a numerical constant.

Consequence. There is a control sequence $\left(u_{n}\right)$ tending to infinity such that

Boundedness of T

Estimate 1. The following properties hold for any $n \geq 1$:
(a) $\varepsilon_{n} \leq 1$;
(b) if $\left\|f_{k}\right\|_{1} \leq 1$ for all $k<n$, then

$$
\left\|f_{n}\right\|_{1} \leq n 4^{\max \left(d_{n}, d_{n-1}\right)+1}\left[\frac{\left|P_{n}\right|_{1}}{2^{b_{n-1}}}+\left|P_{n-1}\right|_{1} \exp \left(-c \sqrt{b_{n-1}}\right)\right]
$$

where $c>0$ is a numerical constant.

Consequence. There is a control sequence (u_{n}) tending to infinity such that T is bounded whenever the admissible sequence \mathbf{P} is controlled by $\left(u_{n}\right)$.

The linear functional ϕ

The linear functional ϕ

Enough:

The linear functional ϕ

Enough: find a nonzero ϕ such that $\sum_{p, q}\left|\phi\left(e_{p} \cdot e_{q}\right)\right|<\infty$.

The linear functional ϕ

Enough: find a nonzero ϕ such that $\sum_{p, q}\left|\phi\left(e_{p} \cdot e_{q}\right)\right|<\infty$.
Formula.

The linear functional ϕ

Enough: find a nonzero ϕ such that $\sum_{p, q}\left|\phi\left(e_{p} \cdot e_{q}\right)\right|<\infty$.
Formula. Write $p=b_{k}+u, q=b_{l}+v$

The linear functional ϕ

Enough: find a nonzero ϕ such that $\sum_{p, q}\left|\phi\left(e_{p} \cdot e_{q}\right)\right|<\infty$.
Formula. Write $p=b_{k}+u, q=b_{l}+v$ with $u \in\left[0, b_{k+1}-b_{k}\right)$ and $v \in\left[0, b_{l+1}-b_{l}\right)$.

The linear functional ϕ

Enough: find a nonzero ϕ such that $\sum_{p, q}\left|\phi\left(e_{p} \cdot e_{q}\right)\right|<\infty$.
Formula. Write $p=b_{k}+u, q=b_{l}+v$ with $u \in\left[0, b_{k+1}-b_{k}\right)$ and $v \in\left[0, b_{l+1}-b_{l}\right)$. Then

The linear functional ϕ

Enough: find a nonzero ϕ such that $\sum_{p, q}\left|\phi\left(e_{p} \cdot e_{q}\right)\right|<\infty$.
Formula. Write $p=b_{k}+u, q=b_{l}+v$ with $u \in\left[0, b_{k+1}-b_{k}\right)$ and $v \in\left[0, b_{l+1}-b_{l}\right)$. Then

$$
e_{p}=\frac{k+1}{w\left(b_{k}+1\right) \ldots w\left(b_{k}+u\right)}\left(T^{b_{k}}-P_{k}(T)\right) T^{u} e_{0}
$$

The linear functional ϕ

Enough: find a nonzero ϕ such that $\sum_{p, q}\left|\phi\left(e_{p} \cdot e_{q}\right)\right|<\infty$.
Formula. Write $p=b_{k}+u, q=b_{l}+v$ with $u \in\left[0, b_{k+1}-b_{k}\right)$ and $v \in\left[0, b_{l+1}-b_{l}\right)$. Then

$$
\begin{aligned}
e_{p} & =\frac{k+1}{w\left(b_{k}+1\right) \ldots w\left(b_{k}+u\right)}\left(T^{b_{k}}-P_{k}(T)\right) T^{u} e_{0} \\
e_{q} & =\frac{l+1}{w\left(b_{l}+1\right) \ldots w\left(b_{l}+v\right)}\left(T^{b_{l}}-P_{l}(T)\right) T^{v} e_{0}
\end{aligned}
$$

The linear functional ϕ

Enough: find a nonzero ϕ such that $\sum_{p, q}\left|\phi\left(e_{p} \cdot e_{q}\right)\right|<\infty$.
Formula. Write $p=b_{k}+u, q=b_{l}+v$ with $u \in\left[0, b_{k+1}-b_{k}\right)$ and $v \in\left[0, b_{l+1}-b_{l}\right)$. Then

$$
\begin{aligned}
e_{p} & =\frac{k+1}{w\left(b_{k}+1\right) \ldots w\left(b_{k}+u\right)}\left(T^{b_{k}}-P_{k}(T)\right) T^{u} e_{0} \\
e_{q} & =\frac{l+1}{w\left(b_{l}+1\right) \ldots w\left(b_{l}+v\right)}\left(T^{b_{l}}-P_{l}(T)\right) T^{v} e_{0}
\end{aligned}
$$

Consequence.

The linear functional ϕ

Enough: find a nonzero ϕ such that $\sum_{p, q}\left|\phi\left(e_{p} \cdot e_{q}\right)\right|<\infty$.
Formula. Write $p=b_{k}+u, q=b_{l}+v$ with $u \in\left[0, b_{k+1}-b_{k}\right)$ and $v \in\left[0, b_{l+1}-b_{l}\right)$. Then

$$
\begin{aligned}
e_{p} & =\frac{k+1}{w\left(b_{k}+1\right) \ldots w\left(b_{k}+u\right)}\left(T^{b_{k}}-P_{k}(T)\right) T^{u} e_{0} \\
e_{q} & =\frac{l+1}{w\left(b_{l}+1\right) \ldots w\left(b_{l}+v\right)}\left(T^{b_{l}}-P_{l}(T)\right) T^{v} e_{0}
\end{aligned}
$$

Consequence. For any linear functional $\phi: c_{00} \rightarrow \mathbb{K}$, we have

The linear functional ϕ

Enough: find a nonzero ϕ such that $\sum_{p, q}\left|\phi\left(e_{p} \cdot e_{q}\right)\right|<\infty$.
Formula. Write $p=b_{k}+u, q=b_{l}+v$ with $u \in\left[0, b_{k+1}-b_{k}\right)$ and $v \in\left[0, b_{l+1}-b_{l}\right)$. Then

$$
\begin{aligned}
e_{p} & =\frac{k+1}{w\left(b_{k}+1\right) \ldots w\left(b_{k}+u\right)}\left(T^{b_{k}}-P_{k}(T)\right) T^{u} e_{0} \\
e_{q} & =\frac{l+1}{w\left(b_{l}+1\right) \ldots w\left(b_{l}+v\right)}\left(T^{b_{l}}-P_{l}(T)\right) T^{v} e_{0}
\end{aligned}
$$

Consequence. For any linear functional $\phi: c_{00} \rightarrow \mathbb{K}$, we have

$$
\left|\phi\left(e_{p} \cdot e_{q}\right)\right| \leq \frac{(k+1)(I+1)}{2^{u+v}}\left|\phi\left(y_{(k, u)(I, v)}\right)\right|,
$$

The linear functional ϕ

Enough: find a nonzero ϕ such that $\sum_{p, q}\left|\phi\left(e_{p} \cdot e_{q}\right)\right|<\infty$.
Formula. Write $p=b_{k}+u, q=b_{l}+v$ with $u \in\left[0, b_{k+1}-b_{k}\right)$ and $v \in\left[0, b_{l+1}-b_{l}\right)$. Then

$$
\begin{aligned}
e_{p} & =\frac{k+1}{w\left(b_{k}+1\right) \ldots w\left(b_{k}+u\right)}\left(T^{b_{k}}-P_{k}(T)\right) T^{u} e_{0} \\
e_{q} & =\frac{l+1}{w\left(b_{l}+1\right) \ldots w\left(b_{l}+v\right)}\left(T^{b_{l}}-P_{l}(T)\right) T^{v} e_{0}
\end{aligned}
$$

Consequence. For any linear functional $\phi: c_{00} \rightarrow \mathbb{K}$, we have

$$
\begin{gathered}
\left|\phi\left(e_{p} \cdot e_{q}\right)\right| \leq \frac{(k+1)(I+1)}{2^{u+v}}\left|\phi\left(y_{(k, u)(I, v)}\right)\right| \\
y_{(k, u)(I, v)}=\left(T^{b_{k}}-P_{k}(T)\right)\left(T^{b_{l}}-P_{l}(T)\right) T^{u+v} e_{0}
\end{gathered}
$$

Definition of ϕ

Definition of ϕ

Basic idea.

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large.

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large,

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large, declare that $\phi\left(y_{(k, u)(I, v)}\right)=0$.

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large, declare that $\phi\left(y_{(k, u)(I, v)}\right)=0$.

Official definition.

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large, declare that $\phi\left(y_{(k, u)(I, v)}\right)=0$.

Official definition. Put $\phi\left(e_{0}\right)=1$

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large, declare that $\phi\left(y_{(k, u)(I, v)}\right)=0$.

Official definition. Put $\phi\left(e_{0}\right)=1$ and $\phi\left(T^{i} e_{0}\right)=0$ if $i \in\left(0, b_{1}\right)$.

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large, declare that $\phi\left(y_{(k, u)(I, v)}\right)=0$.

Official definition. Put $\phi\left(e_{0}\right)=1$ and $\phi\left(T^{i} e_{0}\right)=0$ if $i \in\left(0, b_{1}\right)$. If $i \in\left[b_{n}, b_{n+1}\right)$ for some $n \geq 1$, set

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large, declare that $\phi\left(y_{(k, u)(I, v)}\right)=0$.

Official definition. Put $\phi\left(e_{0}\right)=1$ and $\phi\left(T^{i} e_{0}\right)=0$ if $i \in\left(0, b_{1}\right)$. If $i \in\left[b_{n}, b_{n+1}\right)$ for some $n \geq 1$, set

$$
\phi\left(T^{i} e_{0}\right)=\{
$$

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large, declare that $\phi\left(y_{(k, u)(I, v)}\right)=0$.

Official definition. Put $\phi\left(e_{0}\right)=1$ and $\phi\left(T^{i} e_{0}\right)=0$ if $i \in\left(0, b_{1}\right)$. If $i \in\left[b_{n}, b_{n+1}\right)$ for some $n \geq 1$, set

$$
\phi\left(T^{i} e_{0}\right)= \begin{cases}0 & \text { otherwise }\end{cases}
$$

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large, declare that $\phi\left(y_{(k, u)(I, v)}\right)=0$.

Official definition. Put $\phi\left(e_{0}\right)=1$ and $\phi\left(T^{i} e_{0}\right)=0$ if $i \in\left(0, b_{1}\right)$. If $i \in\left[b_{n}, b_{n+1}\right)$ for some $n \geq 1$, set

$$
\phi\left(T^{i} e_{0}\right)= \begin{cases}\phi\left(P_{n}(T) T^{i-b_{n}} e_{0}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large, declare that $\phi\left(y_{(k, u)(I, v)}\right)=0$.

Official definition. Put $\phi\left(e_{0}\right)=1$ and $\phi\left(T^{i} e_{0}\right)=0$ if $i \in\left(0, b_{1}\right)$. If $i \in\left[b_{n}, b_{n+1}\right)$ for some $n \geq 1$, set

$$
\phi\left(T^{i} e_{0}\right)= \begin{cases}\phi\left(P_{n}(T) T^{i-b_{n}} e_{0}\right) & \text { if } i \in\left[b_{n}, \frac{3}{2} b_{n}\right) \cup\left[2 b_{n}, \frac{5}{2} b_{n}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large, declare that $\phi\left(y_{(k, u)(I, v)}\right)=0$.

Official definition. Put $\phi\left(e_{0}\right)=1$ and $\phi\left(T^{i} e_{0}\right)=0$ if $i \in\left(0, b_{1}\right)$. If $i \in\left[b_{n}, b_{n+1}\right)$ for some $n \geq 1$, set

$$
\phi\left(T^{i} e_{0}\right)= \begin{cases}\phi\left(P_{n}(T) T^{i-b_{n}} e_{0}\right) & \text { if } i \in\left[b_{n}, \frac{3}{2} b_{n}\right) \cup\left[2 b_{n}, \frac{5}{2} b_{n}\right) \\ 0 & \text { otherwise }\end{cases}
$$

(This makes sense

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large, declare that $\phi\left(y_{(k, u)(I, v)}\right)=0$.

Official definition. Put $\phi\left(e_{0}\right)=1$ and $\phi\left(T^{i} e_{0}\right)=0$ if $i \in\left(0, b_{1}\right)$. If $i \in\left[b_{n}, b_{n+1}\right)$ for some $n \geq 1$, set

$$
\phi\left(T^{i} e_{0}\right)= \begin{cases}\phi\left(P_{n}(T) T^{i-b_{n}} e_{0}\right) & \text { if } i \in\left[b_{n}, \frac{3}{2} b_{n}\right) \cup\left[2 b_{n}, \frac{5}{2} b_{n}\right) \\ 0 & \text { otherwise }\end{cases}
$$

(This makes sense because $P_{n}(T) T^{i-b_{n}} e_{0}$ is supported on $[0, i)$.)

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large, declare that $\phi\left(y_{(k, u)(I, v)}\right)=0$.

Official definition. Put $\phi\left(e_{0}\right)=1$ and $\phi\left(T^{i} e_{0}\right)=0$ if $i \in\left(0, b_{1}\right)$. If $i \in\left[b_{n}, b_{n+1}\right)$ for some $n \geq 1$, set

$$
\phi\left(T^{i} e_{0}\right)= \begin{cases}\phi\left(P_{n}(T) T^{i-b_{n}} e_{0}\right) & \text { if } i \in\left[b_{n}, \frac{3}{2} b_{n}\right) \cup\left[2 b_{n}, \frac{5}{2} b_{n}\right) \\ 0 & \text { otherwise }\end{cases}
$$

(This makes sense because $P_{n}(T) T^{i-b_{n}} e_{0}$ is supported on $[0, i)$.)
Observation.

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large, declare that $\phi\left(y_{(k, u)(I, v)}\right)=0$.

Official definition. Put $\phi\left(e_{0}\right)=1$ and $\phi\left(T^{i} e_{0}\right)=0$ if $i \in\left(0, b_{1}\right)$. If $i \in\left[b_{n}, b_{n+1}\right)$ for some $n \geq 1$, set

$$
\phi\left(T^{i} e_{0}\right)= \begin{cases}\phi\left(P_{n}(T) T^{i-b_{n}} e_{0}\right) & \text { if } i \in\left[b_{n}, \frac{3}{2} b_{n}\right) \cup\left[2 b_{n}, \frac{5}{2} b_{n}\right) \\ 0 & \text { otherwise }\end{cases}
$$

(This makes sense because $P_{n}(T) T^{i-b_{n}} e_{0}$ is supported on $[0, i)$.)
Observation. $\phi\left(\left(T^{b_{k}}-P_{k}(T)\right) z\right)=0$

Definition of ϕ

Basic idea. The estimate for $\left|\phi\left(e_{p} \cdot e_{q}\right)\right|$ is good if $u+v$ is large. If $u+v$ is not large, declare that $\phi\left(y_{(k, u)(I, v)}\right)=0$.

Official definition. Put $\phi\left(e_{0}\right)=1$ and $\phi\left(T^{i} e_{0}\right)=0$ if $i \in\left(0, b_{1}\right)$. If $i \in\left[b_{n}, b_{n+1}\right)$ for some $n \geq 1$, set

$$
\phi\left(T^{i} e_{0}\right)= \begin{cases}\phi\left(P_{n}(T) T^{i-b_{n}} e_{0}\right) & \text { if } i \in\left[b_{n}, \frac{3}{2} b_{n}\right) \cup\left[2 b_{n}, \frac{5}{2} b_{n}\right) \\ 0 & \text { otherwise }\end{cases}
$$

(This makes sense because $P_{n}(T) T^{i-b_{n}} e_{0}$ is supported on $[0, i)$.)
Observation. $\phi\left(\left(T^{b_{k}}-P_{k}(T)\right) z\right)=0$ whenever $z \in c_{00}$ is supported on $\left[0, \frac{1}{2} b_{k}\right) \cup\left[b_{k}, \frac{3}{2} b_{k}\right)$.

This works

This works

Estimate 2.

This works

Estimate 2. Assume that $\operatorname{deg} P_{n}<\frac{1}{3} b_{n}$ for all n.

This works

Estimate 2. Assume that $\operatorname{deg} P_{n}<\frac{1}{3} b_{n}$ for all n. Then the following properties hold whenever $0 \leq k \leq I$.

This works

Estimate 2. Assume that $\operatorname{deg} P_{n}<\frac{1}{3} b_{n}$ for all n. Then the following properties hold whenever $0 \leq k \leq I$.
(a) $\phi\left(y_{(k, u)(I, v)}\right)=0$ if $u+v<\frac{1}{6} b_{l}$.

This works

Estimate 2. Assume that $\operatorname{deg} P_{n}<\frac{1}{3} b_{n}$ for all n. Then the following properties hold whenever $0 \leq k \leq I$.
(a) $\phi\left(y_{(k, u)(I, v)}\right)=0$ if $u+v<\frac{1}{6} b_{l}$.
(b) $\left|\phi\left(y_{(k, u)(I, v)}\right)\right| \leq M_{l}(\mathbf{P})$

This works

Estimate 2. Assume that $\operatorname{deg} P_{n}<\frac{1}{3} b_{n}$ for all n. Then the following properties hold whenever $0 \leq k \leq l$.
(a) $\phi\left(y_{(k, u)(I, v)}\right)=0$ if $u+v<\frac{1}{6} b_{l}$.
(b) $\left|\phi\left(y_{(k, u)(I, v)}\right)\right| \leq M_{l}(\mathbf{P})$

$$
:=\max _{0 \leq j \leq 1}\left(1+\left|P_{j}\right|_{1}\right)^{2} \prod_{0<j \leq 1+1} \max \left(1,\left|P_{j}\right|_{1}\right)^{2} .
$$

This works

Estimate 2. Assume that $\operatorname{deg} P_{n}<\frac{1}{3} b_{n}$ for all n. Then the following properties hold whenever $0 \leq k \leq I$.
(a) $\phi\left(y_{(k, u)(I, v)}\right)=0$ if $u+v<\frac{1}{6} b_{l}$.
(b) $\left|\phi\left(y_{(k, u)(I, v)}\right)\right| \leq M_{l}(\mathbf{P})$

$$
:=\max _{0 \leq j \leq 1}\left(1+\left|P_{j}\right|_{1}\right)^{2} \prod_{0<j \leq 1+1} \max \left(1,\left|P_{j}\right|_{1}\right)^{2} .
$$

Consequence.

This works

Estimate 2. Assume that $\operatorname{deg} P_{n}<\frac{1}{3} b_{n}$ for all n. Then the following properties hold whenever $0 \leq k \leq I$.
(a) $\phi\left(y_{(k, u)(I, v)}\right)=0$ if $u+v<\frac{1}{6} b_{l}$.
(b) $\left|\phi\left(y_{(k, u)(I, v)}\right)\right| \leq M_{l}(\mathbf{P})$

$$
:=\max _{0 \leq j \leq 1}\left(1+\left|P_{j}\right|_{1}\right)^{2} \prod_{0<j \leq I+1} \max \left(1,\left|P_{j}\right|_{1}\right)^{2} .
$$

Consequence. There is a control sequence $\left(v_{n}\right)$ such that

This works

Estimate 2. Assume that $\operatorname{deg} P_{n}<\frac{1}{3} b_{n}$ for all n. Then the following properties hold whenever $0 \leq k \leq l$.
(a) $\phi\left(y_{(k, u)(I, v)}\right)=0$ if $u+v<\frac{1}{6} b_{l}$.
(b) $\left|\phi\left(y_{(k, u)(I, v)}\right)\right| \leq M_{l}(\mathbf{P})$

$$
:=\max _{0 \leq j \leq 1}\left(1+\left|P_{j}\right|_{1}\right)^{2} \prod_{0<j \leq I+1} \max \left(1,\left|P_{j}\right|_{1}\right)^{2} .
$$

Consequence. There is a control sequence $\left(v_{n}\right)$ such that the map $(x, y) \mapsto \phi(x \cdot y)$ is continuous whenever the admissible sequence \mathbf{P} is controlled by $\left(v_{n}\right)$.

Two questions

Two questions

Question 1.

Two questions

Question 1. What about an arbitrary separable Banach space?

Two questions

Question 1. What about an arbitrary separable Banach space?

Remark 1.

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic operator

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).

Remark 2.

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).
Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).
Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$ (nice Polish locally convex space),

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).

Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$ (nice Polish locally convex space), then every hypercyclic operator on X is mixing

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).

Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$ (nice Polish locally convex space), then every hypercyclic operator on X is mixing (Shkarin).

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).

Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$ (nice Polish locally convex space), then every hypercyclic operator on X is mixing (Shkarin).

Question 2.

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).

Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$ (nice Polish locally convex space), then every hypercyclic operator on X is mixing (Shkarin).

Question 2. Is there a hypercyclic non-weakly mixing

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).

Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$ (nice Polish locally convex space), then every hypercyclic operator on X is mixing (Shkarin).

Question 2. Is there a hypercyclic non-weakly mixing semigroup

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).

Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$ (nice Polish locally convex space), then every hypercyclic operator on X is mixing (Shkarin).

Question 2. Is there a hypercyclic non-weakly mixing semigroup $\left(T_{t}\right)_{t \geq 0}$

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).

Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$ (nice Polish locally convex space), then every hypercyclic operator on X is mixing (Shkarin).

Question 2. Is there a hypercyclic non-weakly mixing semigroup $\left(T_{t}\right)_{t \geq 0}$ on the Hilbert space?

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).
Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$ (nice Polish locally convex space), then every hypercyclic operator on X is mixing (Shkarin).

Question 2. Is there a hypercyclic non-weakly mixing semigroup $\left(T_{t}\right)_{t \geq 0}$ on the Hilbert space?

Enough:

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).
Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$ (nice Polish locally convex space), then every hypercyclic operator on X is mixing (Shkarin).

Question 2. Is there a hypercyclic non-weakly mixing semigroup $\left(T_{t}\right)_{t \geq 0}$ on the Hilbert space?

Enough: Find a hypercyclic non-weakly mixing operator with $\sigma(T)=\{1\}$.

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).
Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$ (nice Polish locally convex space), then every hypercyclic operator on X is mixing (Shkarin).

Question 2. Is there a hypercyclic non-weakly mixing semigroup $\left(T_{t}\right)_{t \geq 0}$ on the Hilbert space?

Enough: Find a hypercyclic non-weakly mixing operator with $\sigma(T)=\{1\}$.
Known:

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).

Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$ (nice Polish locally convex space), then every hypercyclic operator on X is mixing (Shkarin).

Question 2. Is there a hypercyclic non-weakly mixing semigroup $\left(T_{t}\right)_{t \geq 0}$ on the Hilbert space?

Enough: Find a hypercyclic non-weakly mixing operator with $\sigma(T)=\{1\}$.
Known: This can be done

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).
Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$ (nice Polish locally convex space), then every hypercyclic operator on X is mixing (Shkarin).

Question 2. Is there a hypercyclic non-weakly mixing semigroup $\left(T_{t}\right)_{t \geq 0}$ on the Hilbert space?

Enough: Find a hypercyclic non-weakly mixing operator with $\sigma(T)=\{1\}$.
Known: This can be done on some Banach space

Two questions

Question 1. What about an arbitrary separable Banach space?
Remark 1. Every separable Banach space supports a hypercyclic non-mixing operator (Grivaux-Shkarin).
Remark 2. If $X=\mathbb{K}^{\mathbb{N}}$ (nice Polish locally convex space), then every hypercyclic operator on X is mixing (Shkarin).

Question 2. Is there a hypercyclic non-weakly mixing semigroup $\left(T_{t}\right)_{t \geq 0}$ on the Hilbert space?

Enough: Find a hypercyclic non-weakly mixing operator with $\sigma(T)=\{1\}$.
Known: This can be done on some Banach space (Shkarin).

Introduction to linear dynamics

Introduction to linear dynamics

Part 3: ergodic measures

Ergodicity

Ergodicity

Definition.

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space,

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$.

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be ergodic with respect to μ

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be ergodic with respect to μ if

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be ergodic with respect to μ if T is measure-preserving

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be ergodic with respect to μ if T is measure-preserving (i.e. $\mu \circ T^{-1}=\mu$)

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be ergodic with respect to μ if T is measure-preserving (i.e. $\mu \circ T^{-1}=\mu$) and

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be ergodic with respect to μ if T is measure-preserving (i.e. $\mu \circ T^{-1}=\mu$) and for any A, B with $\mu(A), \mu(B)>0$,

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be ergodic with respect to μ if T is measure-preserving (i.e. $\mu \circ T^{-1}=\mu$) and for any A, B with $\mu(A), \mu(B)>0$, one can find $n \in \mathbb{N}$ such that $T^{n}(A) \cap B \neq \varnothing$.

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be ergodic with respect to μ if T is measure-preserving (i.e. $\mu \circ T^{-1}=\mu$) and for any A, B with $\mu(A), \mu(B)>0$, one can find $n \in \mathbb{N}$ such that $T^{n}(A) \cap B \neq \varnothing$.

Characterization.

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be ergodic with respect to μ if T is measure-preserving (i.e. $\mu \circ T^{-1}=\mu$) and for any A, B with $\mu(A), \mu(B)>0$, one can find $n \in \mathbb{N}$ such that $T^{n}(A) \cap B \neq \varnothing$.

Characterization. A measure-preserving T is ergodic iff

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be ergodic with respect to μ if T is measure-preserving (i.e. $\mu \circ T^{-1}=\mu$) and for any A, B with $\mu(A), \mu(B)>0$, one can find $n \in \mathbb{N}$ such that $T^{n}(A) \cap B \neq \varnothing$.

Characterization. A measure-preserving T is ergodic iff

$$
\frac{1}{N} \sum_{n=0}^{N-1} \mu\left(A \cap T^{-n}(B)\right) \rightarrow \mu(A) \mu(B)
$$

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be ergodic with respect to μ if T is measure-preserving (i.e. $\mu \circ T^{-1}=\mu$) and for any A, B with $\mu(A), \mu(B)>0$, one can find $n \in \mathbb{N}$ such that $T^{n}(A) \cap B \neq \varnothing$.

Characterization. A measure-preserving T is ergodic iff

$$
\frac{1}{N} \sum_{n=0}^{N-1} \mu\left(A \cap T^{-n}(B)\right) \rightarrow \mu(A) \mu(B)
$$

for any measurable sets A, B.

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be ergodic with respect to μ if T is measure-preserving (i.e. $\mu \circ T^{-1}=\mu$) and for any A, B with $\mu(A), \mu(B)>0$, one can find $n \in \mathbb{N}$ such that $T^{n}(A) \cap B \neq \varnothing$.

Characterization. A measure-preserving T is ergodic iff

$$
\frac{1}{N} \sum_{n=0}^{N-1} \mu\left(A \cap T^{-n}(B)\right) \rightarrow \mu(A) \mu(B)
$$

for any measurable sets A, B. Equivalently:

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be ergodic with respect to μ if T is measure-preserving (i.e. $\mu \circ T^{-1}=\mu$) and for any A, B with $\mu(A), \mu(B)>0$, one can find $n \in \mathbb{N}$ such that $T^{n}(A) \cap B \neq \varnothing$.

Characterization. A measure-preserving T is ergodic iff

$$
\frac{1}{N} \sum_{n=0}^{N-1} \mu\left(A \cap T^{-n}(B)\right) \rightarrow \mu(A) \mu(B)
$$

for any measurable sets A, B. Equivalently:

$$
\frac{1}{N} \sum_{i=0}^{N-1}\left\langle f \circ T^{n}, g\right\rangle_{L^{2}(\mu)} \rightarrow 0
$$

Ergodicity

Definition. Let (X, \mathcal{B}, μ) be a measure space, with $\mu(X)<\infty$. A measurable map $T: X \rightarrow X$ is said to be ergodic with respect to μ if T is measure-preserving (i.e. $\mu \circ T^{-1}=\mu$) and for any A, B with $\mu(A), \mu(B)>0$, one can find $n \in \mathbb{N}$ such that $T^{n}(A) \cap B \neq \varnothing$.

Characterization. A measure-preserving T is ergodic iff

$$
\frac{1}{N} \sum_{n=0}^{N-1} \mu\left(A \cap T^{-n}(B)\right) \rightarrow \mu(A) \mu(B)
$$

for any measurable sets A, B. Equivalently:

$$
\frac{1}{N} \sum_{i=0}^{N-1}\left\langle f \circ T^{n}, g\right\rangle_{L^{2}(\mu)} \rightarrow 0
$$

for any $f, g \in L^{2}(\mu)$ such that $\int f d \mu=0=\int g d \mu$.

Mixing, weak mixing

Mixing, weak mixing

A measure-preserving $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ is said to be

Mixing, weak mixing

A measure-preserving $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ is said to be

- mixing

Mixing, weak mixing

A measure-preserving $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ is said to be

- mixing if

Mixing, weak mixing

A measure-preserving $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ is said to be

- mixing if $\left\langle f \circ T^{n}, g\right\rangle_{L^{2}(\mu)} \rightarrow 0$

Mixing, weak mixing

A measure-preserving $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ is said to be

- mixing if $\left\langle f \circ T^{n}, g\right\rangle_{L^{2}(\mu)} \rightarrow 0$ for any $f, g \in L_{0}^{2}(\mu)$;

Mixing, weak mixing

A measure-preserving $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ is said to be

- mixing if $\left\langle f \circ T^{n}, g\right\rangle_{L^{2}(\mu)} \rightarrow 0$ for any $f, g \in L_{0}^{2}(\mu)$;
- weakly mixing

Mixing, weak mixing

A measure-preserving $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ is said to be

- mixing if $\left\langle f \circ T^{n}, g\right\rangle_{L^{2}(\mu)} \rightarrow 0$ for any $f, g \in L_{0}^{2}(\mu)$;
- weakly mixing if

Mixing, weak mixing

A measure-preserving $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ is said to be

- mixing if $\left\langle f \circ T^{n}, g\right\rangle_{L^{2}(\mu)} \rightarrow 0$ for any $f, g \in L_{0}^{2}(\mu)$;
- weakly mixing if $\frac{1}{N} \sum_{n=0}^{N-1}\left|\left\langle f \circ T^{n}, g\right\rangle\right| \rightarrow 0$

Mixing, weak mixing

A measure-preserving $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ is said to be

- mixing if $\left\langle f \circ T^{n}, g\right\rangle_{L^{2}(\mu)} \rightarrow 0$ for any $f, g \in L_{0}^{2}(\mu)$;
- weakly mixing if $\frac{1}{N} \sum_{n=0}^{N-1}\left|\left\langle f \circ T^{n}, g\right\rangle\right| \rightarrow 0$ for any $f, g \in L_{0}^{2}(\mu)$.

Mixing, weak mixing

A measure-preserving $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ is said to be

- mixing if $\left\langle f \circ T^{n}, g\right\rangle_{L^{2}(\mu)} \rightarrow 0$ for any $f, g \in L_{0}^{2}(\mu)$;
- weakly mixing if $\frac{1}{N} \sum_{n=0}^{N-1}\left|\left\langle f \circ T^{n}, g\right\rangle\right| \rightarrow 0$ for any $f, g \in L_{0}^{2}(\mu)$.
mixing \Longrightarrow weakly mixing \Longrightarrow ergodic

Mixing, weak mixing

A measure-preserving $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ is said to be

- mixing if $\left\langle f \circ T^{n}, g\right\rangle_{L^{2}(\mu)} \rightarrow 0$ for any $f, g \in L_{0}^{2}(\mu)$;
- weakly mixing if $\frac{1}{N} \sum_{n=0}^{N-1}\left|\left\langle f \circ T^{n}, g\right\rangle\right| \rightarrow 0$ for any $f, g \in L_{0}^{2}(\mu)$.
mixing \Longrightarrow weakly mixing \Longrightarrow ergodic

Remark.

Mixing, weak mixing

A measure-preserving $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ is said to be

- mixing if $\left\langle f \circ T^{n}, g\right\rangle_{L^{2}(\mu)} \rightarrow 0$ for any $f, g \in L_{0}^{2}(\mu)$;
- weakly mixing if $\frac{1}{N} \sum_{n=0}^{N-1}\left|\left\langle f \circ T^{n}, g\right\rangle\right| \rightarrow 0$ for any $f, g \in L_{0}^{2}(\mu)$.
mixing \Longrightarrow weakly mixing \Longrightarrow ergodic

Remark. T is weakly mixing wrt μ iff

Mixing, weak mixing

A measure-preserving $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ is said to be

- mixing if $\left\langle f \circ T^{n}, g\right\rangle_{L^{2}(\mu)} \rightarrow 0$ for any $f, g \in L_{0}^{2}(\mu)$;
- weakly mixing if $\frac{1}{N} \sum_{n=0}^{N-1}\left|\left\langle f \circ T^{n}, g\right\rangle\right| \rightarrow 0$ for any $f, g \in L_{0}^{2}(\mu)$.
mixing \Longrightarrow weakly mixing \Longrightarrow ergodic

Remark. T is weakly mixing wrt μ iff $T \times T$ is ergodic wrt $\mu \otimes \mu$.

A "trivial" observation

A "trivial" observation

X separable Banach space

A "trivial" observation

X separable Banach space

$$
T \in \mathcal{L}(X)
$$

A "trivial" observation

X separable Banach space

$$
T \in \mathcal{L}(X)
$$

If there exists a Borel probability measure μ on X such that

A "trivial" observation

X separable Banach space

$$
T \in \mathcal{L}(X)
$$

If there exists a Borel probability measure μ on X such that μ has full support

A "trivial" observation

X separable Banach space

$$
T \in \mathcal{L}(X)
$$

If there exists a Borel probability measure μ on X such that μ has full support and T is ergodic wrt μ,

A "trivial" observation

X separable Banach space

$$
T \in \mathcal{L}(X)
$$

If there exists a Borel probability measure μ on X such that μ has full support and T is ergodic wrt μ, then T is hypercyclic,

A "trivial" observation

X separable Banach space

$$
T \in \mathcal{L}(X)
$$

If there exists a Borel probability measure μ on X such that μ has full support and T is ergodic wrt μ, then T is hypercyclic, and even frequently hypercyclic.

A "trivial" observation

X separable Banach space

$$
T \in \mathcal{L}(X)
$$

If there exists a Borel probability measure μ on X such that μ has full support and T is ergodic wrt μ, then T is hypercyclic, and even frequently hypercyclic. In fact,

A "trivial" observation

X separable Banach space

$$
T \in \mathcal{L}(X)
$$

If there exists a Borel probability measure μ on X such that μ has full support and T is ergodic wrt μ, then T is hypercyclic, and even frequently hypercyclic. In fact, almost every $x \in X$ is a frequently hypercyclic vector for T.

A "trivial" observation

X separable Banach space

$$
T \in \mathcal{L}(X)
$$

If there exists a Borel probability measure μ on X such that μ has full support and T is ergodic wrt μ, then T is hypercyclic, and even frequently hypercyclic. In fact, almost every $x \in X$ (relative to μ) is a frequently hypercyclic vector for T.

A "trivial" observation

X separable Banach space

$$
T \in \mathcal{L}(X)
$$

If there exists a Borel probability measure μ on X such that μ has full support and T is ergodic wrt μ, then T is hypercyclic, and even frequently hypercyclic. In fact, almost every $x \in X$ (relative to μ) is a frequently hypercyclic vector for T.

Goal:

A "trivial" observation

X separable Banach space

$$
T \in \mathcal{L}(X)
$$

If there exists a Borel probability measure μ on X such that μ has full support and T is ergodic wrt μ, then T is hypercyclic, and even frequently hypercyclic. In fact, almost every $x \in X$ (relative to μ) is a frequently hypercyclic vector for T.

Goal: conditions on T ensuring that one can find such a μ.

A "trivial" observation

X separable Banach space

$$
T \in \mathcal{L}(X)
$$

If there exists a Borel probability measure μ on X such that μ has full support and T is ergodic wrt μ, then T is hypercyclic, and even frequently hypercyclic. In fact, almost every $x \in X$ (relative to μ) is a frequently hypercyclic vector for T.

Goal: conditions on T ensuring that one can find such a μ.

Basic idea:

A "trivial" observation

X separable Banach space

$$
T \in \mathcal{L}(X)
$$

If there exists a Borel probability measure μ on X such that μ has full support and T is ergodic wrt μ, then T is hypercyclic, and even frequently hypercyclic. In fact, almost every $x \in X$ (relative to μ) is a frequently hypercyclic vector for T.

Goal: conditions on T ensuring that one can find such a μ.
Basic idea: this will depend on the \mathbb{T}-eigenvectors of T,

A "trivial" observation

X separable Banach space

$$
T \in \mathcal{L}(X)
$$

If there exists a Borel probability measure μ on X such that μ has full support and T is ergodic wrt μ, then T is hypercyclic, and even frequently hypercyclic. In fact, almost every $x \in X$ (relative to μ) is a frequently hypercyclic vector for T.

Goal: conditions on T ensuring that one can find such a μ.
Basic idea: this will depend on the \mathbb{T}-eigenvectors of T, i.e. the eigenvectors associated with unimodular eigenvalues.

Gaussian measures

Gaussian measures

X separable Banach space

Gaussian measures

X separable complex Banach space

Gaussian measures

X separable complex Banach space
Definition.

Gaussian measures

X separable complex Banach space

Definition. A Borel probability measure μ on X is said to be Gaussian

Gaussian measures

X separable complex Banach space

Definition. A Borel probability measure μ on X is said to be Gaussian if it is the distribution of a random variable of the form

Gaussian measures

X separable complex Banach space

Definition. A Borel probability measure μ on X is said to be Gaussian if it is the distribution of a random variable of the form

$$
\sum_{n=0}^{\infty} g_{n} x_{n}
$$

Gaussian measures

X separable complex Banach space

Definition. A Borel probability measure μ on X is said to be Gaussian if it is the distribution of a random variable of the form

$$
\sum_{n=0}^{\infty} g_{n} x_{n}
$$

where

Gaussian measures

X separable complex Banach space

Definition. A Borel probability measure μ on X is said to be Gaussian if it is the distribution of a random variable of the form

$$
\sum_{n=0}^{\infty} g_{n} x_{n}
$$

where

- $\left(x_{n}\right) \subset X$;

Gaussian measures

X separable complex Banach space

Definition. A Borel probability measure μ on X is said to be Gaussian if it is the distribution of a random variable of the form

$$
\sum_{n=0}^{\infty} g_{n} x_{n}
$$

where

- $\left(x_{n}\right) \subset X$;
- $\left(g_{n}\right)$ is a standard complex Gaussian sequence;

Gaussian measures

X separable complex Banach space

Definition. A Borel probability measure μ on X is said to be Gaussian if it is the distribution of a random variable of the form

$$
\sum_{n=0}^{\infty} g_{n} x_{n}
$$

where

- $\left(x_{n}\right) \subset X$;
- $\left(g_{n}\right)$ is a standard complex Gaussian sequence;
- the series $\sum g_{n} x_{n}$ is almost surely convergent.

Unexplained terminology and useful facts

Unexplained terminology and useful facts

- Standard Gaussian sequence:

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$)

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$,

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$.

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$. Then $\mathbb{E} g_{n}=0$

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$. Then $\mathbb{E} g_{n}=0$ and $\mathbb{E}\left|g_{n}\right|^{2}=1$.

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$. Then $\mathbb{E} g_{n}=0$ and $\mathbb{E}\left|g_{n}\right|^{2}=1$.
- An X-valued Gaussian series $\sum g_{n} x_{n}$ is almost surely convergent iff

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$. Then $\mathbb{E} g_{n}=0$ and $\mathbb{E}\left|g_{n}\right|^{2}=1$.
- An X-valued Gaussian series $\sum g_{n} x_{n}$ is almost surely convergent iff it is convergent in $L^{1}(\Omega, \mathbb{P}, X)$,

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$. Then $\mathbb{E} g_{n}=0$ and $\mathbb{E}\left|g_{n}\right|^{2}=1$.
- An X-valued Gaussian series $\sum g_{n} x_{n}$ is almost surely convergent iff it is convergent in $L^{1}(\Omega, \mathbb{P}, X)$, iff it converges in $L^{2}(\Omega, \mathbb{P}, X)$.

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$. Then $\mathbb{E} g_{n}=0$ and $\mathbb{E}\left|g_{n}\right|^{2}=1$.
- An X-valued Gaussian series $\sum g_{n} x_{n}$ is almost surely convergent iff it is convergent in $L^{1}(\Omega, \mathbb{P}, X)$, iff it converges in $L^{2}(\Omega, \mathbb{P}, X)$.
- When X is Hilbert space,

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$. Then $\mathbb{E} g_{n}=0$ and $\mathbb{E}\left|g_{n}\right|^{2}=1$.
- An X-valued Gaussian series $\sum g_{n} x_{n}$ is almost surely convergent iff it is convergent in $L^{1}(\Omega, \mathbb{P}, X)$, iff it converges in $L^{2}(\Omega, \mathbb{P}, X)$.
- When X is Hilbert space, this holds iff $\sum_{0}^{\infty}\left\|x_{n}\right\|^{2}<\infty$.

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$. Then $\mathbb{E} g_{n}=0$ and $\mathbb{E}\left|g_{n}\right|^{2}=1$.
- An X-valued Gaussian series $\sum g_{n} x_{n}$ is almost surely convergent iff it is convergent in $L^{1}(\Omega, \mathbb{P}, X)$, iff it converges in $L^{2}(\Omega, \mathbb{P}, X)$.
- When X is Hilbert space, this holds iff $\sum_{0}^{\infty}\left\|x_{n}\right\|^{2}<\infty$. In an arbitrary X,

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$. Then $\mathbb{E} g_{n}=0$ and $\mathbb{E}\left|g_{n}\right|^{2}=1$.
- An X-valued Gaussian series $\sum g_{n} x_{n}$ is almost surely convergent iff it is convergent in $L^{1}(\Omega, \mathbb{P}, X)$, iff it converges in $L^{2}(\Omega, \mathbb{P}, X)$.
- When X is Hilbert space, this holds iff $\sum_{0}^{\infty}\left\|x_{n}\right\|^{2}<\infty$. In an arbitrary X, this holds as soon as $\sum_{0}^{\infty}\left\|x_{n}\right\|<\infty$.

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$. Then $\mathbb{E} g_{n}=0$ and $\mathbb{E}\left|g_{n}\right|^{2}=1$.
- An X-valued Gaussian series $\sum g_{n} x_{n}$ is almost surely convergent iff it is convergent in $L^{1}(\Omega, \mathbb{P}, X)$, iff it converges in $L^{2}(\Omega, \mathbb{P}, X)$.
- When X is Hilbert space, this holds iff $\sum_{0}^{\infty}\left\|x_{n}\right\|^{2}<\infty$. In an arbitrary X, this holds as soon as $\sum_{0}^{\infty}\left\|x_{n}\right\|<\infty$.
- If μ is a Gaussian measure on X,

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$. Then $\mathbb{E} g_{n}=0$ and $\mathbb{E}\left|g_{n}\right|^{2}=1$.
- An X-valued Gaussian series $\sum g_{n} x_{n}$ is almost surely convergent iff it is convergent in $L^{1}(\Omega, \mathbb{P}, X)$, iff it converges in $L^{2}(\Omega, \mathbb{P}, X)$.
- When X is Hilbert space, this holds iff $\sum_{0}^{\infty}\left\|x_{n}\right\|^{2}<\infty$. In an arbitrary X, this holds as soon as $\sum_{0}^{\infty}\left\|x_{n}\right\|<\infty$.
- If μ is a Gaussian measure on X, then every $x^{*} \in X^{*}$ is in $L^{2}(\mu)$

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$. Then $\mathbb{E} g_{n}=0$ and $\mathbb{E}\left|g_{n}\right|^{2}=1$.
- An X-valued Gaussian series $\sum g_{n} x_{n}$ is almost surely convergent iff it is convergent in $L^{1}(\Omega, \mathbb{P}, X)$, iff it converges in $L^{2}(\Omega, \mathbb{P}, X)$.
- When X is Hilbert space, this holds iff $\sum_{0}^{\infty}\left\|x_{n}\right\|^{2}<\infty$. In an arbitrary X, this holds as soon as $\sum_{0}^{\infty}\left\|x_{n}\right\|<\infty$.
- If μ is a Gaussian measure on X, then every $x^{*} \in X^{*}$ is in $L^{2}(\mu)$ and $\int_{X} x^{*} d \mu=0$.

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$. Then $\mathbb{E} g_{n}=0$ and $\mathbb{E}\left|g_{n}\right|^{2}=1$.
- An X-valued Gaussian series $\sum g_{n} x_{n}$ is almost surely convergent iff it is convergent in $L^{1}(\Omega, \mathbb{P}, X)$, iff it converges in $L^{2}(\Omega, \mathbb{P}, X)$.
- When X is Hilbert space, this holds iff $\sum_{0}^{\infty}\left\|x_{n}\right\|^{2}<\infty$. In an arbitrary X, this holds as soon as $\sum_{0}^{\infty}\left\|x_{n}\right\|<\infty$.
- If μ is a Gaussian measure on X, then every $x^{*} \in X^{*}$ is in $L^{2}(\mu)$ and $\int_{X} x^{*} d \mu=0$.
- If $\mu \sim \sum_{0}^{\infty} g_{n} x_{n}$,

Unexplained terminology and useful facts

- Standard Gaussian sequence: the g_{n} are independent complex random variables (defined on some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$) with distribution $g \sim \gamma_{\sigma} \otimes \gamma_{\sigma}$, where $\gamma_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-t^{2} / 2 \sigma^{2}} d t$ and $\sigma^{2}=1 / 2$. Then $\mathbb{E} g_{n}=0$ and $\mathbb{E}\left|g_{n}\right|^{2}=1$.
- An X-valued Gaussian series $\sum g_{n} x_{n}$ is almost surely convergent iff it is convergent in $L^{1}(\Omega, \mathbb{P}, X)$, iff it converges in $L^{2}(\Omega, \mathbb{P}, X)$.
- When X is Hilbert space, this holds iff $\sum_{0}^{\infty}\left\|x_{n}\right\|^{2}<\infty$. In an arbitrary X, this holds as soon as $\sum_{0}^{\infty}\left\|x_{n}\right\|<\infty$.
- If μ is a Gaussian measure on X, then every $x^{*} \in X^{*}$ is in $L^{2}(\mu)$ and $\int_{X} x^{*} d \mu=0$.
- If $\mu \sim \sum_{0}^{\infty} g_{n} x_{n}$, then $\operatorname{supp}(\mu)=\overline{\operatorname{span}}\left\{x_{n} ; n \geq 0\right\}$.

Two exercises

Two exercises

$$
T \in \mathcal{L}(X)
$$

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1.

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X,

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X, then T admits an invariant Gaussian measure with full support.

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X, then T admits an invariant Gaussian measure with full support. Hint:

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X, then T admits an invariant Gaussian measure with full support. Hint: Choose a sequence of \mathbb{T}-eigenvectors $\left\{x_{n} ; n \geq 0\right\}$ with $\overline{\operatorname{span}}\left\{x_{n} ; n \geq 0\right\}=X$

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X, then T admits an invariant Gaussian measure with full support. Hint: Choose a sequence of \mathbb{T}-eigenvectors $\left\{x_{n} ; n \geq 0\right\}$ with $\overline{\operatorname{span}}\left\{x_{n} ; n \geq 0\right\}=X$ and $\left\|x_{n}\right\| \leq 2^{-n}$.

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X, then T admits an invariant Gaussian measure with full support. Hint: Choose a sequence of \mathbb{T}-eigenvectors $\left\{x_{n} ; n \geq 0\right\}$ with $\overline{\operatorname{span}}\left\{x_{n} ; n \geq 0\right\}=X$ and $\left\|x_{n}\right\| \leq 2^{-n}$.

Exercise 2.

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X, then T admits an invariant Gaussian measure with full support. Hint: Choose a sequence of \mathbb{T}-eigenvectors $\left\{x_{n} ; n \geq 0\right\}$ with $\overline{\operatorname{span}}\left\{x_{n} ; n \geq 0\right\}=X$ and $\left\|x_{n}\right\| \leq 2^{-n}$.

Exercise 2. If there exists a continuous map $E: \mathbb{T} \rightarrow X$ such that

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X, then T admits an invariant Gaussian measure with full support.

Hint: Choose a sequence of \mathbb{T}-eigenvectors $\left\{x_{n} ; n \geq 0\right\}$ with $\overline{\operatorname{span}}\left\{x_{n} ; n \geq 0\right\}=X$ and $\left\|x_{n}\right\| \leq 2^{-n}$.

Exercise 2. If there exists a continuous map $E: \mathbb{T} \rightarrow X$ such that $T E(\lambda)=\lambda E(\lambda)$ for every $\lambda \in \mathbb{T}$

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X, then T admits an invariant Gaussian measure with full support.

Hint: Choose a sequence of \mathbb{T}-eigenvectors $\left\{x_{n} ; n \geq 0\right\}$ with $\overline{\operatorname{span}}\left\{x_{n} ; n \geq 0\right\}=X$ and $\left\|x_{n}\right\| \leq 2^{-n}$.

Exercise 2. If there exists a continuous map $E: \mathbb{T} \rightarrow X$ such that $T E(\lambda)=\lambda E(\lambda)$ for every $\lambda \in \mathbb{T}$ and $\operatorname{span}\{E(\lambda) ; \lambda \in \mathbb{T}\}$ is dense in X,

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X, then T admits an invariant Gaussian measure with full support.

Hint: Choose a sequence of \mathbb{T}-eigenvectors $\left\{x_{n} ; n \geq 0\right\}$ with $\overline{\operatorname{span}}\left\{x_{n} ; n \geq 0\right\}=X$ and $\left\|x_{n}\right\| \leq 2^{-n}$.

Exercise 2. If there exists a continuous map $E: \mathbb{T} \rightarrow X$ such that $T E(\lambda)=\lambda E(\lambda)$ for every $\lambda \in \mathbb{T}$ and $\operatorname{span}\{E(\lambda) ; \lambda \in \mathbb{T}\}$ is dense in X, then T satisfies Kitai's criterion,

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X, then T admits an invariant Gaussian measure with full support.

Hint: Choose a sequence of \mathbb{T}-eigenvectors $\left\{x_{n} ; n \geq 0\right\}$ with $\overline{\operatorname{span}}\left\{x_{n} ; n \geq 0\right\}=X$ and $\left\|x_{n}\right\| \leq 2^{-n}$.

Exercise 2. If there exists a continuous map $E: \mathbb{T} \rightarrow X$ such that $T E(\lambda)=\lambda E(\lambda)$ for every $\lambda \in \mathbb{T}$ and span $\{E(\lambda) ; \lambda \in \mathbb{T}\}$ is dense in X, then T satisfies Kitai's criterion, and hence T is hypercyclic.

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X, then T admits an invariant Gaussian measure with full support.

Hint: Choose a sequence of \mathbb{T}-eigenvectors $\left\{x_{n} ; n \geq 0\right\}$ with $\overline{\operatorname{span}}\left\{x_{n} ; n \geq 0\right\}=X$ and $\left\|x_{n}\right\| \leq 2^{-n}$.

Exercise 2. If there exists a continuous map $E: \mathbb{T} \rightarrow X$ such that $T E(\lambda)=\lambda E(\lambda)$ for every $\lambda \in \mathbb{T}$ and span $\{E(\lambda) ; \lambda \in \mathbb{T}\}$ is dense in X, then T satisfies Kitai's criterion, and hence T is hypercyclic.

Hint:

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X, then T admits an invariant Gaussian measure with full support.

Hint: Choose a sequence of \mathbb{T}-eigenvectors $\left\{x_{n} ; n \geq 0\right\}$ with $\overline{\operatorname{span}}\left\{x_{n} ; n \geq 0\right\}=X$ and $\left\|x_{n}\right\| \leq 2^{-n}$.

Exercise 2. If there exists a continuous map $E: \mathbb{T} \rightarrow X$ such that $T E(\lambda)=\lambda E(\lambda)$ for every $\lambda \in \mathbb{T}$ and span $\{E(\lambda) ; \lambda \in \mathbb{T}\}$ is dense in X, then T satisfies Kitai's criterion, and hence T is hypercyclic.

Hint: Put $D=\operatorname{span}\left\{e_{k} ; k \in \mathbb{Z}\right\}=D^{\prime}$,

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X, then T admits an invariant Gaussian measure with full support.

Hint: Choose a sequence of \mathbb{T}-eigenvectors $\left\{x_{n} ; n \geq 0\right\}$ with $\overline{\operatorname{span}}\left\{x_{n} ; n \geq 0\right\}=X$ and $\left\|x_{n}\right\| \leq 2^{-n}$.

Exercise 2. If there exists a continuous map $E: \mathbb{T} \rightarrow X$ such that $T E(\lambda)=\lambda E(\lambda)$ for every $\lambda \in \mathbb{T}$ and span $\{E(\lambda) ; \lambda \in \mathbb{T}\}$ is dense in X, then T satisfies Kitai's criterion, and hence T is hypercyclic.

Hint: Put $D=\operatorname{span}\left\{e_{k} ; k \in \mathbb{Z}\right\}=D^{\prime}$, where

$$
e_{k}:=\widehat{E}(-k)
$$

Two exercises

$$
T \in \mathcal{L}(X)
$$

Exercise 1. If the \mathbb{T}-eigenvectors of T span a dense subspace of X, then T admits an invariant Gaussian measure with full support.

Hint: Choose a sequence of \mathbb{T}-eigenvectors $\left\{x_{n} ; n \geq 0\right\}$ with $\overline{\operatorname{span}}\left\{x_{n} ; n \geq 0\right\}=X$ and $\left\|x_{n}\right\| \leq 2^{-n}$.

Exercise 2. If there exists a continuous map $E: \mathbb{T} \rightarrow X$ such that $T E(\lambda)=\lambda E(\lambda)$ for every $\lambda \in \mathbb{T}$ and span $\{E(\lambda) ; \lambda \in \mathbb{T}\}$ is dense in X, then T satisfies Kitai's criterion, and hence T is hypercyclic.

Hint: Put $D=\operatorname{span}\left\{e_{k} ; k \in \mathbb{Z}\right\}=D^{\prime}$, where

$$
e_{k}:=\widehat{E}(-k)=\int_{\mathbb{T}} \lambda^{k} E(\lambda) d \lambda
$$

Perfectly spanning \mathbb{T}-eigenvectors

Perfectly spanning \mathbb{T}-eigenvectors

Definition.

Perfectly spanning \mathbb{T}-eigenvectors

Definition. The \mathbb{T}-eigenvectors of T are perfectly spanning if,

Perfectly spanning \mathbb{T}-eigenvectors

Definition. The \mathbb{T}-eigenvectors of T are perfectly spanning if, for any countable set $\Lambda \subset \mathbb{T}$,

Perfectly spanning \mathbb{T}-eigenvectors

Definition. The \mathbb{T}-eigenvectors of T are perfectly spanning if, for any countable set $\Lambda \subset \mathbb{T}$, the eigenvectors of T associated with eigenvalues $\lambda \in \mathbb{T} \backslash \Lambda$ span a dense subspace of X.

Perfectly spanning \mathbb{T}-eigenvectors

Definition. The \mathbb{T}-eigenvectors of T are perfectly spanning if, for any countable set $\Lambda \subset \mathbb{T}$, the eigenvectors of T associated with eigenvalues $\lambda \in \mathbb{T} \backslash \Lambda$ span a dense subspace of X.

Example.

Perfectly spanning \mathbb{T}-eigenvectors

Definition. The \mathbb{T}-eigenvectors of T are perfectly spanning if, for any countable set $\Lambda \subset \mathbb{T}$, the eigenvectors of T associated with eigenvalues $\lambda \in \mathbb{T} \backslash \Lambda$ span a dense subspace of X.

Example. This holds under the assumption of Exercise 2,

Perfectly spanning \mathbb{T}-eigenvectors

Definition. The \mathbb{T}-eigenvectors of T are perfectly spanning if, for any countable set $\Lambda \subset \mathbb{T}$, the eigenvectors of T associated with eigenvalues $\lambda \in \mathbb{T} \backslash \Lambda$ span a dense subspace of X.

Example. This holds under the assumption of Exercise 2, i.e. if there is a continuous map $E: \mathbb{T} \rightarrow X$ such that

Perfectly spanning \mathbb{T}-eigenvectors

Definition. The \mathbb{T}-eigenvectors of T are perfectly spanning if, for any countable set $\Lambda \subset \mathbb{T}$, the eigenvectors of T associated with eigenvalues $\lambda \in \mathbb{T} \backslash \Lambda$ span a dense subspace of X.

Example. This holds under the assumption of Exercise 2, i.e. if there is a continuous map $E: \mathbb{T} \rightarrow X$ such that $T E(\lambda)=\lambda E(\lambda)$ for every $\lambda \in \mathbb{T}$

Perfectly spanning \mathbb{T}-eigenvectors

Definition. The \mathbb{T}-eigenvectors of T are perfectly spanning if, for any countable set $\Lambda \subset \mathbb{T}$, the eigenvectors of T associated with eigenvalues $\lambda \in \mathbb{T} \backslash \Lambda$ span a dense subspace of X.

Example. This holds under the assumption of Exercise 2, i.e. if there is a continuous map $E: \mathbb{T} \rightarrow X$ such that $T E(\lambda)=\lambda E(\lambda)$ for every $\lambda \in \mathbb{T}$ and $\operatorname{span}\{E(\lambda) ; \lambda \in \mathbb{T}\}$ is dense in X.

The main result

The main result

Theorem.

The main result

Theorem. (Flytzanis,

The main result

Theorem. (Flytzanis, Bayart-Grivaux)

The main result

Theorem. (Flytzanis, Bayart-Grivaux)
Let X be a complex separable Banach space,

The main result

Theorem. (Flytzanis, Bayart-Grivaux)
Let X be a complex separable Banach space, and let $T \in \mathcal{L}(X)$.

The main result

Theorem. (Flytzanis, Bayart-Grivaux)
Let X be a complex separable Banach space, and let $T \in \mathcal{L}(X)$.
(1) If the \mathbb{T}-eigenvectors of T are perfectly spanning,

The main result

Theorem. (Flytzanis, Bayart-Grivaux)
Let X be a complex separable Banach space, and let $T \in \mathcal{L}(X)$.
(1) If the \mathbb{T}-eigenvectors of T are perfectly spanning, then there is a Gaussian measure μ on X with full support such that T is weakly mixing wrt μ.

The main result

Theorem. (Flytzanis, Bayart-Grivaux)
Let X be a complex separable Banach space, and let $T \in \mathcal{L}(X)$.
(1) If the \mathbb{T}-eigenvectors of T are perfectly spanning, then there is a Gaussian measure μ on X with full support such that T is weakly mixing wrt μ.
(2) The converse is true

The main result

Theorem. (Flytzanis, Bayart-Grivaux)
Let X be a complex separable Banach space, and let $T \in \mathcal{L}(X)$.
(1) If the \mathbb{T}-eigenvectors of T are perfectly spanning, then there is a Gaussian measure μ on X with full support such that T is weakly mixing wrt μ.
(2) The converse is true if X has cotype 2.

γ-radonifying operators

γ-radonifying operators

Definition.

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X is said to be γ-radonifying if

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X is said to be γ-radonifying if for some orthonormal basis $\left(e_{n}\right)_{n \geq 0}$ of \mathcal{H},

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X is said to be γ-radonifying if for some orthonormal basis $\left(e_{n}\right)_{n \geq 0}$ of \mathcal{H}, the series $\sum g_{n} K\left(e_{n}\right)$ is a.s. convergent.

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X is said to be γ-radonifying if for some (equivalently, for any) orthonormal basis $\left(e_{n}\right)_{n \geq 0}$ of \mathcal{H}, the series $\sum g_{n} K\left(e_{n}\right)$ is a.s. convergent.

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X is said to be γ-radonifying if for some (equivalently, for any) orthonormal basis $\left(e_{n}\right)_{n \geq 0}$ of \mathcal{H}, the series $\sum g_{n} K\left(e_{n}\right)$ is a.s. convergent. The corresponding Gaussian measure does not depend on the orthonormal basis $\left(e_{n}\right)$

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X is said to be γ-radonifying if for some (equivalently, for any) orthonormal basis $\left(e_{n}\right)_{n \geq 0}$ of \mathcal{H}, the series $\sum g_{n} K\left(e_{n}\right)$ is a.s. convergent. The corresponding Gaussian measure does not depend on the orthonormal basis (e_{n}) and is denoted by μ_{K}.

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X is said to be γ-radonifying if for some (equivalently, for any) orthonormal basis $\left(e_{n}\right)_{n \geq 0}$ of \mathcal{H}, the series $\sum g_{n} K\left(e_{n}\right)$ is a.s. convergent. The corresponding Gaussian measure does not depend on the orthonormal basis $\left(e_{n}\right)$ and is denoted by μ_{K}.

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X is said to be γ-radonifying if for some (equivalently, for any) orthonormal basis $\left(e_{n}\right)_{n \geq 0}$ of \mathcal{H}, the series $\sum g_{n} K\left(e_{n}\right)$ is a.s. convergent. The corresponding Gaussian measure does not depend on the orthonormal basis $\left(e_{n}\right)$ and is denoted by μ_{K}.

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

Example 1.

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X is said to be γ-radonifying if for some (equivalently, for any) orthonormal basis $\left(e_{n}\right)_{n \geq 0}$ of \mathcal{H}, the series $\sum g_{n} K\left(e_{n}\right)$ is a.s. convergent. The corresponding Gaussian measure does not depend on the orthonormal basis $\left(e_{n}\right)$ and is denoted by μ_{K}.

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

Example 1. If X is a Hilbert space,

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X is said to be γ-radonifying if for some (equivalently, for any) orthonormal basis $\left(e_{n}\right)_{n \geq 0}$ of \mathcal{H}, the series $\sum g_{n} K\left(e_{n}\right)$ is a.s. convergent. The corresponding Gaussian measure does not depend on the orthonormal basis $\left(e_{n}\right)$ and is denoted by μ_{K}.

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

Example 1. If X is a Hilbert space, then an operator $K: \mathcal{H} \rightarrow X$ is γ-radonifying iff

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X is said to be γ-radonifying if for some (equivalently, for any) orthonormal basis $\left(e_{n}\right)_{n \geq 0}$ of \mathcal{H}, the series $\sum g_{n} K\left(e_{n}\right)$ is a.s. convergent. The corresponding Gaussian measure does not depend on the orthonormal basis $\left(e_{n}\right)$ and is denoted by μ_{K}.

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

Example 1. If X is a Hilbert space, then an operator $K: \mathcal{H} \rightarrow X$ is γ-radonifying iff it is Hilbert-Schmidt.

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X is said to be γ-radonifying if for some (equivalently, for any) orthonormal basis $\left(e_{n}\right)_{n \geq 0}$ of \mathcal{H}, the series $\sum g_{n} K\left(e_{n}\right)$ is a.s. convergent. The corresponding Gaussian measure does not depend on the orthonormal basis $\left(e_{n}\right)$ and is denoted by μ_{K}.

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

Example 1. If X is a Hilbert space, then an operator $K: \mathcal{H} \rightarrow X$ is γ-radonifying iff it is Hilbert-Schmidt.

Example 2.

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X is said to be γ-radonifying if for some (equivalently, for any) orthonormal basis $\left(e_{n}\right)_{n \geq 0}$ of \mathcal{H}, the series $\sum g_{n} K\left(e_{n}\right)$ is a.s. convergent. The corresponding Gaussian measure does not depend on the orthonormal basis $\left(e_{n}\right)$ and is denoted by μ_{K}.

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

Example 1. If X is a Hilbert space, then an operator $K: \mathcal{H} \rightarrow X$ is γ-radonifying iff it is Hilbert-Schmidt.

Example 2. If $\sum_{0}^{\infty}\left\|K\left(e_{n}\right)\right\|<\infty$,

γ-radonifying operators

Definition. An operator $K: \mathcal{H} \rightarrow X$ from some separable Hilbert space \mathcal{H} into X is said to be γ-radonifying if for some (equivalently, for any) orthonormal basis $\left(e_{n}\right)_{n \geq 0}$ of \mathcal{H}, the series $\sum g_{n} K\left(e_{n}\right)$ is a.s. convergent. The corresponding Gaussian measure does not depend on the orthonormal basis $\left(e_{n}\right)$ and is denoted by μ_{K}.

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

Example 1. If X is a Hilbert space, then an operator $K: \mathcal{H} \rightarrow X$ is γ-radonifying iff it is Hilbert-Schmidt.

Example 2. If $\sum_{0}^{\infty}\left\|K\left(e_{n}\right)\right\|<\infty$, then K is γ-radonifying.

Some (other) useful facts

Some (other) useful facts

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

Some (other) useful facts

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

- The Fourier transform of μ_{K} is given by

Some (other) useful facts

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

- The Fourier transform of μ_{K} is given by

$$
\widehat{\mu_{K}}\left(x^{*}\right)=\exp \left(-\frac{1}{4}\left\|K^{*}\left(x^{*}\right)\right\|^{2}\right)
$$

Some (other) useful facts

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

- The Fourier transform of μ_{K} is given by

$$
\widehat{\mu_{K}}\left(x^{*}\right)=\exp \left(-\frac{1}{4}\left\|K^{*}\left(x^{*}\right)\right\|^{2}\right)
$$

- If $x^{*}, y^{*} \in X^{*}$, then

Some (other) useful facts

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

- The Fourier transform of μ_{K} is given by

$$
\widehat{\mu_{K}}\left(x^{*}\right)=\exp \left(-\frac{1}{4}\left\|K^{*}\left(x^{*}\right)\right\|^{2}\right)
$$

- If $x^{*}, y^{*} \in X^{*}$, then

$$
\left\langle x^{*}, y^{*}\right\rangle_{L^{2}\left(\mu_{K}\right)}=
$$

Some (other) useful facts

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

- The Fourier transform of μ_{K} is given by

$$
\widehat{\mu_{K}}\left(x^{*}\right)=\exp \left(-\frac{1}{4}\left\|K^{*}\left(x^{*}\right)\right\|^{2}\right)
$$

- If $x^{*}, y^{*} \in X^{*}$, then

$$
\left\langle x^{*}, y^{*}\right\rangle_{L^{2}\left(\mu_{K}\right)}=\left\langle K^{*}\left(y^{*}\right), K^{*}\left(x^{*}\right)\right\rangle_{\mathcal{H}}
$$

Some (other) useful facts

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

- The Fourier transform of μ_{K} is given by

$$
\widehat{\mu_{K}}\left(x^{*}\right)=\exp \left(-\frac{1}{4}\left\|K^{*}\left(x^{*}\right)\right\|^{2}\right)
$$

- If $x^{*}, y^{*} \in X^{*}$, then

$$
\left\langle x^{*}, y^{*}\right\rangle_{L^{2}\left(\mu_{K}\right)}=\left\langle K^{*}\left(y^{*}\right), K^{*}\left(x^{*}\right)\right\rangle_{\mathcal{H}}
$$

- The support of μ_{K} is the closure of $\operatorname{Ran}(K)$;

Some (other) useful facts

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

- The Fourier transform of μ_{K} is given by

$$
\widehat{\mu_{K}}\left(x^{*}\right)=\exp \left(-\frac{1}{4}\left\|K^{*}\left(x^{*}\right)\right\|^{2}\right)
$$

- If $x^{*}, y^{*} \in X^{*}$, then

$$
\left\langle x^{*}, y^{*}\right\rangle_{L^{2}\left(\mu_{K}\right)}=\left\langle K^{*}\left(y^{*}\right), K^{*}\left(x^{*}\right)\right\rangle_{\mathcal{H}}
$$

- The support of μ_{K} is the closure of $\operatorname{Ran}(K)$; in particular,

Some (other) useful facts

$$
\mu_{K} \sim \sum_{n=0}^{\infty} g_{n} K\left(e_{n}\right)
$$

- The Fourier transform of μ_{K} is given by

$$
\widehat{\mu_{K}}\left(x^{*}\right)=\exp \left(-\frac{1}{4}\left\|K^{*}\left(x^{*}\right)\right\|^{2}\right)
$$

- If $x^{*}, y^{*} \in X^{*}$, then

$$
\left\langle x^{*}, y^{*}\right\rangle_{L^{2}\left(\mu_{K}\right)}=\left\langle K^{*}\left(y^{*}\right), K^{*}\left(x^{*}\right)\right\rangle_{\mathcal{H}}
$$

- The support of μ_{K} is the closure of $\operatorname{Ran}(K)$; in particular, μ_{K} has full support iff K has dense range.

An operator criterion for weak mixing

An operator criterion for weak mixing

Lemma.

An operator criterion for weak mixing

Lemma. Let $T \in \mathcal{L}(X)$,

An operator criterion for weak mixing

Lemma. Let $T \in \mathcal{L}(X)$, and let $K: \mathcal{H} \rightarrow X$ be γ-radonifying.

An operator criterion for weak mixing

Lemma. Let $T \in \mathcal{L}(X)$, and let $K: \mathcal{H} \rightarrow X$ be γ-radonifying.
(1) The measure $\mu=\mu_{K}$ is T-invariant iff

An operator criterion for weak mixing

Lemma. Let $T \in \mathcal{L}(X)$, and let $K: \mathcal{H} \rightarrow X$ be γ-radonifying.
(1) The measure $\mu=\mu_{K}$ is T-invariant iff one can find an operator $M: \mathcal{H} \rightarrow \mathcal{H}$ such that

An operator criterion for weak mixing

Lemma. Let $T \in \mathcal{L}(X)$, and let $K: \mathcal{H} \rightarrow X$ be γ-radonifying.
(1) The measure $\mu=\mu_{K}$ is T-invariant iff one can find an operator $M: \mathcal{H} \rightarrow \mathcal{H}$ such that M^{*} is an isometry on $\mathcal{H}_{K}:=\mathcal{H} \ominus \operatorname{ker}(K)$

An operator criterion for weak mixing

Lemma. Let $T \in \mathcal{L}(X)$, and let $K: \mathcal{H} \rightarrow X$ be γ-radonifying.
(1) The measure $\mu=\mu_{K}$ is T-invariant iff one can find an operator $M: \mathcal{H} \rightarrow \mathcal{H}$ such that M^{*} is an isometry on $\mathcal{H}_{K}:=\mathcal{H} \ominus \operatorname{ker}(K)$ and $T K=K M$.

An operator criterion for weak mixing

Lemma. Let $T \in \mathcal{L}(X)$, and let $K: \mathcal{H} \rightarrow X$ be γ-radonifying.
(1) The measure $\mu=\mu_{K}$ is T-invariant iff one can find an operator $M: \mathcal{H} \rightarrow \mathcal{H}$ such that M^{*} is an isometry on $\mathcal{H}_{K}:=\mathcal{H} \ominus \operatorname{ker}(K)$ and $T K=K M$.
(2) T is weakly mixing wrt μ iff

An operator criterion for weak mixing

Lemma. Let $T \in \mathcal{L}(X)$, and let $K: \mathcal{H} \rightarrow X$ be γ-radonifying.
(1) The measure $\mu=\mu_{K}$ is T-invariant iff one can find an operator $M: \mathcal{H} \rightarrow \mathcal{H}$ such that M^{*} is an isometry on $\mathcal{H}_{K}:=\mathcal{H} \ominus \operatorname{ker}(K)$ and $T K=K M$.
(2) T is weakly mixing wrt μ iff M^{*} is weakly mixing to 0 on \mathcal{H}_{K}

An operator criterion for weak mixing

Lemma. Let $T \in \mathcal{L}(X)$, and let $K: \mathcal{H} \rightarrow X$ be γ-radonifying.
(1) The measure $\mu=\mu_{K}$ is T-invariant iff one can find an operator $M: \mathcal{H} \rightarrow \mathcal{H}$ such that M^{*} is an isometry on $\mathcal{H}_{K}:=\mathcal{H} \ominus \operatorname{ker}(K)$ and $T K=K M$.
(2) T is weakly mixing wrt μ iff M^{*} is weakly mixing to 0 on \mathcal{H}_{K} i.e. $\frac{1}{N} \sum_{n=0}^{N-1}\left|\left\langle M^{* n} u, v\right\rangle_{\mathcal{H}}\right| \rightarrow 0$

An operator criterion for weak mixing

Lemma. Let $T \in \mathcal{L}(X)$, and let $K: \mathcal{H} \rightarrow X$ be γ-radonifying.
(1) The measure $\mu=\mu_{K}$ is T-invariant iff one can find an operator $M: \mathcal{H} \rightarrow \mathcal{H}$ such that M^{*} is an isometry on $\mathcal{H}_{K}:=\mathcal{H} \ominus \operatorname{ker}(K)$ and $T K=K M$.
(2) T is weakly mixing wrt μ iff M^{*} is weakly mixing to 0 on \mathcal{H}_{K} i.e. $\frac{1}{N} \sum_{n=0}^{N-1}\left|\left\langle M^{* n} u, v\right\rangle_{\mathcal{H}}\right| \rightarrow 0$ for any $u, v \in \mathcal{H}_{K}$.

The spectral mixing theorem

The spectral mixing theorem

Theorem.

The spectral mixing theorem

Theorem. (Halmos-von Neumann)

The spectral mixing theorem

Theorem. (Halmos-von Neumann)
Let $M=M_{\phi}$ be a unitary multiplication operator on $\mathcal{H}=L^{2}(\Omega, \nu)$

The spectral mixing theorem

Theorem. (Halmos-von Neumann)
Let $M=M_{\phi}$ be a unitary multiplication operator on $\mathcal{H}=L^{2}(\Omega, \nu)$ associated with a measurable function $\phi: \Omega \rightarrow \mathbb{T}$.

The spectral mixing theorem

Theorem. (Halmos-von Neumann)
Let $M=M_{\phi}$ be a unitary multiplication operator on $\mathcal{H}=L^{2}(\Omega, \nu)$ associated with a measurable function $\phi: \Omega \rightarrow \mathbb{T}$. The following are equivalent:

The spectral mixing theorem

Theorem. (Halmos-von Neumann)
Let $M=M_{\phi}$ be a unitary multiplication operator on $\mathcal{H}=L^{2}(\Omega, \nu)$ associated with a measurable function $\phi: \Omega \rightarrow \mathbb{T}$. The following are equivalent:
(i) M^{*} is weakly mixing to 0 on \mathcal{H};

The spectral mixing theorem

Theorem. (Halmos-von Neumann)
Let $M=M_{\phi}$ be a unitary multiplication operator on $\mathcal{H}=L^{2}(\Omega, \nu)$ associated with a measurable function $\phi: \Omega \rightarrow \mathbb{T}$. The following are equivalent:
(i) M^{*} is weakly mixing to 0 on \mathcal{H};
(ii) M has no eigenvalue;

The spectral mixing theorem

Theorem. (Halmos-von Neumann)
Let $M=M_{\phi}$ be a unitary multiplication operator on $\mathcal{H}=L^{2}(\Omega, \nu)$ associated with a measurable function $\phi: \Omega \rightarrow \mathbb{T}$. The following are equivalent:
(i) M^{*} is weakly mixing to 0 on \mathcal{H};
(ii) M has no eigenvalue;
(iii) the measure $\nu \circ \phi^{-1}$ is continuous,

The spectral mixing theorem

Theorem. (Halmos-von Neumann)
Let $M=M_{\phi}$ be a unitary multiplication operator on $\mathcal{H}=L^{2}(\Omega, \nu)$ associated with a measurable function $\phi: \Omega \rightarrow \mathbb{T}$. The following are equivalent:
(i) M^{*} is weakly mixing to 0 on \mathcal{H};
(ii) M has no eigenvalue;
(iii) the measure $\nu \circ \phi^{-1}$ is continuous, i.e. $\nu(\{s ; \phi(s)=\lambda\})=0$ for every $\lambda \in \mathbb{T}$.

All measure spaces $(\Omega, \mathfrak{A}, \nu)$ are sigma-finite

All measure spaces $(\Omega, \mathfrak{A}, \nu)$ are sigma-finite
All L^{2} spaces are separable

Spanning \mathbb{T}-eigenfields

Spanning \mathbb{T}-eigenfields

Definition 1.

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

- A vector field on $(\Omega, \mathfrak{A}, \nu)$

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

- A vector field on $(\Omega, \mathfrak{A}, \nu)$ (with values in X)

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

- A vector field on $(\Omega, \mathfrak{A}, \nu)$ (with values in X) is a measurable $\operatorname{map} E: \Omega \rightarrow X$

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

- A vector field on $(\Omega, \mathfrak{A}, \nu)$ (with values in X) is a measurable $\operatorname{map} E: \Omega \rightarrow X$ which is in $L^{2}(\Omega, \nu, X)$.

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

- A vector field on $(\Omega, \mathfrak{A}, \nu)$ (with values in X) is a measurable $\operatorname{map} E: \Omega \rightarrow X$ which is in $L^{2}(\Omega, \nu, X)$.
- A \mathbb{T}-eigenfield for T on $(\Omega, \mathfrak{A}, \nu)$

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

- A vector field on $(\Omega, \mathfrak{A}, \nu)$ (with values in X) is a measurable map $E: \Omega \rightarrow X$ which is in $L^{2}(\Omega, \nu, X)$.
- A \mathbb{T}-eigenfield for T on $(\Omega, \mathfrak{A}, \nu)$ is a pair (E, ϕ)

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

- A vector field on $(\Omega, \mathfrak{A}, \nu)$ (with values in X) is a measurable map $E: \Omega \rightarrow X$ which is in $L^{2}(\Omega, \nu, X)$.
- A \mathbb{T}-eigenfield for T on $(\Omega, \mathfrak{A}, \nu)$ is a pair (E, ϕ) where $E: \Omega \rightarrow X$ is a vector field,

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

- A vector field on $(\Omega, \mathfrak{A}, \nu)$ (with values in X) is a measurable map $E: \Omega \rightarrow X$ which is in $L^{2}(\Omega, \nu, X)$.
- A \mathbb{T}-eigenfield for T on $(\Omega, \mathfrak{A}, \nu)$ is a pair (E, ϕ) where $E: \Omega \rightarrow X$ is a vector field, $\phi: \Omega \rightarrow \mathbb{T}$ is a measurable map

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

- A vector field on $(\Omega, \mathfrak{A}, \nu)$ (with values in X) is a measurable $\operatorname{map} E: \Omega \rightarrow X$ which is in $L^{2}(\Omega, \nu, X)$.
- A \mathbb{T}-eigenfield for T on $(\Omega, \mathfrak{A}, \nu)$ is a pair (E, ϕ) where $E: \Omega \rightarrow X$ is a vector field, $\phi: \Omega \rightarrow \mathbb{T}$ is a measurable map and $T E(s)=\phi(s) E(s)$ for every $s \in \Omega$.

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

- A vector field on $(\Omega, \mathfrak{A}, \nu)$ (with values in X) is a measurable $\operatorname{map} E: \Omega \rightarrow X$ which is in $L^{2}(\Omega, \nu, X)$.
- A \mathbb{T}-eigenfield for T on $(\Omega, \mathfrak{A}, \nu)$ is a pair (E, ϕ) where $E: \Omega \rightarrow X$ is a vector field, $\phi: \Omega \rightarrow \mathbb{T}$ is a measurable map and $T E(s)=\phi(s) E(s)$ for every $s \in \Omega$.

Definition 2.

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

- A vector field on $(\Omega, \mathfrak{A}, \nu)$ (with values in X) is a measurable $\operatorname{map} E: \Omega \rightarrow X$ which is in $L^{2}(\Omega, \nu, X)$.
- A \mathbb{T}-eigenfield for T on $(\Omega, \mathfrak{A}, \nu)$ is a pair (E, ϕ) where $E: \Omega \rightarrow X$ is a vector field, $\phi: \Omega \rightarrow \mathbb{T}$ is a measurable map and $T E(s)=\phi(s) E(s)$ for every $s \in \Omega$.

Definition 2. A vector field $E: \Omega \rightarrow X$ is said to be ν-spanning if,

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

- A vector field on $(\Omega, \mathfrak{A}, \nu)$ (with values in X) is a measurable $\operatorname{map} E: \Omega \rightarrow X$ which is in $L^{2}(\Omega, \nu, X)$.
- A \mathbb{T}-eigenfield for T on $(\Omega, \mathfrak{A}, \nu)$ is a pair (E, ϕ) where $E: \Omega \rightarrow X$ is a vector field, $\phi: \Omega \rightarrow \mathbb{T}$ is a measurable map and $T E(s)=\phi(s) E(s)$ for every $s \in \Omega$.

Definition 2. A vector field $E: \Omega \rightarrow X$ is said to be ν-spanning if, for any $\omega \subset \Omega$ with $\nu(\omega)=0$,

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

- A vector field on $(\Omega, \mathfrak{A}, \nu)$ (with values in X) is a measurable $\operatorname{map} E: \Omega \rightarrow X$ which is in $L^{2}(\Omega, \nu, X)$.
- A \mathbb{T}-eigenfield for T on $(\Omega, \mathfrak{A}, \nu)$ is a pair (E, ϕ) where $E: \Omega \rightarrow X$ is a vector field, $\phi: \Omega \rightarrow \mathbb{T}$ is a measurable map and $T E(s)=\phi(s) E(s)$ for every $s \in \Omega$.

Definition 2. A vector field $E: \Omega \rightarrow X$ is said to be ν-spanning if, for any $\omega \subset \Omega$ with $\nu(\omega)=0$, the linear span of $\{E(s) ; s \in \Omega \backslash \omega\}$ is dense in X.

Spanning \mathbb{T}-eigenfields

Definition 1. Let $(\Omega, \mathfrak{A}, \nu)$ be a measure space.

- A vector field on $(\Omega, \mathfrak{A}, \nu)$ (with values in X) is a measurable $\operatorname{map} E: \Omega \rightarrow X$ which is in $L^{2}(\Omega, \nu, X)$.
- A \mathbb{T}-eigenfield for T on $(\Omega, \mathfrak{A}, \nu)$ is a pair (E, ϕ) where $E: \Omega \rightarrow X$ is a vector field, $\phi: \Omega \rightarrow \mathbb{T}$ is a measurable map and $T E(s)=\phi(s) E(s)$ for every $s \in \Omega$.

Definition 2. A vector field $E: \Omega \rightarrow X$ is said to be ν-spanning if, for any $\omega \subset \Omega$ with $\nu(\omega)=0$, the linear span of $\{E(s)$; $s \in \Omega \backslash \omega\}$ is dense in X. Likewise for a \mathbb{T}-eigenfield (E, ϕ).

The operator associated with a vector field

The operator associated with a vector field
$E: \Omega \rightarrow X$ vector field on (Ω, ν)

The operator associated with a vector field

$$
E: \Omega \rightarrow X \text { vector field on }(\Omega, \nu)
$$

$$
K_{E}: L^{2}(\Omega, \nu) \rightarrow X
$$

The operator associated with a vector field

$$
E: \Omega \rightarrow X \text { vector field on }(\Omega, \nu)
$$

$$
\begin{gathered}
K_{E}: L^{2}(\Omega, \nu) \rightarrow X \\
K_{E}(u)=\int_{\Omega} u(s) E(s) d \nu(s)
\end{gathered}
$$

The operator associated with a vector field

$$
\begin{gathered}
E: \Omega \rightarrow X \text { vector field on }(\Omega, \nu) \\
K_{E}: L^{2}(\Omega, \nu) \rightarrow X \\
K_{E}(u)=\int_{\Omega} u(s) E(s) d \nu(s)
\end{gathered}
$$

Exercise.

The operator associated with a vector field

$$
\begin{gathered}
E: \Omega \rightarrow X \text { vector field on }(\Omega, \nu) \\
K_{E}: L^{2}(\Omega, \nu) \rightarrow X \\
K_{E}(u)=\int_{\Omega} u(s) E(s) d \nu(s)
\end{gathered}
$$

Exercise. The operator K_{E} is compact.

The operator associated with a vector field

$$
\begin{gathered}
E: \Omega \rightarrow X \text { vector field on }(\Omega, \nu) \\
K_{E}: L^{2}(\Omega, \nu) \rightarrow X \\
K_{E}(u)=\int_{\Omega} u(s) E(s) d \nu(s)
\end{gathered}
$$

Exercise. The operator K_{E} is compact. If X is a Hilbert space,

The operator associated with a vector field

$$
\begin{gathered}
E: \Omega \rightarrow X \text { vector field on }(\Omega, \nu) \\
K_{E}: L^{2}(\Omega, \nu) \rightarrow X \\
K_{E}(u)=\int_{\Omega} u(s) E(s) d \nu(s)
\end{gathered}
$$

Exercise. The operator K_{E} is compact. If X is a Hilbert space, then K_{E} is Hilbert-Schmidt.

Why \mathbb{T}-eigenfields?

Why T-eigenfields?

Observation.

Why \mathbb{T}-eigenfields?

Observation. If (E, ϕ) is a ν-spanning \mathbb{T}-eigenfield for T on (Ω, ν),

Why \mathbb{T}-eigenfields?

Observation. If (E, ϕ) is a ν-spanning \mathbb{T}-eigenfield for T on (Ω, ν), then the operator $K_{E}: L^{2}(\Omega, \nu) \rightarrow X$ has dense range

Why \mathbb{T}-eigenfields?

Observation. If (E, ϕ) is a ν-spanning \mathbb{T}-eigenfield for T on (Ω, ν), then the operator $K_{E}: L^{2}(\Omega, \nu) \rightarrow X$ has dense range and satisfies the equation $T K_{E}=K_{E} M_{\phi}$,

Why \mathbb{T}-eigenfields?

Observation. If (E, ϕ) is a ν-spanning \mathbb{T}-eigenfield for T on (Ω, ν), then the operator $K_{E}: L^{2}(\Omega, \nu) \rightarrow X$ has dense range and satisfies the equation $T K_{E}=K_{E} M_{\phi}$, where M_{ϕ} is the unitary multiplication operator on $L^{2}(\Omega, \nu)$ associated with ϕ.

Why \mathbb{T}-eigenfields?

Observation. If (E, ϕ) is a ν-spanning \mathbb{T}-eigenfield for T on (Ω, ν), then the operator $K_{E}: L^{2}(\Omega, \nu) \rightarrow X$ has dense range and satisfies the equation $T K_{E}=K_{E} M_{\phi}$, where M_{ϕ} is the unitary multiplication operator on $L^{2}(\Omega, \nu)$ associated with ϕ.

Consequence.

Why \mathbb{T}-eigenfields?

Observation. If (E, ϕ) is a ν-spanning \mathbb{T}-eigenfield for T on (Ω, ν), then the operator $K_{E}: L^{2}(\Omega, \nu) \rightarrow X$ has dense range and satisfies the equation $T K_{E}=K_{E} M_{\phi}$, where M_{ϕ} is the unitary multiplication operator on $L^{2}(\Omega, \nu)$ associated with ϕ.

Consequence. If one can find a ν-spanning \mathbb{T}-eigenfield (E, ϕ) for T on some (Ω, ν)

Why \mathbb{T}-eigenfields?

Observation. If (E, ϕ) is a ν-spanning \mathbb{T}-eigenfield for T on (Ω, ν), then the operator $K_{E}: L^{2}(\Omega, \nu) \rightarrow X$ has dense range and satisfies the equation $T K_{E}=K_{E} M_{\phi}$, where M_{ϕ} is the unitary multiplication operator on $L^{2}(\Omega, \nu)$ associated with ϕ.

Consequence. If one can find a ν-spanning \mathbb{T}-eigenfield (E, ϕ) for T on some (Ω, ν) such that the measure $\nu \circ \phi^{-1}$ is continuous

Why \mathbb{T}-eigenfields?

Observation. If (E, ϕ) is a ν-spanning \mathbb{T}-eigenfield for T on (Ω, ν), then the operator $K_{E}: L^{2}(\Omega, \nu) \rightarrow X$ has dense range and satisfies the equation $T K_{E}=K_{E} M_{\phi}$, where M_{ϕ} is the unitary multiplication operator on $L^{2}(\Omega, \nu)$ associated with ϕ.

Consequence. If one can find a ν-spanning \mathbb{T}-eigenfield (E, ϕ) for T on some (Ω, ν) such that the measure $\nu \circ \phi^{-1}$ is continuous and

Why \mathbb{T}-eigenfields?

Observation. If (E, ϕ) is a ν-spanning \mathbb{T}-eigenfield for T on (Ω, ν), then the operator $K_{E}: L^{2}(\Omega, \nu) \rightarrow X$ has dense range and satisfies the equation $T K_{E}=K_{E} M_{\phi}$, where M_{ϕ} is the unitary multiplication operator on $L^{2}(\Omega, \nu)$ associated with ϕ.

Consequence. If one can find a ν-spanning \mathbb{T}-eigenfield (E, ϕ) for T on some (Ω, ν) such that the measure $\nu \circ \phi^{-1}$ is continuous and the operator K_{E} is γ-radonifying,

Why \mathbb{T}-eigenfields?

Observation. If (E, ϕ) is a ν-spanning \mathbb{T}-eigenfield for T on (Ω, ν), then the operator $K_{E}: L^{2}(\Omega, \nu) \rightarrow X$ has dense range and satisfies the equation $T K_{E}=K_{E} M_{\phi}$, where M_{ϕ} is the unitary multiplication operator on $L^{2}(\Omega, \nu)$ associated with ϕ.

Consequence. If one can find a ν-spanning \mathbb{T}-eigenfield (E, ϕ) for T on some (Ω, ν) such that the measure $\nu \circ \phi^{-1}$ is continuous and the operator K_{E} is γ-radonifying, then one has proved that T is weakly mixing wrt some Gaussian measure μ with full support,

Why \mathbb{T}-eigenfields?

Observation. If (E, ϕ) is a ν-spanning \mathbb{T}-eigenfield for T on (Ω, ν), then the operator $K_{E}: L^{2}(\Omega, \nu) \rightarrow X$ has dense range and satisfies the equation $T K_{E}=K_{E} M_{\phi}$, where M_{ϕ} is the unitary multiplication operator on $L^{2}(\Omega, \nu)$ associated with ϕ.

Consequence. If one can find a ν-spanning \mathbb{T}-eigenfield (E, ϕ) for T on some (Ω, ν) such that the measure $\nu \circ \phi^{-1}$ is continuous and the operator K_{E} is γ-radonifying, then one has proved that T is weakly mixing wrt some Gaussian measure μ with full support, namely $\mu=\mu_{K_{E}}$.

Proof of the main theorem (1)

Proof of the main theorem (1)

$$
m=\text { normalized Lebesgue measure on } 2^{\omega}
$$

Proof of the main theorem (1)

$$
m=\text { normalized Lebesgue measure on } 2^{\omega}
$$

Lemma 1.

Proof of the main theorem (1)

$$
m=\text { normalized Lebesgue measure on } 2^{\omega}
$$

Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$,

Proof of the main theorem (1)

$$
m=\text { normalized Lebesgue measure on } 2^{\omega}
$$

Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$, and let $Z \subset \mathbf{V}$.

Proof of the main theorem (1)

 $m=$ normalized Lebesgue measure on 2^{ω}Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$, and let $Z \subset \mathbf{V}$. Assume that for any $O \subset Z$ open $\neq \varnothing$,

Proof of the main theorem (1)

$$
m=\text { normalized Lebesgue measure on } 2^{\omega}
$$

Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$, and let $Z \subset \mathbf{V}$. Assume that for any $O \subset Z$ open $\neq \varnothing$, the set $\{\lambda \in \mathbb{T} ; \exists x:(x, \lambda) \in O\}$ is uncountable.

Proof of the main theorem (1)

$$
m=\text { normalized Lebesgue measure on } 2^{\omega}
$$

Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$, and let $Z \subset \mathbf{V}$. Assume that for any $O \subset Z$ open $\neq \varnothing$, the set $\{\lambda \in \mathbb{T} ; \exists x:(x, \lambda) \in O\}$ is uncountable. Then,

Proof of the main theorem (1)

$$
m=\text { normalized Lebesgue measure on } 2^{\omega}
$$

Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$, and let $Z \subset \mathbf{V}$. Assume that for any $O \subset Z$ open $\neq \varnothing$, the set $\{\lambda \in \mathbb{T} ; \exists x:(x, \lambda) \in O\}$ is uncountable. Then, for any $\left(x_{0}, \lambda_{0}\right)$ in Z and $\varepsilon>0$,

Proof of the main theorem (1)

$m=$ normalized Lebesgue measure on 2^{ω}
Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$, and let $Z \subset \mathbf{V}$. Assume that for any $O \subset Z$ open $\neq \varnothing$, the set $\{\lambda \in \mathbb{T} ; \exists x:(x, \lambda) \in O\}$ is uncountable. Then, for any $\left(x_{0}, \lambda_{0}\right)$ in Z and $\varepsilon>0$, one can construct a \mathbb{T}-eigenfield $\left(E_{0}, \phi_{0}\right)$ for T on
($2^{\omega}, m$)

Proof of the main theorem (1)

$m=$ normalized Lebesgue measure on 2^{ω}
Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$, and let $Z \subset \mathbf{V}$. Assume that for any $O \subset Z$ open $\neq \varnothing$, the set $\{\lambda \in \mathbb{T} ; \exists x:(x, \lambda) \in O\}$ is uncountable. Then, for any $\left(x_{0}, \lambda_{0}\right)$ in Z and $\varepsilon>0$, one can construct a \mathbb{T}-eigenfield $\left(E_{0}, \phi_{0}\right)$ for T on $\left(2^{\omega}, m\right)$ such that $\left\|E_{0}(s)-x_{0}\right\|<\varepsilon$ for all $s \in 2^{\omega}$

Proof of the main theorem (1)

 $m=$ normalized Lebesgue measure on 2^{ω}Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$, and let $Z \subset \mathbf{V}$. Assume that for any $O \subset Z$ open $\neq \varnothing$, the set $\{\lambda \in \mathbb{T} ; \exists x:(x, \lambda) \in O\}$ is uncountable. Then, for any $\left(x_{0}, \lambda_{0}\right)$ in Z and $\varepsilon>0$, one can construct a \mathbb{T}-eigenfield $\left(E_{0}, \phi_{0}\right)$ for T on $\left(2^{\omega}, m\right)$ such that $\left\|E_{0}(s)-x_{0}\right\|<\varepsilon$ for all $s \in 2^{\omega}$ and with the following additional properties:

Proof of the main theorem (1)

 $m=$ normalized Lebesgue measure on 2^{ω}Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$, and let $Z \subset \mathbf{V}$. Assume that for any $O \subset Z$ open $\neq \varnothing$, the set $\{\lambda \in \mathbb{T} ; \exists x:(x, \lambda) \in O\}$ is uncountable. Then, for any $\left(x_{0}, \lambda_{0}\right)$ in Z and $\varepsilon>0$, one can construct a \mathbb{T}-eigenfield $\left(E_{0}, \phi_{0}\right)$ for T on $\left(2^{\omega}, m\right)$ such that $\left\|E_{0}(s)-x_{0}\right\|<\varepsilon$ for all $s \in 2^{\omega}$ and with the following additional properties:

- $\phi_{0}: 2^{\omega} \rightarrow \mathbb{T}$ is a homeomorphic embedding;

Proof of the main theorem (1)

 $m=$ normalized Lebesgue measure on 2^{ω}Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$, and let $Z \subset \mathbf{V}$. Assume that for any $O \subset Z$ open $\neq \varnothing$, the set $\{\lambda \in \mathbb{T} ; \exists x:(x, \lambda) \in O\}$ is uncountable. Then, for any $\left(x_{0}, \lambda_{0}\right)$ in Z and $\varepsilon>0$, one can construct a \mathbb{T}-eigenfield $\left(E_{0}, \phi_{0}\right)$ for T on $\left(2^{\omega}, m\right)$ such that $\left\|E_{0}(s)-x_{0}\right\|<\varepsilon$ for all $s \in 2^{\omega}$ and with the following additional properties:

- $\phi_{0}: 2^{\omega} \rightarrow \mathbb{T}$ is a homeomorphic embedding;
- $E: 2^{\omega} \rightarrow X$ is "super-Lipschitz".

Proof of the main theorem (1)

 $m=$ normalized Lebesgue measure on 2^{ω}Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$, and let $Z \subset \mathbf{V}$. Assume that for any $O \subset Z$ open $\neq \varnothing$, the set $\{\lambda \in \mathbb{T} ; \exists x:(x, \lambda) \in O\}$ is uncountable. Then, for any $\left(x_{0}, \lambda_{0}\right)$ in Z and $\varepsilon>0$, one can construct a \mathbb{T}-eigenfield $\left(E_{0}, \phi_{0}\right)$ for T on $\left(2^{\omega}, m\right)$ such that $\left\|E_{0}(s)-x_{0}\right\|<\varepsilon$ for all $s \in 2^{\omega}$ and with the following additional properties:

- $\phi_{0}: 2^{\omega} \rightarrow \mathbb{T}$ is a homeomorphic embedding;
- $E: 2^{\omega} \rightarrow X$ is "super-Lipschitz".

Lemma 2.

Proof of the main theorem (1)

 $m=$ normalized Lebesgue measure on 2^{ω}Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$, and let $Z \subset \mathbf{V}$. Assume that for any $O \subset Z$ open $\neq \varnothing$, the set $\{\lambda \in \mathbb{T} ; \exists x:(x, \lambda) \in O\}$ is uncountable. Then, for any $\left(x_{0}, \lambda_{0}\right)$ in Z and $\varepsilon>0$, one can construct a \mathbb{T}-eigenfield $\left(E_{0}, \phi_{0}\right)$ for T on $\left(2^{\omega}, m\right)$ such that $\left\|E_{0}(s)-x_{0}\right\|<\varepsilon$ for all $s \in 2^{\omega}$ and with the following additional properties:

- $\phi_{0}: 2^{\omega} \rightarrow \mathbb{T}$ is a homeomorphic embedding;
- $E: 2^{\omega} \rightarrow X$ is "super-Lipschitz".

Lemma 2. If $E: 2^{\omega} \rightarrow X$ is super-Lipschitz,

Proof of the main theorem (1)

 $m=$ normalized Lebesgue measure on 2^{ω}Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$, and let $Z \subset \mathbf{V}$. Assume that for any $O \subset Z$ open $\neq \varnothing$, the set $\{\lambda \in \mathbb{T} ; \exists x:(x, \lambda) \in O\}$ is uncountable. Then, for any $\left(x_{0}, \lambda_{0}\right)$ in Z and $\varepsilon>0$, one can construct a \mathbb{T}-eigenfield $\left(E_{0}, \phi_{0}\right)$ for T on $\left(2^{\omega}, m\right)$ such that $\left\|E_{0}(s)-x_{0}\right\|<\varepsilon$ for all $s \in 2^{\omega}$ and with the following additional properties:

- $\phi_{0}: 2^{\omega} \rightarrow \mathbb{T}$ is a homeomorphic embedding;
- $E: 2^{\omega} \rightarrow X$ is "super-Lipschitz".

Lemma 2. If $E: 2^{\omega} \rightarrow X$ is super-Lipschitz, then E has an absolutely convergent Fourier series,

Proof of the main theorem (1)

 $m=$ normalized Lebesgue measure on 2^{ω}Lemma 1. Put $\mathbf{V}:=\{(x, \lambda) \in X \times \mathbb{T} ; T(x)=\lambda x\}$, and let $Z \subset \mathbf{V}$. Assume that for any $O \subset Z$ open $\neq \varnothing$, the set $\{\lambda \in \mathbb{T} ; \exists x:(x, \lambda) \in O\}$ is uncountable. Then, for any $\left(x_{0}, \lambda_{0}\right)$ in Z and $\varepsilon>0$, one can construct a \mathbb{T}-eigenfield $\left(E_{0}, \phi_{0}\right)$ for T on $\left(2^{\omega}, m\right)$ such that $\left\|E_{0}(s)-x_{0}\right\|<\varepsilon$ for all $s \in 2^{\omega}$ and with the following additional properties:

- $\phi_{0}: 2^{\omega} \rightarrow \mathbb{T}$ is a homeomorphic embedding;
- $E: 2^{\omega} \rightarrow X$ is "super-Lipschitz".

Lemma 2. If $E: 2^{\omega} \rightarrow X$ is super-Lipschitz, then E has an absolutely convergent Fourier series, i.e. $\sum_{\gamma \in \widehat{2^{\omega}}}\|\widehat{E}(\gamma)\|<\infty$.

Proof of the main theorem (2)

Proof of the main theorem (2)

T weakly mixing wrt some μ

Proof of the main theorem (2)

T weakly mixing wrt some μ

Fact 1.

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H}

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H} such that $T K=K M$.

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H} such that $T K=K M$. WLOG:

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H} such that $T K=K M$. WLOG: $\mathcal{H}=L^{2}(\Omega, \nu)$ and $M=M_{\phi}$

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H} such that $T K=K M$. WLOG: $\mathcal{H}=L^{2}(\Omega, \nu)$ and $M=M_{\phi}$ for some $\phi: \Omega \rightarrow \mathbb{T}$.

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H} such that $T K=K M$. WLOG: $\mathcal{H}=L^{2}(\Omega, \nu)$ and $M=M_{\phi}$ for some $\phi: \Omega \rightarrow \mathbb{T}$.

Fact 2.

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H} such that $T K=K M$. WLOG: $\mathcal{H}=L^{2}(\Omega, \nu)$ and $M=M_{\phi}$ for some $\phi: \Omega \rightarrow \mathbb{T}$.

Fact 2. Let $V: \mathcal{H} \rightarrow \mathcal{H}$ be an isometry on some invariant subspace $\mathcal{H}_{1} \subset \mathcal{H}$.

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H} such that $T K=K M$. WLOG: $\mathcal{H}=L^{2}(\Omega, \nu)$ and $M=M_{\phi}$ for some $\phi: \Omega \rightarrow \mathbb{T}$.

Fact 2. Let $V: \mathcal{H} \rightarrow \mathcal{H}$ be an isometry on some invariant subspace $\mathcal{H}_{1} \subset \mathcal{H}$. Then V is weakly mixing to 0 on \mathcal{H}_{1} iff

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H} such that $T K=K M$. WLOG: $\mathcal{H}=L^{2}(\Omega, \nu)$ and $M=M_{\phi}$ for some $\phi: \Omega \rightarrow \mathbb{T}$.

Fact 2. Let $V: \mathcal{H} \rightarrow \mathcal{H}$ be an isometry on some invariant subspace $\mathcal{H}_{1} \subset \mathcal{H}$. Then V is weakly mixing to 0 on \mathcal{H}_{1} iff all \mathbb{T}-eigenvectors of V^{*} are orthogonal to \mathcal{H}_{1}.

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H} such that $T K=K M$. WLOG: $\mathcal{H}=L^{2}(\Omega, \nu)$ and $M=M_{\phi}$ for some $\phi: \Omega \rightarrow \mathbb{T}$.

Fact 2. Let $V: \mathcal{H} \rightarrow \mathcal{H}$ be an isometry on some invariant subspace $\mathcal{H}_{1} \subset \mathcal{H}$. Then V is weakly mixing to 0 on \mathcal{H}_{1} iff all \mathbb{T}-eigenvectors of V^{*} are orthogonal to \mathcal{H}_{1}. In the case $V=M_{\phi}^{*}$ and $\mathcal{H}_{1}=\mathcal{H} \ominus \operatorname{ker}(K)$,

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H} such that $T K=K M$. WLOG: $\mathcal{H}=L^{2}(\Omega, \nu)$ and $M=M_{\phi}$ for some $\phi: \Omega \rightarrow \mathbb{T}$.

Fact 2. Let $V: \mathcal{H} \rightarrow \mathcal{H}$ be an isometry on some invariant subspace $\mathcal{H}_{1} \subset \mathcal{H}$. Then V is weakly mixing to 0 on \mathcal{H}_{1} iff all \mathbb{T}-eigenvectors of V^{*} are orthogonal to \mathcal{H}_{1}. In the case $V=M_{\phi}^{*}$ and $\mathcal{H}_{1}=\mathcal{H} \ominus \operatorname{ker}(K)$, this means that

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H} such that $T K=K M$. WLOG: $\mathcal{H}=L^{2}(\Omega, \nu)$ and $M=M_{\phi}$ for some $\phi: \Omega \rightarrow \mathbb{T}$.

Fact 2. Let $V: \mathcal{H} \rightarrow \mathcal{H}$ be an isometry on some invariant subspace $\mathcal{H}_{1} \subset \mathcal{H}$. Then V is weakly mixing to 0 on \mathcal{H}_{1} iff all \mathbb{T}-eigenvectors of V^{*} are orthogonal to \mathcal{H}_{1}. In the case $V=M_{\phi}^{*}$ and $\mathcal{H}_{1}=\mathcal{H} \ominus \operatorname{ker}(K)$, this means that $K \pi_{\{\phi=\lambda\}}=0$ for every $\lambda \in \mathbb{T}$.

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H} such that $T K=K M$. WLOG: $\mathcal{H}=L^{2}(\Omega, \nu)$ and $M=M_{\phi}$ for some $\phi: \Omega \rightarrow \mathbb{T}$.

Fact 2. Let $V: \mathcal{H} \rightarrow \mathcal{H}$ be an isometry on some invariant subspace $\mathcal{H}_{1} \subset \mathcal{H}$. Then V is weakly mixing to 0 on \mathcal{H}_{1} iff all \mathbb{T}-eigenvectors of V^{*} are orthogonal to \mathcal{H}_{1}. In the case $V=M_{\phi}^{*}$ and $\mathcal{H}_{1}=\mathcal{H} \ominus \operatorname{ker}(K)$, this means that $K \pi_{\{\phi=\lambda\}}=0$ for every $\lambda \in \mathbb{T}$.

Fact 3.

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H} such that $T K=K M$. WLOG: $\mathcal{H}=L^{2}(\Omega, \nu)$ and $M=M_{\phi}$ for some $\phi: \Omega \rightarrow \mathbb{T}$.

Fact 2. Let $V: \mathcal{H} \rightarrow \mathcal{H}$ be an isometry on some invariant subspace $\mathcal{H}_{1} \subset \mathcal{H}$. Then V is weakly mixing to 0 on \mathcal{H}_{1} iff all \mathbb{T}-eigenvectors of V^{*} are orthogonal to \mathcal{H}_{1}. In the case $V=M_{\phi}^{*}$ and $\mathcal{H}_{1}=\mathcal{H} \ominus \operatorname{ker}(K)$, this means that $K \pi_{\{\phi=\lambda\}}=0$ for every $\lambda \in \mathbb{T}$.

Fact 3. If X has cotype 2,

Proof of the main theorem (2)

T weakly mixing wrt some μ
Fact 1. One can find a γ-radonifying operator $K: \mathcal{H} \rightarrow X$ such that $\mu=\mu_{K}$ and a unitary operator M on \mathcal{H} such that $T K=K M$. WLOG: $\mathcal{H}=L^{2}(\Omega, \nu)$ and $M=M_{\phi}$ for some $\phi: \Omega \rightarrow \mathbb{T}$.

Fact 2. Let $V: \mathcal{H} \rightarrow \mathcal{H}$ be an isometry on some invariant subspace $\mathcal{H}_{1} \subset \mathcal{H}$. Then V is weakly mixing to 0 on \mathcal{H}_{1} iff all \mathbb{T}-eigenvectors of V^{*} are orthogonal to \mathcal{H}_{1}. In the case $V=M_{\phi}^{*}$ and $\mathcal{H}_{1}=\mathcal{H} \ominus \operatorname{ker}(K)$, this means that $K \pi_{\{\phi=\lambda\}}=0$ for every $\lambda \in \mathbb{T}$.

Fact 3. If X has cotype 2 , then one can find a vector field $E \in L^{2}(\Omega, \nu, X)$ such that $K=K_{E}$.

Examples

Examples

- Weighted backward shifts B_{w} on $\ell^{p}(\mathbb{N})$

Examples

- Weighted backward shifts B_{w} on $\ell^{p}(\mathbb{N})$ whose weight sequence satisfies

Examples

- Weighted backward shifts B_{w} on $\ell^{p}(\mathbb{N})$ whose weight sequence satisfies

$$
\sum_{n=1}^{\infty} \frac{1}{\left|w_{1} \cdots w_{n}\right|^{p}}<\infty
$$

Examples

- Weighted backward shifts B_{w} on $\ell^{p}(\mathbb{N})$ whose weight sequence satisfies

$$
\sum_{n=1}^{\infty} \frac{1}{\left|w_{1} \cdots w_{n}\right|^{p}}<\infty
$$

- Adjoints of multipliers on $H^{2}(\mathbb{D})$.

Examples

- Weighted backward shifts B_{w} on $\ell^{p}(\mathbb{N})$ whose weight sequence satisfies

$$
\sum_{n=1}^{\infty} \frac{1}{\left|w_{1} \cdots w_{n}\right|^{p}}<\infty
$$

- Adjoints of multipliers on $H^{2}(\mathbb{D})$.
- Operators commuting with translations on $H(\mathbb{C})$.

A counterexample

A counterexample

$$
X=\{f \in \mathcal{C}[0,2 \pi] ; f(0)=0\}
$$

A counterexample

$$
\begin{aligned}
X & =\{f \in \mathcal{C}[0,2 \pi] ; f(0)=0\} \\
T f(t) & =\phi(t) f(t)-\int_{0}^{t} \phi^{\prime}(s) f(s) d s
\end{aligned}
$$

A counterexample

$$
\begin{gathered}
X=\{f \in \mathcal{C}[0,2 \pi] ; f(0)=0\} \\
T f(t)=\phi(t) f(t)-\int_{0}^{t} \phi^{\prime}(s) f(s) d s \\
\phi(t)=e^{i t}
\end{gathered}
$$

A counterexample

$$
\begin{gathered}
X=\{f \in \mathcal{C}[0,2 \pi] ; f(0)=0\} \\
T f(t)=\phi(t) f(t)-\int_{0}^{t} \phi^{\prime}(s) f(s) d s \\
\phi(t)=e^{i t}
\end{gathered}
$$

Fact.

A counterexample

$$
\begin{gathered}
X=\{f \in \mathcal{C}[0,2 \pi] ; f(0)=0\} \\
T f(t)=\phi(t) f(t)-\int_{0}^{t} \phi^{\prime}(s) f(s) d s \\
\phi(t)=e^{i t}
\end{gathered}
$$

Fact. T has no unimodular eigenvalue.

A counterexample

$$
\begin{gathered}
X=\{f \in \mathcal{C}[0,2 \pi] ; f(0)=0\} \\
T f(t)=\phi(t) f(t)-\int_{0}^{t} \phi^{\prime}(s) f(s) d s \\
\phi(t)=e^{i t}
\end{gathered}
$$

Fact. T has no unimodular eigenvalue. Yet,

A counterexample

$$
\begin{gathered}
X=\{f \in \mathcal{C}[0,2 \pi] ; f(0)=0\} \\
T f(t)=\phi(t) f(t)-\int_{0}^{t} \phi^{\prime}(s) f(s) d s \\
\phi(t)=e^{i t}
\end{gathered}
$$

Fact. T has no unimodular eigenvalue. Yet, there is a Gaussian measure with full support wrt which T is mixing.

A counterexample

$$
\begin{gathered}
X=\{f \in \mathcal{C}[0,2 \pi] ; f(0)=0\} \\
T f(t)=\phi(t) f(t)-\int_{0}^{t} \phi^{\prime}(s) f(s) d s \\
\phi(t)=e^{i t}
\end{gathered}
$$

Fact. T has no unimodular eigenvalue. Yet, there is a Gaussian measure with full support wrt which T is mixing.

$$
K: L^{2}(\mathbb{T}) \rightarrow X
$$

A counterexample

$$
\begin{gathered}
X=\{f \in \mathcal{C}[0,2 \pi] ; f(0)=0\} \\
T f(t)=\phi(t) f(t)-\int_{0}^{t} \phi^{\prime}(s) f(s) d s \\
\phi(t)=e^{i t}
\end{gathered}
$$

Fact. T has no unimodular eigenvalue. Yet, there is a Gaussian measure with full support wrt which T is mixing.

$$
\begin{gathered}
K: L^{2}(\mathbb{T}) \rightarrow X \\
K u(t)=\int_{0}^{t} u(\phi(s)) d s
\end{gathered}
$$

A counterexample

$$
\begin{gathered}
X=\{f \in \mathcal{C}[0,2 \pi] ; f(0)=0\} \\
T f(t)=\phi(t) f(t)-\int_{0}^{t} \phi^{\prime}(s) f(s) d s \\
\phi(t)=e^{i t}
\end{gathered}
$$

Fact. T has no unimodular eigenvalue. Yet, there is a Gaussian measure with full support wrt which T is mixing.

$$
\begin{gathered}
K: L^{2}(\mathbb{T}) \rightarrow X \\
K u(t)=\int_{0}^{t} u(\phi(s)) d s
\end{gathered}
$$

$$
T K=K M_{z}
$$

A counterexample

$$
\begin{gathered}
X=\{f \in \mathcal{C}[0,2 \pi] ; f(0)=0\} \\
T f(t)=\phi(t) f(t)-\int_{0}^{t} \phi^{\prime}(s) f(s) d s \\
\phi(t)=e^{i t}
\end{gathered}
$$

Fact. T has no unimodular eigenvalue. Yet, there is a Gaussian measure with full support wrt which T is mixing.

$$
\begin{gathered}
K: L^{2}(\mathbb{T}) \rightarrow X \\
K u(t)=\int_{0}^{t} u(\phi(s)) d s
\end{gathered}
$$

$$
T K=K M_{z}
$$

K has dense range

A counterexample

$$
\begin{gathered}
X=\{f \in \mathcal{C}[0,2 \pi] ; f(0)=0\} \\
T f(t)=\phi(t) f(t)-\int_{0}^{t} \phi^{\prime}(s) f(s) d s \\
\phi(t)=e^{i t}
\end{gathered}
$$

Fact. T has no unimodular eigenvalue. Yet, there is a Gaussian measure with full support wrt which T is mixing.

$$
\begin{gathered}
K: L^{2}(\mathbb{T}) \rightarrow X \\
K u(t)=\int_{0}^{t} u(\phi(s)) d s
\end{gathered}
$$

$$
T K=K M_{z}
$$

K has dense range and is γ-radonifying

One question

One question

Let T be a chaotic operator on X,

One question

Let T be a chaotic operator on X, i.e. T is hypercyclic with a dense set of periodic points.

One question

Let T be a chaotic operator on X, i.e. T is hypercyclic with a dense set of periodic points. Does there exist a Gaussian measure μ with full support such that T is weakly mixing wrt μ ?

