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Background

Strictly convex norms
Definition 1.1 (Clarkson 1936)
A norm ‖·‖ is called strictly convex if x = y whenever ‖x‖ = ‖y‖ = 1

2 ‖x + y‖.

Example 1.2
If X is separable or reflexive, or more generally weakly compactly generated,
or if X = L1(µ), then X admits such a norm. If X = ` c

∞(Γ), Γ uncountable, then
it does not.

Problem 1.3 (Lindenstrauss 1975/6)
Characterize those Banach spaces X which admit an equivalent strictly convex
norm.
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Background

Strictly convex dual norms
Problem 1.4
When does a dual Banach space admit a strictly convex dual norm?

Theorem 1.5 (Šmulyan 1940)
If ‖·‖ is a strictly convex dual on X ∗, then the predual norm on X is Gâteaux
smooth.
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Strictly convex norms and (∗)

Definition of (∗)
Definition 2.1 (Orihuela, Troyanski, S 2012)
A topological space X has (∗) if there are families Un, n ∈ N, of open sets, such
that for any x , y ∈ X , there is n ∈ N satisfying

1 {x , y } ∩
⋃

Un is non-empty;
2 {x , y } ∩ U is at most a singleton for all U ∈ Un.

Example 2.2
1 X = R, Un = {open intervals of length n−1}.
2 Spaces having Gδ-diagonals have (∗).
3 There are many compact non-metrizable spaces having (∗).
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Strictly convex norms and (∗)

Motivation for (∗)
Proposition 2.3 (OTS 2012)
If a dual Banach space X ∗ admits a strictly convex dual norm, then (BX ∗ ,w∗)
has (∗).

Theorem 2.4 (OTS 2012)
The space X ∗ admits a strictly convex dual norm if and only if (BX ∗ ,w∗) has (∗)
with slices.
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Strictly convex norms and (∗)

Motivation for (∗)
Problem 2.6
Given compact (BX ∗ ,w∗), to what extent can we do without the geometry, i.e.
without slices?

In certain situations, the slice geometry is unnecessary.

Theorem 2.7 (OTS 2012)
If K is compact and scattered, then C(K )∗ admits a strictly convex dual norm if
and only if K has (∗).
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(∗) in topological context

(∗) in topological context
A menagerie of compact spaces

metrisable⇒ Eberlein
t

Talagrand⇒ Gul’ko
t

Corson⇒ Valdivia

u

Rosenthal σ-discrete⇒ Namioka-Phelps
⇓ ⇓

scattered⇒ Radon-Nikodým ⇒ fragmentable

u descriptive⇒ Gruenhage
t

(∗)
⇓⇓

⇓

All implications above are strict.

In these lectures, we focus on the implications

Gruenhage ⇒ (∗) ⇒ fragmentable.
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(∗) in topological context

Gruenhage spaces
Definition 2.1
A topological space X has (∗) if there are families Un, n ∈ N, of open sets, such
that for any x , y ∈ X , there is n ∈ N satisfying

1 {x , y } ∩
⋃

Un is non-empty;
2 {x , y } ∩ U is at most a singleton for all U ∈ Un.

Definition 3.1 (Gruenhage 1987)
A topological space X is called Gruenhage if there are families Un, n ∈ N, of
open subsets of X , and sets Rn, n ≥ 1, with the property that

1 if x , y ∈ X , then there is n0 ∈ N and U ∈ Un0 , such that {x , y } ∩ U is a
singleton, and

2 V ∩W = Rn whenever V ,W ∈ Un are distinct.
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(∗) in topological context

Gruenhage spaces
Theorem 3.2 (S 2009)
If K is Gruenhage compact then C(K )∗ admits a strictly convex dual norm.

Corollary 3.3 (S 2009)

If K ⊆ (X ∗,w∗) is Gruenhage compact and satisfies span‖·‖(K ) = X ∗, then X ∗

admits a strict convex dual norm.

Proposition 3.4 (OTS 2012)
If X is Gruenhage, then X has (∗).
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(∗) in topological context

Fragmentable spaces
Definition 3.5 (Jayne, Rogers 1985)
A topological space X is fragmentable if there exists a metric d on X (not
necessarily related to the topology on X ), with the property that whenever ε > 0
and E ⊆ X is non-empty, there exists an open set U ⊆ X , such that

E ∩ U , ∅ and d- diam (E ∩ U) < ε.

Scattered spaces are fragmentable: let d be the discrete metric.

Proposition 3.6 (OTS 2012)
If X has (∗), then X is fragmentable.

Example 3.7 (OTS 2012)
The scattered (hence fragmentable) space ω1 does not have (∗).
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(∗) in topological context

Countable compactness and countable tightness
Theorem 3.8 (OTS 2012)
If X is countably compact and has (∗), then X is compact.

Corollary 3.10 (OTS 2012)
If L is locally compact and has (∗), then L ∪ {∞} is countably tight and sequen-
tially closed subsets of L ∪ {∞} are closed.
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(∗) in topological context

Examples of spaces having (∗)
Example 3.10 (OTS 2012)

1 (CH) Kunen’s compact S-space K is Gruenhage. In particular, C(K)∗

admits a strictly convex dual norm.

2 (♣) Ostaszewski’s space O is scattered but does not have (∗), thus C(O)∗

does not admit a strictly convex dual norm.
3 (CH or b = ℵ1) There exist compact non-Gruenhage spaces having (∗),

and having cardinality ℵ1.

Proposition 3.11 (MA) (OTS 2012)
If L is locally compact, locally countable and has (∗), and card(L) < c, then L is
Gruenhage.
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A ZFC example of a non-Gruenhage space having (∗)

A ZFC example of a non-Gruenhage space having (∗)
Definition 4.1 (Kurepa)
Let Λ be the tree of injective functions t : α −→ ω, where α is a (countable)
ordinal, and ω \ ran t is infinite.

Definition 4.2 (S 2012)
We define the ‘Λ-duplicate’ D = Λ×{0,1}, endowed with an ‘oscillating’ topology
defined using a canonical walk on Λ.

Theorem 4.3 (S 2012)
The space D is locally compact, scattered, non-Gruenhage, and has a Gδ-
diagonal.
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