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The main result we present here is totally elementary in the
sense that its statement does not refer to any new notion.
However the motivation of this result lies in the study of the
following notion that we recall :

Theorem-Definition
For any analytic filter F on ω there exists a unique countable

ordinal ξ = rk(F) determined by any of the following equivalent
(well defined) properties :

1 The set {f = limF fn; with fn : 2ω → R continuous } is
exactly the set of all Borel functions f : 2ω → R of class ξ.

2 ξ is the minimal countable ordinal such that F can be
separated from F∗ by a set in Σ0

1+ξ ∪ Π0
1+ξ.

3 ξ is the maximal countable ordinals such that F cannot be
separated from F∗ by a set in Σ0

1+ξ ∩ Π0
1+ξ.



Theorem
Any analytic filter can be refined by a Borel filter of the same

rank.

In these talks we shall only be concerned by Borel filters.

Theorem
Given any (additive, multiplicative) Baire class Γ there exists

a Borel filter of rank 1 which is in the class Γ but not in the dual
(multiplicative, additive) Baire class Γ̌.



It follows from condition 3 of Theorem–Definition of the rank
that there is no Π0

1+ξ filter of rank ξ.

Question:

What is the minimal complexity of a Borel filter of rank ξ ?
From now on we assume that ξ = m is finite.

Conjecture A:

There is no Π0
2m filter of rank m.

Equivalent form of Conjecture A :
The pointwise limit of a sequence of continuous functions

along a Π0
2m filter is of Baire class m − 1.



The Katětov filters

We recall that the Katětov filters (also called the iterated
Fréchet filters) Nm are defined inductively :

N1 is the Fréchet filter on ω
A ∈ N1 ⇐⇒ ∃i0, ∀i ≥ i0, i ∈ A

N2 is the filter on ω2 defined for A ⊂ ω2 by :
A ∈ N2 ⇐⇒ ∃i0, ∀i ≥ i0,∃j0, ∀j ≥ j0, (i , j) ∈ A

N3 is the filter on ω3 defined for A ⊂ ω3 by :
A ∈ N3 ⇐⇒ ∃i0, ∀i ≥ i0,∃j0, ∀j ≥ j0, ∃k0, ∀k ≥ k0, (i , j , k) ∈ A

Proposition

Nm is a Σ0
2m filter of rank m.



We shall prove the following weak form of Conjecture A :

Theorem

There is no Π0
2m filter refining Nm.

By this latter result Conjecture A is actually a consequence of
the following :

Conjecture B:

Nm embeds in any filter of rank m.

We recall that if m = 2 then Conjucture B is true, hence
Conjucture A too.

Theorem

There is no Π0
4 filter of rank 2.



Main result

We shall in fact prove the following more precise result :

Main Theorem

In any Π0
2m set A ⊃ Nm one can find a family of m + 1

elements with empty intersection.

Remark:

For all m ≥ 1 there exists a Π0
2m set A ⊃ Nm in which the

intersection of any family of m elements is non empty.



The case m = 1

For m = 1 Main Theorem is just the following :

Theorem
In any Gδ set A ⊃ N1 one can find two elements with empty

intersection.

This is a simple consequence of Baire Theorem.
Nevertheless it will be instructive for the proof of the general
case to present the proof of this trivial case in the following
form :



The case m = 1

Sketch of proof for m = 1 : Consider the game G1 in which
two Players I and II construct by alternate finite extension some
element 1A ∈ 2ω. Here by “a game" we mean “the rules of a
game" without any a priori win condition. Then observe :

(A) Given any strategy τ for Player II there exists two infinite
runs compatible with τ in which the players construct sets A,B
such that A ∩ B = ∅.

(B) Given any Gδ set A ⊃ Nm Player II has a strategy to
construct a set A ∈ A.



The case m = 2

Theorem

In any Π0
4 = Gδσδ set A ⊃ N2 one can find three elements

with empty intersection.

Our plan is to follow the same scheme than in the case
m = 1, that is to define a game G2 in each infinite run of which
the players “constructs" a set A ⊂ ω2, with the same
corresponding properties (A) and (B) :

Notation : for any sets A,B we denote by Fin (A,B) the set of
all finite partial mappings from A to B. If f ∈ Fin (A,B) we set :

Vf = {g ∈ BA : f ⊂ g}

which is a clopen subet of BA



The case m = 2 : Definition of the game

We first define : a set E , a partial ordering R on E , and a
monotone mapping :

ε : (E ,R)→
(
Fin(ω2),⊂

)
Then G will be the game on E defined by :

a0 R a1 R a2 R . . . . . . . . . R an R . . .

hence : ε(a0) ⊂ ε(a1) ⊂ ε(a2) ⊂ · · · ⊂ ε(an) ⊂ . . .

By definition we shall say that the infinite run (an)
constructs the set A ⊂ ω2 if 1A =

⋃
n ε(an)



The case m = 2 : Definition of the game

Definition of the domain E :

E = Fin
(
ω , {0,1} × Fin (ω, {0,1})

)
Let a ∈ E with dom (a) = Ja finite ⊂ ω :

a ≈
(
(a(i))i∈Ja , (a

(i))i∈Ja

)
(a(i))i∈Ja ≈ labelled partition of Ja

Hence

a ≈
{

(J0
a , J1

a ) labelled partition of Ja finite ⊂ ω
(a(i))i∈Ja ∈ Fin (ω,Fin (ω, {0,1}))

(a(i))i∈Ja ≈ ε(a) ∈ Fin (ω2, {0,1})



The case m = 2 : Definition of the game

Definition of the partial ordering R :

E = Fin
(
ω , {0,1} × Fin (ω, {0,1})

)
So

a ⊂ b ⇐⇒
{

J0
a ⊂ J0

b and J1
a ⊂ J1

b
∀i ∈ Ja, a(i) ⊂ b(i)

We then set :

a R b ⇐⇒


J0

a ⊂ J0
b and J1

a ⊂ J1
b

∀i ∈ Ja, a(i) ⊂ b(i)

∀i ∈ J1
a , b(i) \ a(i) ⊂ 1ω

Hence

a R b =⇒ a ⊂ b =⇒ (a(i))i∈Ja ⊂ (b(i))i∈Jb ⇐⇒ ε(a) ⊂ ε(b)



The case m = 2 : Proof of (A)

We first prove property (A) :

Lemma 1

Given any strategy τ for Player II in G there exist three infinite
runs compatible with τ constructing three sets A,B,C in ω2

such that A ∩ B ∩ C = ∅.

Proof : Construct three runs α, β, γ in G2 in the following
“cyclic" way : Player I makes the first move in α followed by
Player II, then similarly two moves in β, followed by two moves
in γ, then the players go back to α making two more moves,
then again two moves in β, followed by two moves in γ ; and so
on. One can show that such a construction can be achieved in
such a way that the sets A,B,C ⊂ ω2 constructed in these
three runs have empty intersection (A ∩ B ∩ C = ∅).



The case m = 2 : Proof of (B)

Lemma 2
Suppose that A ⊃ N2 is Gδσδ and fix open sets Ai,j,k such

that A =
⋂

i
⋃

j
⋂

k Ai,j,k . Then :

∀(i ,a) , ∃(j ,b) with a R b, ∀(k , c) with b R c, ∃d with c R d

such that Vε(d) ⊂ Ai,j,k .

Proof : If not . . . one constructs (i ,a) and (kj ,aj)j≥0 such that :
(1) a0 R a1 R a2 . . . . . . . . . . . . R aj R . . .

(2) J0a0 = J0a1 = J0a2 · · · · · · · · · = J0aj = · · · = J0a
(3) If aj R d then Vε(d) ∩ Ac

i,j,kj
6= ∅

(4)
⋃

j ε(aj) = 1A

It follows from (1) and (2) that A ∈ N2 and from (3) that A 6∈ A
which is a contradiction.



Proof of (B)

Lemma 3
Given any Gδσδ set A ⊃ N2 Player II has a strategy to

construct a set A ∈ A

Proof : Fix a “good" enumeration of ω ∪ ω2 :(
< 0 >,< 0,0 >,< 1 >,< 0,1 >,< 1,0 >,< 2 >, . . .

)
and define a strategy (a0,a1 . . . ,a2n) 7→ a2n+1 for Player II by
applying Lemma 2 successively :

(i ,a) = (0,a0) 7→ (j ,b) = (j0,a1) ; (k , c) = (0,a2) 7→ d = a3 .
(i ,a) = (1,a4) 7→ (j ,b) = (j1,a5) .
(i ,a) = (0,a0) 7→ (j ,b) = (j0,a1) ; (k , c) = (1,a6) 7→ d = a7 .
(i ,a) = (1,a4) 7→ (j ,b) = (j1,a5) ; (k , c) = (0,a8) 7→ d = a9 .
(i ,a) = (2,a10) 7→ (j ,b) = (j2,a11) .



The general case

Main Theorem

In any Π0
2m set A ⊃ Nm one can find a family of m + 1

elements with empty intersection.

Plan of proof :

1 Define a game Gm in each infinite run of which the players
“constructs" a set A ⊂ ωm, with the following properties :

2 (Am) Given any strategy τ for Player II in Gm there exists a
family of m + 1 infinite runs compatible with τ constructing
sets A0,A1, . . . ,Am such that

⋂m
k=0 Ak = ∅.

3 (Bm) Given any Π0
2m set A ⊃ N2 Player II has a strategy in

Gm to construct A ∈ A.



The general case

We define a set E = Em with two partial orderings
S = Sm =⊂ Rm = R and a monotone mapping :

ε : (E ,R)→
(
Fin(ωm),⊂

)
The game G = Gm is defined using only the relation
R = Rm as in the case m = 2 :

a0 R a1 R a2 R . . . . . . . . . R an R . . .

hence : ε(a0) ⊂ ε(a1) ⊂ ε(a2) ⊂ · · · ⊂ ε(an) ⊂ . . .

By definition we shall say that the infinite run (an)
constructs the set A ⊂ ωm if 1A =

⋃
n ε(an).

The finer partial ordering Sm is only used for the inductive
definition of Rm and has the following property : Any infinite
Sm chain constructs a set in Nm.



The general case

Precise definitions : For m = 0 let :
E0 = Fin

(
ω , {0,1},

R0 is the extension relation on E0.
S0 is the “extension by 1" relation on E0.

We then define inductively :

Em+1 = Fin
(
ω , {0,1} × Em

)

a Rm+1 b ⇐⇒


J0

a ⊂ J0
b and J1

a ⊂ J1
b

∀i ∈ Ja, a(i) Rm b(i)

∀i ∈ J1
a , a(i) Sm b(i)

a Sm+1 b ⇐⇒ a Rm+1 b and J0
a = J0

b



The general case

Unfortunately the proof of properties (Am) and (Bm) are much
more complicated than in the case m = 2. Actually the proof
goes through two very technical properties (A∗m) and (B∗m)
which are proved by induction and from which one then derives
the original properties (Am) and (Bm).

The proof relies on a general result concerning games of the
form Gm that we state in next section.



ORDERED GAMES

General frame :
– Ω a fixed countable set.
– (E ,R) a partially ordered set.
– ε : (E ,R)→

(
Fin(Ω, {0,1}),⊂

)
a monotone mapping.

G denotes the game (with no win condition) :
a0 R a1 R a2 R . . . . . . . . . R an R . . .

hence : ε(a0) ⊂ ε(a1) ⊂ ε(a2) ⊂ · · · ⊂ ε(an) ⊂ . . .

For any A ⊂ 2Ω, GA denotes the game G with the following
win condition :

Player II wins the infinite run (an) if :
⋃

n ε(an) ∈ A.



Notation :
If s = (p0,p1, . . . ,pn−1,pn) then s∗ = (p0,p1, . . . ,pn−1)

Définition:
We shall say that (Σ, ν) is an enumerated semi-linear tree
(e.s.l. tree) if Σ is a countable tree,and ν : Σ→ ω is a one-to-one
mapping satisfying :

0) ν(∅) = 0.

1) If |s| is odd then ν(s) is odd and ν(s∗) ≤ ν(s).

2) If |s| is even and > 0 then ν(s) = ν(s∗) + 1.



Let (E ,R, ε) as above.

For any e.s.l. tree (Σ, ν) we denote by G(Σ,ν) the game
(with no win condition) :

a0,a1,a2, . . . . . . . . . , an, . . .
with :

(1) ε(a0) ⊂ ε(a1) ⊂ ε(a2) ⊂ · · · ⊂ ε(an) ⊂ . . .

(2) If n 6∈ ν(Σ) then an = an−1.

(3) aν(s∗) R aν(s).

For any A ⊂ 2Ω, G(Σ,ν)
A denotes the game G(Σ,ν) with the

following win condition :

Player II wins the infinite run (an) if :
⋃

n ε(an) ∈ A.



Theorem

For any A ⊂ 2Ω, if Player II wins GA then Player II wins G(Σ,ν)
A

for any e.s.l. tree (Σ, ν).

Theorem

For any Π0
k set A ⊂ 2Ω if Player II wins G(Σ,ν)

A for any
e.s.l. tree (Σ, ν) with ht(Σ) < k, then Player II wins GA.




