Strictly convex norms and topology

41st Winter School in Abstract Analysis, Kácov

Richard J. Smith¹

¹University College Dublin, Ireland

12th - 19th January 2013

글 🕨 🖌 글

Definition 1.1 (Clarkson 1936)

A norm $\|\cdot\|$ is called *strictly convex* if x = y whenever $\|x\| = \|y\| = \frac{1}{2} \|x + y\|$.

(D) (A) (A) (A)

Definition 1.1 (Clarkson 1936)

A norm $\|\cdot\|$ is called *strictly convex* if x = y whenever $\|x\| = \|y\| = \frac{1}{2} \|x + y\|$.

Example 1.2

If X is separable or reflexive, or more generally weakly compactly generated, or if $X = L_1(\mu)$, then X admits such a norm.

イロト イポト イヨト イヨト

Definition 1.1 (Clarkson 1936)

A norm $\|\cdot\|$ is called *strictly convex* if x = y whenever $\|x\| = \|y\| = \frac{1}{2} \|x + y\|$.

Example 1.2

If X is separable or reflexive, or more generally weakly compactly generated, or if $X = L_1(\mu)$, then X admits such a norm. If $X = \ell_{\infty}^{c}(\Gamma)$, Γ uncountable, then it does not.

イロト イポト イヨト イヨト

Definition 1.1 (Clarkson 1936)

A norm $\|\cdot\|$ is called *strictly convex* if x = y whenever $\|x\| = \|y\| = \frac{1}{2} \|x + y\|$.

Example 1.2

If X is separable or reflexive, or more generally weakly compactly generated, or if $X = L_1(\mu)$, then X admits such a norm. If $X = \ell_{\infty}^{c}(\Gamma)$, Γ uncountable, then it does not.

Problem 1.3 (Lindenstrauss 1975/6)

Characterize those Banach spaces X which admit an equivalent strictly convex norm.

Strictly convex dual norms

Problem 1.4

When does a dual Banach space admit a strictly convex dual norm?

Strictly convex dual norms

Problem 1.4

When does a dual Banach space admit a strictly convex dual norm?

Theorem 1.5 (Šmulyan 1940)

If $\|\cdot\|$ is a strictly convex *dual* on X^* , then the predual norm on X is Gâteaux smooth.

Definition 2.1 (Orihuela, Troyanski, S 2012)

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

Definition 2.1 (Orihuela, Troyanski, S 2012)

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

• $\{x, y\} \cap \bigcup \mathscr{U}_n$ is non-empty;

(日)

Definition 2.1 (Orihuela, Troyanski, S 2012)

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_n$ is non-empty;
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathcal{U}_n$.

.

Definition 2.1 (Orihuela, Troyanski, S 2012)

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_n$ is non-empty;
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathcal{U}_n$.

Example 2.2

• $X = \mathbb{R}, \mathscr{U}_n = \{\text{open intervals of length } n^{-1}\}.$

Definition 2.1 (Orihuela, Troyanski, S 2012)

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_n$ is non-empty;
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathcal{U}_n$.

Example 2.2

- $X = \mathbb{R}, \mathcal{U}_n = \{\text{open intervals of length } n^{-1}\}.$
- **2** Spaces having G_{δ} -diagonals have (*).

Definition 2.1 (Orihuela, Troyanski, S 2012)

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_n$ is non-empty;
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathcal{U}_n$.

Example 2.2

- $X = \mathbb{R}, \mathcal{U}_n = \{\text{open intervals of length } n^{-1}\}.$
- **2** Spaces having G_{δ} -diagonals have (*).
- There are many compact non-metrizable spaces having (*).

イロト イポト イヨト イヨト

Proposition 2.3 (OTS 2012)

If a dual Banach space X^* admits a strictly convex *dual* norm, then (B_{X^*}, w^*) has (*).

Proposition 2.3 (OTS 2012)

If a dual Banach space X^* admits a strictly convex *dual* norm, then (B_{X^*}, w^*) has (*).

Theorem 2.4 (OTS 2012)

The space X^* admits a strictly convex dual norm if and only if (B_{X^*}, w^*) has (*) with slices.

Problem 2.6

Given *compact* (B_{X^*} , w^*), to what extent can we do without the geometry, i.e. without slices?

Image: Image:

ㅋ . . ㅋ

Problem 2.6

Given *compact* (B_{X^*} , w^*), to what extent can we do without the geometry, i.e. without slices?

In certain situations, the slice geometry is unnecessary.

글 🕨 🖌 글

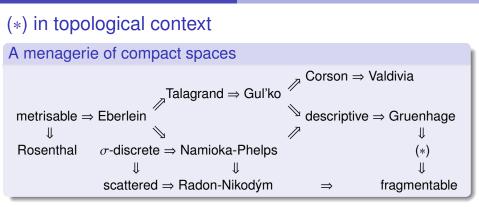
Problem 2.6

Given *compact* (B_{X^*} , w^*), to what extent can we do without the geometry, i.e. without slices?

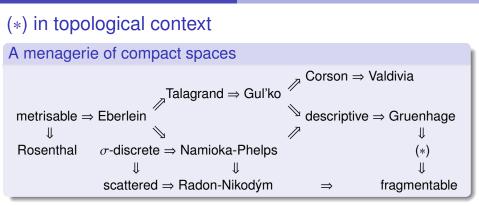
In certain situations, the slice geometry is unnecessary.

Theorem 2.7 (OTS 2012)

If *K* is compact and scattered, then $C(K)^*$ admits a strictly convex dual norm if and only if *K* has (*).



All implications above are strict.



All implications above are strict.

In these lectures, we focus on the implications

Gruenhage \Rightarrow (*) \Rightarrow fragmentable.

.

Definition 2.1

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_n$ is non-empty;
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathcal{U}_n$.

.

Definition 2.1

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_n$ is non-empty;
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathcal{U}_n$.

Definition 3.1 (Gruenhage 1987)

A topological space X is called *Gruenhage* if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open subsets of X, and sets R_n , $n \ge 1$, with the property that

Definition 2.1

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_n$ is non-empty;
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathcal{U}_n$.

Definition 3.1 (Gruenhage 1987)

A topological space X is called *Gruenhage* if there are families \mathcal{U}_n , $n \in \mathbb{N}$, of open subsets of X, and sets R_n , $n \ge 1$, with the property that

• if $x, y \in X$, then there is $n_0 \in \mathbb{N}$ and $U \in \mathcal{U}_{n_0}$, such that $\{x, y\} \cap U$ is a singleton, and

Definition 2.1

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_n$ is non-empty;
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathcal{U}_n$.

Definition 3.1 (Gruenhage 1987)

A topological space X is called *Gruenhage* if there are families \mathcal{U}_n , $n \in \mathbb{N}$, of open subsets of X, and sets R_n , $n \ge 1$, with the property that

- if $x, y \in X$, then there is $n_0 \in \mathbb{N}$ and $U \in \mathcal{U}_{n_0}$, such that $\{x, y\} \cap U$ is a singleton, and
- **2** $V \cap W = R_n$ whenever $V, W \in \mathcal{U}_n$ are distinct.

Theorem 3.2 (S 2009)

If *K* is Gruenhage compact then $C(K)^*$ admits a strictly convex dual norm.

.

Theorem 3.2 (S 2009)

If *K* is Gruenhage compact then $C(K)^*$ admits a strictly convex dual norm.

Corollary 3.3 (S 2009)

If $K \subseteq (X^*, w^*)$ is Gruenhage compact and satisfies $\overline{\text{span}}^{\|\cdot\|}(K) = X^*$, then X^* admits a strict convex dual norm.

Theorem 3.2 (S 2009)

If *K* is Gruenhage compact then $C(K)^*$ admits a strictly convex dual norm.

Corollary 3.3 (S 2009)

If $K \subseteq (X^*, w^*)$ is Gruenhage compact and satisfies $\overline{\text{span}}^{\|\cdot\|}(K) = X^*$, then X^* admits a strict convex dual norm.

Proposition 3.4 (OTS 2012)

If X is Gruenhage, then X has (*).

Definition 3.5 (Jayne, Rogers 1985)

A topological space X is *fragmentable* if there exists a metric d on X (not necessarily related to the topology on X), with the property that whenever $\varepsilon > 0$ and $E \subseteq X$ is non-empty, there exists an open set $U \subseteq X$, such that

 $E \cap U \neq \emptyset$ and d-diam $(E \cap U) < \varepsilon$.

Definition 3.5 (Jayne, Rogers 1985)

A topological space X is *fragmentable* if there exists a metric d on X (not necessarily related to the topology on X), with the property that whenever $\varepsilon > 0$ and $E \subseteq X$ is non-empty, there exists an open set $U \subseteq X$, such that

 $E \cap U \neq \emptyset$ and d-diam $(E \cap U) < \varepsilon$.

Scattered spaces are fragmentable: let *d* be the discrete metric.

Definition 3.5 (Jayne, Rogers 1985)

A topological space X is *fragmentable* if there exists a metric d on X (not necessarily related to the topology on X), with the property that whenever $\varepsilon > 0$ and $E \subseteq X$ is non-empty, there exists an open set $U \subseteq X$, such that

 $E \cap U \neq \emptyset$ and d-diam $(E \cap U) < \varepsilon$.

Scattered spaces are fragmentable: let *d* be the discrete metric.

Proposition 3.6 (OTS 2012)

If X has (*), then X is fragmentable.

Definition 3.5 (Jayne, Rogers 1985)

A topological space X is *fragmentable* if there exists a metric d on X (not necessarily related to the topology on X), with the property that whenever $\varepsilon > 0$ and $E \subseteq X$ is non-empty, there exists an open set $U \subseteq X$, such that

 $E \cap U \neq \emptyset$ and d-diam $(E \cap U) < \varepsilon$.

Scattered spaces are fragmentable: let *d* be the discrete metric.

Proposition 3.6 (OTS 2012)

If X has (*), then X is fragmentable.

Example 3.7 (OTS 2012)

The scattered (hence fragmentable) space ω_1 does not have (*).

・ロト ・回ト ・ヨト ・ヨト … ヨ

Countable compactness and countable tightness

Theorem 3.8 (OTS 2012)

If X is countably compact and has (*), then X is compact.

Image: Image:

Countable compactness and countable tightness

Theorem 3.8 (OTS 2012)

If X is countably compact and has (*), then X is compact.

Corollary 3.10 (OTS 2012)

If *L* is locally compact and has (*), then $L \cup \{\infty\}$ is countably tight and sequentially closed subsets of $L \cup \{\infty\}$ are closed.

イロト イポト イヨト イヨト

Example 3.10 (OTS 2012)

• (CH) Kunen's compact S-space \mathcal{K} is Gruenhage. In particular, $C(\mathcal{K})^*$ admits a strictly convex dual norm.

.

Example 3.10 (OTS 2012)

- (CH) Kunen's compact S-space \mathcal{K} is Gruenhage. In particular, $C(\mathcal{K})^*$ admits a strictly convex dual norm.
- (*) Ostaszewski's space O is scattered but does not have (*), thus C(O)* does not admit a strictly convex dual norm.

Example 3.10 (OTS 2012)

- (CH) Kunen's compact S-space \mathcal{K} is Gruenhage. In particular, $C(\mathcal{K})^*$ admits a strictly convex dual norm.
- (*) Ostaszewski's space O is scattered but does not have (*), thus C(O)* does not admit a strictly convex dual norm.
- (CH or $b = \aleph_1$) There exist compact non-Gruenhage spaces having (*), and having cardinality \aleph_1 .

イロト イポト イヨト イヨト

Example 3.10 (OTS 2012)

- (CH) Kunen's compact S-space \mathcal{K} is Gruenhage. In particular, $C(\mathcal{K})^*$ admits a strictly convex dual norm.
- (*) Ostaszewski's space O is scattered but does not have (*), thus C(O)* does not admit a strictly convex dual norm.
- (CH or $b = \aleph_1$) There exist compact non-Gruenhage spaces having (*), and having cardinality \aleph_1 .

Proposition 3.11 (MA) (OTS 2012)

If *L* is locally compact, locally countable and has (*), and card(L) < c, then *L* is Gruenhage.

A ZFC example of a non-Gruenhage space having (*)

Definition 4.1 (Kurepa)

Let Λ be the tree of injective functions $t : \alpha \longrightarrow \omega$, where α is a (countable) ordinal, and $\omega \setminus \operatorname{ran} t$ is infinite.

イロト イポト イヨト イヨト

A ZFC example of a non-Gruenhage space having (*)

Definition 4.1 (Kurepa)

Let Λ be the tree of injective functions $t : \alpha \longrightarrow \omega$, where α is a (countable) ordinal, and $\omega \setminus \operatorname{ran} t$ is infinite.

Definition 4.2 (S 2012)

We define the ' Λ -duplicate' $D = \Lambda \times \{0, 1\}$, endowed with an 'oscillating' topology defined using a canonical walk on Λ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A ZFC example of a non-Gruenhage space having (*)

Definition 4.1 (Kurepa)

Let Λ be the tree of injective functions $t : \alpha \longrightarrow \omega$, where α is a (countable) ordinal, and $\omega \setminus \operatorname{ran} t$ is infinite.

Definition 4.2 (S 2012)

We define the ' Λ -duplicate' $D = \Lambda \times \{0, 1\}$, endowed with an 'oscillating' topology defined using a canonical walk on Λ .

Theorem 4.3 (S 2012)

The space *D* is locally compact, scattered, non-Gruenhage, and has a G_{δ} -diagonal.

<ロ> <同> <同> < 回> < 回> < 回> = 三

References

- J. Orihuela, R. J. Smith and S. Troyanski, *Strictly convex norms and topology*, Proc. London Math. Soc. **104** (2012), 197–222.
- R. J. Smith, *Strictly convex norms, G_δ-diagonals and non-Gruenhage spaces*, Proc. Amer. Math. Soc. **140** (2012), 3117–3125.
- R. J. Smith and S. Troyanski, *Renormings of C(K) spaces*, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. **104** (2010), 375–412.

イロト イポト イヨト イヨト