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Used symbols

R . . . . . . real line, Euclidean space
R∗ . . . . . . extended real line
N . . . . . . natural numbers

ei:n =



0
...
0
1
0
...
0


← ithrow . . . . . . ith unit vector of dimension n

int (A) . . . . . . interior of a set A
rint (A) . . . . . . relative interior of a set A
clo (A) . . . . . . closure of a set A
∂ (A) . . . . . . boundary of a set A
Dom (f) . . . . . . domain of a function f
graph (f) . . . . . . graph of a function f
epi (f) . . . . . . epigraph of a function f
hypo (f) . . . . . . hypograph of a function f
fx,s . . . . . . a function f restricted to a line going through x with direction s
Dx,s . . . . . . definition region of fx,s



Chapter 1

General notions

We consider functions defined on a finite dimensional Euclidean space with values in an extended real
line, i.e. real values enlarged with +∞ and −∞. Extended real line is denoted by R∗.

Definition 1.1 For a function f : Rn → R∗, we define its epigraph (cz. epigraf) and hypograph (cz.
hypograf)

epi (f) =

{(
x
η

)
: f (x) ≤ η, x ∈ Rn, η ∈ R

}
, (1.1)

hypo (f) =

{(
x
η

)
: f (x) ≥ η, x ∈ Rn, η ∈ R

}
(1.2)

and its domain (cz. doména)

Dom (f) = {x : f (x) < +∞, x ∈ Rn} . (1.3)

Definition 1.2 We say, function f : Rn → R∗ is proper (cz. vlastńı), if Dom (f) 6= ∅ and f (x) > −∞
for all x ∈ Rn.

Acceptance of value +∞ is important for optimization, particularly for its theory. It allows more
simple and readable description of an optimization program.

For example optimization program inf {f (x) : x ∈ D} can be rewritten as an unconstrained problem

inf
{
f̃ (x) : x ∈ Rn

}
, where

f̃ (x) = f (x) if x ∈ D, (1.4)

= +∞ otherwise. (1.5)

Epigraph of a function is a particular set, and, mapping between a function and its epigraph is a
bijection.

Lemma 1.3 Set E ⊂ Rn+1 is an epigraph of a function f : Rn → R∗ if and only if for all x ∈ Rn we
have {

η :

(
x
η

)
∈ E

}
is either ∅ or R or [η̂,+∞) for a proper η̂ ∈ R.

If E is an epigraph of a function f : Rn → R∗, then f (x) = min

{
η :

(
x
η

)
∈ E

}
.
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Proof: Property is evident.

Q.E.D.

Infimum and supremum of functions is related to union and intersection of epigraphs.

Lemma 1.4 Let I be an index set and for each i ∈ I a function fi : Rn → R∗ be given. Then,

epi

(
sup
i∈I

fi

)
=
⋂
i∈I

epi (fi) , hypo

(
inf
i∈I

fi

)
=
⋂
i∈I

hypo (fi) , (1.6)

epi

(
inf
i∈I

fi

)
⊃
⋃
i∈I

epi (fi) , hypo

(
sup
i∈I

fi

)
⊃
⋃
i∈I

hypo (fi) . (1.7)

If I is finite, we receive equalities

epi

(
min
i∈I

fi

)
=
⋃
i∈I

epi (fi) , hypo

(
max
i∈I

fi

)
=
⋃
i∈I

hypo (fi) . (1.8)

Proof: Statement is a direct consequence of Lemma 1.3. Intersection or union of a finite number of
intervals of type [ξ,+∞) is giving again an interval of the same type. Union of infinite number of such
intervals can violate this property. Similarly, intersection or union of a finite number of intervals of type
(−∞, ξ] is again a interval of the same type. Union of infinite number of such intervals can violate this
property.

Q.E.D.

Important role is played by restrictions of functions to lines.

Definition 1.5 Let D ⊂ Rn, D 6= ∅ and f : D→ R. For all x ∈ D, s ∈ Rn, we define
a restriction of f to a line going through x with direction s (cz. restrikce funkce f na př́ımku) as fx,s :
Dx,s → R : t ∈ Dx,s 7→ f (x+ ts), where Dx,s = {t : x+ ts ∈ D, t ∈ R}.

To abbreviate notation, we will employ shifts of a set.

Definition 1.6 Let D ⊂ Rn, D 6= ∅ and x ∈ Rn. We define D shifted to x (cz. posun množiny D) as

D̃x = D− x = {y − x : y ∈ D}.



Chapter 2

Differentiability of a function

2.1 On the real line

Definition 2.1 Let D ⊂ R, x ∈ int (D) and f : D → R. We say, f is differentiable at x (cz. diferen-
covatelná v bodě x) if there is f ′ (x) ∈ R such that for all y ∈ D we have

f (y) = f (x) + f ′ (x) (y − x) + |y − x|R1 (y − x; f, x) , (2.1)

where R1 (·; f, x) : D̃x → R and lim
y → x
y ∈ D

R1 (y − x; f, x) = 0; for D̃x see Definition 1.6.

Equivalently, f is differentiable at x if and only if limh→0
f(x+h)−f(x)

h = f ′ (x) ∈ R.
If S ⊂ int (D), then we say f is differentiable at S (cz. diferencovatelná v množině S), if it is

differentiable at each point x ∈ S.

Lemma 2.2 If D ⊂ R, x ∈ int (D) and f : D→ R is differentiable at x then f is continuous at x.

Proof: Continuity of f at x follows immediately (2.1).

Q.E.D.

Lemma 2.3 Let a, b ∈ R, a < b, f : [a, b] → R be differentiable at (a, b), right-continuous at a and
left-continuous at b. Then, ∫ b

a

f ′ (s) ds = f (b)− f (a) . (2.2)

2.2 Several arguments

Definition 2.4 Let D ⊂ Rn, x ∈ int (D), f : D→ R and h ∈ Rn. We say, f is
differentiable at x in direction h (cz. diferencovatelná v bodě x ve směru h) if there is f ′ (x;h) ∈ R such
that for all t ∈ Dx,h we have

f (x+ th) = f (x) + f ′ (x;h) t+ |t|R1 (t; f, x, h) , (2.3)

where R1 (·; f, x) : Dx,h → R and lim
t→ 0
t ∈ Dx,h

R1 (t; f, x, h) = 0; for Dx,h see Definition 1.5.

Equivalently, f is differentiable at x in direction h if and only if limt→0
f(x+th)−f(x)

t = f ′ (x;h) ∈ R.
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Definition 2.5 Let D ⊂ Rn, x ∈ int (D), f : D → R and i ∈ {1, 2, . . . , n}. We say, f possesses a
partial derivative at x w.r.t. xi (cz. parciálńı derivace v bodě x vzhledem k xi) if f is differentiable at x
in direction ei:n and we denote

∂f

∂xi
(x) = f ′ (x; ei:n) .

If f possesses a partial derivative at x w.r.t. xi for all i ∈ {1, 2, . . . , n} we say f possesses a gradient at x
(cz. gradient v bodě x) and we denote

∇f (x) =

(
∂f

∂xi
(x)

)n
i=1

.

In the text, we are using differentiability of a function convenient for optimization, see e.g. [1], [5].
We will introduce necessary terminology and basic properties of differentiable functions.

Definition 2.6 Let D ⊂ Rn, x ∈ int (D) and f : D→ R. We say, f is differentiable at x (or, possesses
total differential at x, is Fréchet differentiable at x) (cz. diferencovatelná v bodě x) if f possesses a
gradient ∇f (x) ∈ Rn and for all y ∈ D we have

f (y) = f (x) + 〈∇f (x) , y − x 〉+ ‖y − x‖R1 (y − x; f, x) , (2.4)

where R1 (·; f, x) : D̃x → R and lim
y → x
y ∈ D

R1 (y − x; f, x) = 0.

If S ⊂ int (D), then we say f is differentiable at S (cz. diferencovatelná v množině S), if it is
differentiable at each point x ∈ S.

Definition 2.7 Let D ⊂ Rn, x ∈ int (D) and f : D→ R.
We say, f is continuously differentiable at x (cz. spojitě diferencovatelná v bodě x), if there is δ > 0

such that U (x, δ) ⊂ D, f is differentiable at U (x, δ) and gradient ∇f is continuous at x.
We say, f is continuously differentiable at a neighborhood of x (cz. spojitě diferencovatelná v okoĺı

bodu x), if there is δ > 0 such that U (x, δ) ⊂ D, f is differentiable at U (x, δ) and gradient ∇f is
continuous at U (x, δ).

Gradient is necessary for expansion (2.4).

Lemma 2.8 Let D ⊂ Rn, x ∈ int (D) and f : D→ R. Let f fulfill an expansion for all y ∈ D

f (y) = f (x) + 〈 ξ, y − x 〉+ ‖y − x‖ϕ(y − x), (2.5)

where ξ ∈ Rn, ϕ : D̃x → R and lim
y → x
y ∈ D

ϕ(y − x) = 0.

Then f is differentiable at x, ξ = ∇f (x), ϕ = R1 (·; f, x) and f ′ (x;h) = 〈∇f (x) , h 〉 for all
directions h ∈ Rn.

Proof: Using (2.5) for a direction h ∈ Rn and t ∈ R small enough, we have

f (x+ th) = f (x) + 〈 ξ, th 〉+ ‖th‖ϕ(th).

Consider derivative ratio and let t→ 0:

lim
t→0

f (x+ th)− f (x)

t
= 〈 ξ, h 〉+ ‖h‖ lim

t→0

|t|
t
ϕ(th) = 〈 ξ, h 〉 .

Setting h = ei:n, we receive ξi = ∂f
∂xi

(x).
We have verified ξ is the gradient of f at x, f is differentiable at x, ϕ = R1 (·; f, x) and directional
derivatives possess announced form.
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Q.E.D.

Lemma 2.9 Let D ⊂ Rn, x ∈ int (D) and f : D→ R.
If f is differentiable at x then f is continuous at x.

Proof: Continuity of f at x follows immediately (2.4).

Q.E.D.

There are nice consequences for restrictions to lines.

Lemma 2.10 Let D ⊂ Rn, x ∈ D, h ∈ Rn and f : D→ R.

(i) If t ∈ R, x+th ∈ int (D) and f is differentiable at x+th then directional derivative f ′ (x+ th;h)
exists and fx,h is differentiable at t with

f ′x,h (t) = f ′ (x+ th;h) = 〈∇f (x+ th) , h 〉 . (2.6)

(ii) Let α, β ∈ R, α < β and x+ th ∈ int (D) for all t ∈ (α, β). If f is differentiable at x+ th for
all t ∈ (α, β), fx,h is right-continuous at α and left-continuous at β then

f (x+ βh)− f (x+ αh) = fx,h (β)− fx,h (α) =

∫ β

α

f ′x,h (t) dt (2.7)

=

∫ β

α

〈∇f (x+ th) , h 〉 dt.

Proof: (i) follows Lemma 2.8 and (ii) is a consequence of Lemma 2.3.

Q.E.D.

2.3 Vector valued functions

Start with a curve.

Definition 2.11 Let D ⊂ R, t ∈ int (D) and f : D→ Rm. Consider the function expressed as a vector

of functions f = (f1, f2, . . . , fm)
>

. We say,

• f is differentiable at t if fj is differentiable at t for each j ∈ {1, 2, . . . ,m}. We denote the derivative

by f ′ (t) = (f ′1 (t) , f ′2 (t) , . . . , f ′m (t))
>

.

• If S ⊂ int (D), f is differentiable at S if fj is differentiable at S for each j ∈ {1, 2, . . . ,m}.

And now a general case. We start with a notion of multidimensional scalar product.

Definition 2.12 Let n,m ∈ N, x ∈ Rn and A ∈ Rn×m. We define denotation

lA, xm = (〈A·,1, x 〉 , 〈A·,2, x 〉 , . . . , 〈A·,m, x 〉)> .

Using matrix notation, we have lA, xm = A>x.
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Definition 2.13 Let D ⊂ Rn, n ≥ 2, x ∈ int (D) and f : D→ Rm. Consider the function expressed as

a vector of functions f = (f1, f2, . . . , fm)
>

. We say,

• f possesses a gradient at x if fj possesses a gradient at x for each j ∈ {1, 2, . . . ,m}. We denote
∇f (x) = (∇f1 (x) ,∇f2 (x) , . . . ,∇fm (x)).

• f is differentiable at x if fj is differentiable at x for each j ∈ {1, 2, . . . ,m}.

• If S ⊂ int (D), f is differentiable at S if fj is differentiable at S for each j ∈ {1, 2, . . . ,m}.

Lemma 2.14 Let D ⊂ Rn, x ∈ int (D) and f : D → R. Then, f is differentiable at x if and only if f
possesses a gradient ∇f (x) ∈ Rn×m and for all y ∈ D we have

f (y) = f (x) + l∇f (x) , y − xm + ‖y − x‖R1 (y − x; f, x) , (2.8)

where R1 (·; f, x) : D̃x → Rm and lim
y → x
y ∈ D

R1 (y − x; f, x) = 0.

The expression becomes more simple for a curve. Let D ⊂ R, t ∈ int (D) and f : D→ Rm. Then, f
is differentiable at t if and only if f possesses a derivative f ′ (t) ∈ Rm and for all s ∈ D we have

f (s) = f (t) + (s− t)f ′ (t) + |s− t|R1 (s− t; f, t) , (2.9)

where R1 (·; f, t) : D̃t → Rm and lim
s→ t
s ∈ D

R1 (s− t; f, t) = 0.

Proof: It is a straightforward rewriting of definition.

Q.E.D.

2.4 Chain rule

Differentiability directly implies chain rule (cz. řet́ızkové pravidlo).

Lemma 2.15 Let I ⊂ R, int (I) 6= ∅, D ⊂ Rn, int (D) 6= ∅, g : I → D, f : D→ R and t ∈ int (I) such
that g(t) ∈ int (D). If f is differentiable at g(t) and g is differentiable at t, then f ◦ g is differentiable at
t and

(f ◦ g)
′
(t) =

n∑
i=1

∂f

∂xi
(g (t)) g′i (t) = 〈∇f (g (t)) , g′ (t) 〉 . (2.10)

Proof: Take s ∈ I, s 6= t. Accordingly to differentiability of f at g(t) and differentiability of g at t,
we have

f (g(s))− f (g(t))

= 〈∇f (g (t)) , g(s)− g(t) 〉+ ‖g(s)− g(t)‖R1 (g(s)− g(t); f, g(t))

= 〈∇f (g (t)) , (s− t) g′ (t) + |s− t|R1 (s− t; g, t) 〉
+ ‖(s− t) g′ (t) + |s− t|R1 (s− t; g, t)‖R1 (g(s)− g(t); f, g(t))

= (s− t) 〈∇f (g (t)) , g′ (t) 〉+ |s− t| 〈∇f (g (t)) , R1 (s− t; g, t) 〉

+ |s− t|
∥∥∥∥ s− t|s− t|

g′ (t) +R1 (s− t; g, t)
∥∥∥∥R1 (g(s)− g(t); f, g(t))

= (s− t) 〈∇f (g (t)) , g′ (t) 〉+ |s− t|R1 (s− t; f ◦ g, t) ,
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where

R1 (w; f ◦ g, t) = 〈∇f (g (t)) , R1 (w; g, t) 〉
+ ‖g′ (t) +R1 (w; g, t)‖R1 (g(t+ w)− g(t); f, g(t))

if w ∈ Ĩt, w > 0,

= 〈∇f (g (t)) , R1 (w; g, t) 〉
+ ‖−g′ (t) +R1 (w; g, t)‖R1 (g(t+ w)− g(t); f, g(t))

if w ∈ Ĩt, w < 0,

= 0 if w = 0.

Thus, f ◦ g is differentiable at t and (2.10) is shown.

Q.E.D.

2.5 Second derivative

Also, second derivative will be employed.

Definition 2.16 Let D ⊂ Rn, x ∈ int (D) and f : D→ R. We say, f possesses
second partial derivatives at x (cz. má druhé parciálńı derivace v x), if f possesses a gradient on a

neighborhood of x and all partial derivatives of gradient at x exists; i.e. ∂
∂xj

(
∂f
∂xi

)
(x) exists for all

indexes i, j ∈ {1, 2, . . . , n}.
Then, we denote ∂2f

∂xi∂xj
(x) = ∂

∂xj

(
∂f
∂xi

)
(x) for all i, j ∈ {1, 2, . . . , n}. Matrix of second partial

derivatives is denoted by ∇2f (x) =
(

∂2f
∂xi∂xj

(x)
)n,n
i=1,j=1

and called Hessian matrix.

Definition 2.17 Let D ⊂ Rn, x ∈ int (D) and f : D → R. We say, f is twice differentiable at x
(or, possessing Second Peano Derivative) (cz. dvakrát diferencovatelná v x), if there is a gradient
∇f (x) ∈ Rn and a symmetric matrix Hf (x) ∈ Rn×n such that for all y ∈ D we have

f (y) = f (x) + 〈∇f (x) , y − x 〉+
1

2
〈 y − x,Hf (x) (y − x) 〉 (2.11)

+ ‖y − x‖2R2 (y − x; f, x) ,

where R2 (·; f, x) : D̃x → R and lim
y → x
y ∈ D

R2 (y − x; f, x) = 0.

If S ⊂ int (D), then we say, f is twice differentiable at S (cz. dvakrát diferencovatelná v množině S),
if it is twice differentiable at each x ∈ S.

Matrix Hf (x) can differ from Hessian matrix. The reasons are

• ∇f does not exist in any neighborhood of x,

• ∇f exists in a neighborhood of x and ∇2f (x) does not exist.

• ∇f exists in a neighborhood of x, ∇2f (x) exist, but, asymmetric.

Lemma 2.18 Let D ⊂ Rn, x ∈ int (D) and f : D → R. If f is twice differentiable at x then matrix
Hf (x) is uniquely determined.
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Proof: Assume two symmetric matrices A, B such that for all y ∈ D we have

f (y) = f (x) + 〈∇f (x) , y − x 〉+
1

2
〈 y − x,A(y − x) 〉+ ‖y − x‖2 ρ(y − x),

f (y) = f (x) + 〈∇f (x) , y − x 〉+
1

2
〈 y − x,B(y − x) 〉+ ‖y − x‖2 χ(y − x),

where ρ : D̃x → R, χ : D̃x → R with lim
y → x
y ∈ D

ρ(y − x) = 0, lim
y → x
y ∈ D

χ(y − x) = 0. Then,

0 =
1

2
〈 y − x, (A−B)(y − x) 〉+ ‖y − x‖2 (ρ(y − x)− χ(y − x)) .

Fix h ∈ Rn. Hence, x+ αh ∈ D for α > 0 sufficiently small, since x ∈ int (D). Then,

0 =
1

2
〈αh, (A−B)αh 〉+ ‖αh‖2 (ρ(αh)− χ(αh)) .

After multiplication with 2
α2 , we receive

0 = 〈h, (A−B)h 〉+ 2 ‖h‖2 (ρ(αh)− χ(αh)) .

Letting α vanish we receive

0 = 〈h, (A−B)h 〉 for all h ∈ Rn.

That indicates A = B, because A−B is symmetric.

Q.E.D.

Lemma 2.19 Let D ⊂ Rn, x ∈ int (D) and f : D → R. If f is differentiable at a neighborhood of x
and ∇f is differentiable at x, then, ∇2f (x) exists and f is twice differentiable at x with

Hf (x) =
1

2
∇2f (x) +

1

2

(
∇2f (x)

)>
.

If, moreover, Hessian matrix is symmetric, i.e. ∂2f
∂xi∂xj

(x) = ∂2f
∂xj∂xi

(x) for all i, j ∈ {1, 2, . . . , n}, then

Hf (x) = ∇2f (x) .

Proof: According to our assumptions, there is δ > 0 such that U (x, δ) ⊂ D and for all y ∈ U (x, δ),
h ∈ Rn, ‖h‖ < δ − ‖y − x‖ we have

f (y + h)− f (y) = 〈∇f (y) , h 〉+ ‖h‖R1 (h; f, y) ,

∇f (y)−∇f (x) = l
(
∇2f (x)

)>
, y − xm + ‖y − x‖R1 (y − x;∇f, x) .

According to Lemma 2.10

f (x+ h)− f (x) =

∫ 1

0

〈∇f (x+ th) , h 〉 dt.
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Using expansion of gradient, we are receiving

f (x+ h)− f (x)− 〈∇f (x) , h 〉 =

∫ 1

0

〈∇f (x+ th)−∇f (x) , h 〉 dt

=

∫ 1

0

〈
l
(
∇2f (x)

)>
, thm + ‖th‖R1 (th;∇f, x) , h

〉
dt

=

∫ 1

0

t
〈
l
(
∇2f (x)

)>
, hm, h

〉
dt+

∫ 1

0

|t| 〈 ‖h‖R1 (th;∇f, x) , h 〉 dt

=
1

2

〈
h,
(
∇2f (x)

)>
h
〉

+ ‖h‖2
∫ 1

0

|t|
〈
R1 (th;∇f, x) ,

h

‖h‖

〉
dt

=
1

2

〈
h,

1

2

(
∇2f (x) +

(
∇2f (x)

)>)
h

〉
+ ‖h‖2

∫ 1

0

|t|
〈
R1 (th;∇f, x) ,

h

‖h‖

〉
dt,

where

lim
h→0

∫ 1

0

|t|
〈
R1 (th;∇f, x) ,

h

‖h‖

〉
dt = 0 since lim

s→0
R1 (s;∇f, x) = 0.

We have proved f is twice differentiable at x with Hf (x) = 1
2

(
∇2f (x) +

(
∇2f (x)

)>)
.

Q.E.D.

Lemma 2.20 Let D ⊂ Rn, x ∈ int (D), f : D→ R, and h ∈ Rn.

(i) If f is twice differentiable at x, then

lim
t→0

f (x+ th)− f (x)− t 〈∇f (x) , h 〉
t2

=
1

2
〈h,Hf (x)h 〉 . (2.12)

(ii) If f is differentiable at a neighborhood of x and ∇f is differentiable at x, then, ∇2f (x) exists
and restriction fx,h possesses derivatives

f ′x,h (t) = 〈∇f (x+ th) , h 〉 for all t small enough, (2.13)

f ′′x,h (0) =
〈
h,∇2f (x)h

〉
. (2.14)

Proof:

1. (i) follows (2.11), since for t 6= 0

f (x+ th)− f (x)− t 〈∇f (x) , h 〉
t2

=
1

2
〈h,Hf (x)h 〉+ ‖h‖2R2 (th; f, x) .

2. (ii) follows Lemma 2.19 and (2.4), (2.8), since for s 6= 0

fx,h (t+ s)− fx,h (t)

s
=

f (x+ (t+ s)h)− f (x+ th)

s
= 〈∇f (x+ th) , h 〉+ ‖h‖R1 (sh; f, x+ th) ,

f ′x,h (s)− f ′x,h (0)

s
=
〈∇f (x+ sh) , h 〉 − 〈∇f (x) , h 〉

s

=
〈
h,∇2f (x)h

〉
+ ‖h‖R1 (sh;∇f, x) .

Q.E.D.
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2.6 Arguments for differentiability

Existence and continuity of gradient, resp. of Hessian, are sufficient conditions for differentiability in
the sense of Definitions 2.6 and 2.17.

Lemma 2.21 Let I ⊂ R, int (I) 6= ∅, D ⊂ Rn, int (D) 6= ∅, g : I → D, f : D→ R and t ∈ int (I) such
that g(t) ∈ int (D). If gradient of f exists on a neighborhood of g(t) and is continuous at g(t) and g is
differentiable at t, then f ◦ g is differentiable at t with

(f ◦ g)
′
(t) =

n∑
i=1

∂f

∂xi
(g (t)) g′i (t) = 〈∇f (g (t)) , g′ (t) 〉 . (2.15)

Proof: For s, t ∈ I, s 6= t, i ∈ {1, 2, . . . , n}, u ∈ [0, 1], we denote

ξ(u, s, t, i) = (g1 (t) , . . . , gi−1 (t) , gi (t) + u (gi (s)− gi (t)) , gi+1 (s) , . . . , gn (s)) .

Then,

f ◦ g(s)− f ◦ g(t) =

n∑
i=1

[f (ξ(1, s, t, i))− f (ξ(0, s, t, i))]

=

n∑
i=1

∫ 1

0

∂f

∂xi
(ξ(u, s, t, i)) (gi (s)− gi (t)) du.

Divide formula by s− t and let s→ t.
We receive formula (2.15), since gradient of f is continuous at g (t).

Q.E.D.

Using Lemma 2.21, we derive differentiability of a function.

Lemma 2.22 Let D ⊂ Rn, x ∈ int (D) and f : D → R. If gradient of f exists on a neighborhood of
g(t) and is continuous at x, then f is differentiable at x with

f (x+ h) = f (x) + 〈∇f (x) , h 〉+ ‖h‖R1 (h; f, x) , (2.16)

|R1 (h; f, x) | ≤
√
nmax {‖∇f (x+ χ)−∇f (x)‖ : χ ∈ Rn, ‖χ‖ ≤ ‖h‖}

if h ∈ Rn is sufficiently small.

Proof: For h ∈ Rn, i ∈ {1, 2, . . . , n}, u ∈ [0, 1], we denote

ξ(u, x, h, i) = (x1, . . . , xi−1, xi + uhi, xi+1 + hi+1, . . . , xn + hn, ) .

For h ∈ Rn sufficiently small, we receive an expansion

f (x+ h)− f (x) =

n∑
i=1

[f (ξ(1, x, h, i))− f (ξ(0, x, h, i))]

=

n∑
i=1

hi

∫ 1

0

∂f

∂xi
(ξ(u, x, h, i)) du

= 〈∇f (x) , h 〉+

n∑
i=1

hi

∫ 1

0

∂f

∂xi
(ξ(u, x, h, i))− ∂f

∂xi
(x) du

= 〈∇f (x) , h 〉+ ‖h‖R1 (h; f, x) ,

|R1 (h; f, x) | ≤
√
nmax {‖∇f (x+ χ)−∇f (x)‖ : χ ∈ Rn, ‖χ‖ ≤ ‖h‖} .
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Q.E.D.

Lemma 2.23 Let D ⊂ Rn, x ∈ int (D) and f : D → R. Then, f is continuously differentiable at a
neighborhood of x if and only if there is δ > 0 such that ∇f exists on U (x, δ) and is continuous at
U (x, δ).

Proof: A consequence of Lemma 2.22.

Q.E.D.

Lemma 2.24 Let D ⊂ Rn, x ∈ int (D) and f : D → R. If ∇f , ∇2f exist on a neighborhood of x and
∇2f is continuous at x, then Hessian ∇2f (x) is a symmetric matrix and f is twice differentiable at x
with

f (x+ h) = f (x) + 〈∇f (x) , h 〉+
1

2

〈
h,∇2f (x)h

〉
+ ‖h‖2R2 (h; f, x) , (2.17)

|R2 (h; f, x) | ≤ n

2
max

{∥∥∇2f (x+ χ)−∇2f (x)
∥∥ : χ ∈ Rn, ‖χ‖ ≤ ‖h‖

}
if h ∈ Rn is sufficiently small. Moreover, Hf (x) = ∇2f (x).

Proof:

1. Symmetry of Hessian

Take two coordinates i, j ∈ {1, 2, . . . , n}, i 6= j and for α, β ∈ R consider:

f (x+ αei:n + βej:n)− f (x+ αei:n)− f (x+ βej:n) + f (x)

= β

∫ 1

0

∂f

∂xj
(x+ αei:n + uβej:n)− ∂f

∂xj
(x+ uβej:n) du

= αβ

∫ 1

0

(∫ 1

0

∂2f

∂xj∂xi
(x+ vαei:n + uβej:n) dv

)
du.

Since second partial derivatives are continuous at x, we observe

lim
α→ 0
β → 0

f (x+ αei:n + βej:n)− f (x+ αei:n)− f (x+ βej:n) + f (x)

αβ
=

1

2

∂2f

∂xj∂xi
(x) .

By definitions of partial derivatives we have

lim
α→0

lim
β→0

f (x+ αei:n + βej:n)− f (x+ αei:n)− f (x+ βej:n) + f (x)

αβ
=

1

2

∂2f

∂xj∂xi
(x) ,

lim
β→0

lim
α→0

f (x+ αei:n + βej:n)− f (x+ αei:n)− f (x+ βej:n) + f (x)

αβ
=

1

2

∂2f

∂xi∂xj
(x) .

Finally, ∂2f
∂xi∂xj

(x) = ∂2f
∂xj∂xi

(x).
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2. For h ∈ Rn, i ∈ {1, 2, . . . , n}, u ∈ [0, 1], we denote

ξ(u, x, h, i) = (x1, . . . , xi−1, xi + uhi, xi+1 + hi+1, . . . , xn + hn, ) .

For h ∈ Rn sufficiently small, we receive an expansion

f (x+ h)− f (x) =

n∑
i=1

[f (ξ(1, x, h, i))− f (ξ(0, x, h, i))]

=

n∑
i=1

hi

∫ 1

0

∂f

∂xi
(ξ(u, x, h, i)) du

= 〈∇f (x) , h 〉+

n∑
i=1

hi

∫ 1

0

∂f

∂xi
(ξ(u, x, h, i))− ∂f

∂xi
(x) du

= 〈∇f (x) , h 〉+

n∑
i=1

hi

∫ 1

0

∂f

∂xi
(ξ(u, x, h, i))− ∂f

∂xi
(ξ(0, x, h, i)) du

+
n∑
i=1

hi

(
n∑

k=i+1

∫ 1

0

∂f

∂xi
(ξ(1, x, h, k))− ∂f

∂xi
(ξ(0, x, h, k)) du

)

= 〈∇f (x) , h 〉+

n∑
i=1

h2
i

∫ 1

0

u

∫ 1

0

∂2f

∂xi∂xi
(ξ(uv, x, h, i)) dv du

+

n∑
i=1

hi

(
n∑

k=i+1

hk

∫ 1

0

∫ 1

0

∂2f

∂xi∂xk
(ξ(v, x, h, k)) dv du

)

= 〈∇f (x) , h 〉+
1

2

〈
h,∇2f (x)h

〉
+

n∑
i=1

h2
i

∫ 1

0

u

∫ 1

0

∂2f

∂xi∂xi
(ξ(uv, x, h, i))− ∂2f

∂xi∂xi
(x) dv du

+

n∑
i=1

n∑
k=i+1

hihk

∫ 1

0

∫ 1

0

∂2f

∂xi∂xk
(ξ(v, x, h, k))− ∂2f

∂xi∂xk
(x) dv du

= 〈∇f (x) , h 〉+
1

2

〈
h,∇2f (x)h

〉
+ ‖h‖2R2 (h; f, x) ,

where

|R2 (h; f, x) | ≤ n

2
max

{∥∥∇2f (x+ χ)−∇2f (x)
∥∥ : χ ∈ Rn, ‖χ‖ ≤ ‖h‖

}
.

Hence, function f is twice differentiable, because Hessian is continuous at x.

Q.E.D.



Chapter 3

Convex functions

3.1 Definition of a convex function

Definition 3.1 A function f : Rn → R∗ is convex (cz. konvexńı), if epi (f) is a convex set.

Convexity of a function can be equivalently explained.

Lemma 3.2 If a function f : Rn → R∗ is convex, then Dom (f) is a convex set.

Proof: Let x, y ∈ Dom (f) and 0 < λ < 1.
Then, there is η, ξ ∈ R such that f (x) ≤ η and f (y) ≤ ξ.

Hence,

(
x
η

)
,

(
y
ξ

)
∈ epi (f).

Since epi (f) is convex, (λx+ (1− λ)y, λη + (1− λ)ξ) ∈ epi (f).
Hence, f (λx+ (1− λ)y) ≤ λη + (1− λ)ξ < +∞.
Therefore, λx+ (1− λ)y ∈ Dom (f) and convexity of Dom (f) is shown.

Q.E.D.

Theorem 3.3: Function f : Rn → R∗ is convex if and only if Dom (f) is a convex set and for all
x, y ∈ Dom (f) and 0 < λ < 1 we have

f (λx+ (1− λ)y) ≤ λf (x) + (1− λ)f (y) . (3.1)

Proof:

1. Let f is convex.

Then accordingly to Lemma 3.2, Dom (f) is a convex set.

Let x, y ∈ Dom (f) and 0 < λ < 1.

Then for all η, ξ ∈ R fulfilling f (x) ≤ η and f (y) ≤ ξ,

one has

(
x
η

)
,

(
y
ξ

)
∈ epi (f).

epi (f) is convex, then, (λx+ (1− λ)y, λη + (1− λ)ξ) ∈ epi (f).

Hence, f (λx+ (1− λ)y) ≤ λη + (1− λ)ξ < +∞.

Minimum over all possible η, ξ is giving (3.1).

17
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2. Let property (3.1) be fulfilled.

Take

(
x
η

)
,

(
y
ξ

)
∈ epi (f) and 0 < λ < 1. Then,

λη + (1− λ)ξ ≥ λf (x) + (1− λ)f (y) ≥ f (λx+ (1− λ)y) .

Hence, (λx+ (1− λ)y, λη + (1− λ)ξ) ∈ epi (f).

We found epi (f) is a convex set, therefore, f is a convex function.

Q.E.D.

Theorem 3.3 shows, that new definition 3.1 coincides with classical definition of a convex function,
if function is proper and a restriction f : Dom (f)→ R is considered.

A convex function attaining value −∞ is degenerated.

Lemma 3.4 Let f : Rn → R∗ be a convex function. Then, either f (x) ∈ R for all x ∈ Dom (f) or
f (x) = −∞ for all x ∈ rint (Dom (f)).

Proof: Let x ∈ Dom (f) and f (x) = −∞.
If y ∈ rint (Dom (f)), then there is z ∈ Dom (f) and 0 < λ ≤ 1 such that y = λx+ (1− λ)z.
Using property (3.1), we receive

f (y) = f (λx+ (1− λ)z) ≤ λf (x) + (1− λ)f (z) = −∞.

Q.E.D.

Theorem 3.5: If function f : Rn → R∗ is convex and proper, then it is continuous on rint (Dom (f)).

Proof: Without any loss of generality we can assume, int (Dom (f)) 6= ∅. Otherwise, we will consider
the problem in coordinate system of the smallest lineal containing Dom (f).

Let x ∈ int (Dom (f)).
Then, there is ∆ > 0 such that x+ ∆ei:n, x−∆ei:n ∈ Dom (f) for all
i ∈ {1, 2, . . . , n}.
Dom (f) is convex, therefore,

M = conv ({x+ ∆ei:n, x−∆ei:n : i ∈ {1, 2, . . . , n}}) ⊂ Dom (f) .

Each point y ∈M can be written as

y =

n∑
i=1

λi,+(x+ ∆ei:n) +

n∑
i=1

λi,−(x−∆ei:n),

where

n∑
i=1

λi,+ +

n∑
i=1

λi,− = 1, λi,+ ≥ 0, λi,− ≥ 0.

Hence for y ∈M we receive a bound

f (y) ≤
n∑
i=1

λi,+f (x+ ∆ei:n) +

n∑
i=1

λi,−f (x−∆ei:n) ≤ Ξ < +∞,

where Ξ := max {f (x+ ∆ei:n) , f (x−∆ei:n) : i ∈ {1, 2, . . . , n}} .
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Point y ∈M can be also represented as y = x+ δs, where
∑n
i=1 |si| = ∆ and 0 ≤ δ ≤ 1.

Then,

f (y) = f (x+ δs) = f ((1− δ)x+ δ(x+ s)) ≤ (1− δ)f (x) + δf (x+ s)

≤ (1− δ)f (x) + δΞ,

f (x) = f

(
1

1 + δ
(x+ δs) +

δ

1 + δ
(x− s)

)
≤ 1

1 + δ
f (x+ δs) +

δ

1 + δ
f (x− s)

≤ 1

1 + δ
f (y) +

δ

1 + δ
Ξ .

Finally, we are receiving

(1 + δ)f (x)− δΞ ≤ f (y) ≤ (1− δ)f (x) + δΞ .

Thus, f is continuous at each x ∈ int (Dom (f)).

Q.E.D.

Continuity of a convex function at boundary of its domain is not an easy task. A necessary condition
is valid for a general proper function.

Theorem 3.6: Let a function f : Rn → R∗ be proper and continuous on Dom (f). Then,

epi (f) = clo (epi (f)) ∩ (Dom (f)× R) . (3.2)

Proof: Let x ∈ Dom (f) and

(
x
η

)
∈ clo (epi (f)).

Then, there is a sequence (xk, ηk) ∈ epi (f) converging to

(
x
η

)
.

Hence, we have f (xk) ≤ ηk.
Function is continuous on Dom (f), after a limit passage we receive f (x) ≤ η.

Thus, we have shown

(
x
η

)
∈ epi (f).

Q.E.D.

Theorem possesses a nice consequence.

Consiquence: Let f : Rn → R∗ be a proper function continuous on Dom (f) and Dom (f) be a closed
set. Then, epi (f) is also a closed set. ♣

Proof: Statement is a direct consequence of Theorem 3.6, since Dom (f) is a closed set, and hence,

epi (f) = clo (epi (f)) ∩ (Dom (f)× R) is a closed set.

Q.E.D.

Theorem 3.7: Let I be a nonempty index set and a convex function fi : Rn → R∗ is given for all
i ∈ I. Then sup

i∈I
fi : Rn → R∗ is also convex.
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Proof: According to Lemma 1.4 we have epi

(
sup
i∈I

fi

)
=
⋂
i∈I

epi (fi).

Intersection of convex sets is a convex set, thus, sup
i∈I

fi is a convex function and a proof is done.

Q.E.D.

Definition 3.8 Let f : Rn → R∗ be a function. We define (lower) level sets of f (cz. (dolńı)
úrovňové množiny) lev≤∆f = {x ∈ D : f (x) ≤ ∆}, lev<∆f = {x ∈ D : f (x) < ∆} for all ∆ ∈ R,
and, (upper) level sets of f (cz. (horńı) úrovňové množiny) lev≥∆f = {x ∈ D : f (x) ≥ ∆}, lev>∆f =
{x ∈ D : f (x) > ∆} for all ∆ ∈ R.

Theorem 3.9: If f : Rn → R∗ is a convex function, then lev≤αf , lev<αf are convex sets for all α ∈ R.

Proof: It is sufficient to verify lev<αf is convex, since lev≤αf =
⋂
β>α lev<βf .

Take y, z ∈ lev<αf and 0 < λ < 1. Then, y, z ∈ Dom (f) and we have

f (λy + (1− λ)z) ≤ λf (y) + (1− λ)f (z) < α.

It means λy + (1− λ)z ∈ lev<αf . Thus, lev<αf is a convex set.

Q.E.D.

As a consequence of Theorem 3.9, we are receiving that the set of all feasible solutions (cz. množina
př́ıpustných řešeńı) of a convex program is convex, i.e.

{x ∈ Rn : g1(x) ≤ α1, g2(x) ≤ α2, . . . , gk(x) ≤ αk}

is a convex set, having functions g1, g2, . . . , gk convex.
Convexity of level sets {x : f (x) ≤ α}, {x : f (x) < α} is not implying convexity of the function f .

Example 3.10: Function

f (x) = log(x) if x > 0,

= +∞ otherwise

is not convex, but, its level sets {x : f (x) ≤ α} = (0, eα], {x : f (x) < α} = (0, eα) are convex for all
α ∈ R.

4

Definition 3.11 We say, function f : Rn → R∗ is

i) strictly convex (cz. ryze konvexńı), if Dom (f) is a nonempty convex set and for all couple of
points x, y ∈ Dom (f), x 6= y and 0 < λ < 1 we have inequality

f (λx+ (1− λ)y) < λf (x) + (1− λ)f (y) .

ii) concave (cz. konkávńı), if the function −f is convex.



Petr Lachout ∗ February 26, 2017:994 21

iii) strictly concave, (cz. ryze konkávńı), if the function −f is strictly convex.

Concave function can be equivalently defined as a function with convex hypograph.
Consider, strictly convex function is always proper.

Lemma 3.12 If f : Rn → R∗ is a strictly convex function with Dom (f) containing two different points
then f is proper.

Proof: Assume x ∈ Dom (f) with f (x) = −∞.
There is y ∈ Dom (f), y 6= x.
Then, for all α ∈ (0, 1) we have f (αx+ (1− α)y) < αf (x) + (1− α)f (y) = −∞.
That is impossible.
Therefore, f must be proper.

Q.E.D.

Convex functions are very important at optimization theory, since its local minima are immediately
global minima.

Theorem 3.13: Let f : Rn → R∗ be a proper convex function. Then, each local minimum of f on
Dom (f) is a global minimum of f on Dom (f).

The set of all global minimizers f on Dom (f) is convex.

Proof: Let x̂ ∈ Dom (f) be a local minimum of f on Dom (f), but, it is not a global minimum.
Then, there is y ∈ Dom (f) such that f (y) < f (x̂).
Then, for all α ∈ (0, 1) we have f (αx̂+ (1− α)y) ≤ αf (x̂) + (1− α)f (y) < f (x̂).
That is a contradiction, since x̂ is a local minimum of f on Dom (f).
Hence, x̂ is a global minimum of f on Dom (f).
Denote ∆ = inf {f (y) : y ∈ Rn}. The set of all global minimizers f on Dom (f).

{x ∈ Dom (f) : f (x) = ∆} = {x ∈ Rn : f (x) ≤ ∆}

is convex, according to Theorem 3.9.

Q.E.D.

Theorem 3.14: Let f : Rn → R∗ be a strictly convex function with Dom (f) containing two different
points. If there is a local minimum of f on Dom (f), then, it is uniquely determined and it is the unique
global minimum of f on Dom (f).

Proof: According to Theorem 3.13, each local minimum of f on Dom (f) is also its global minimum.
It is sufficient to show uniqueness of global minimum of f on Dom (f).
Take x̂ a global minimum of f on Dom (f) and y ∈ Dom (f), y 6= x̂. Applying strict convexity of f , we
receive

f

(
1

2
x̂+

1

2
y

)
<

1

2
f (x̂) +

1

2
f (y) .

Hence,

f (y) > 2f

(
1

2
x̂+

1

2
y

)
− f (x̂) ≥ 2f (x̂)− f (x̂) = f (x̂) .

We have shown x̂ is unique global minimum of f on Dom (f).

Q.E.D.
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3.2 Basic properties of convex functions

Let us recapitulate basic properties of convex functions.

3.2.1 Convex functions of one variable

This section sums up basic properties of convex functions of one variable. Presented results are listed
without proofs. Interested readers can consult basic textbooks on mathematical analysis and on prob-
ability theory.

We will consider a function f : J → R defined on a convex set J ⊂ R (Recall simple structure of
convex sets on real line. They are either empty set or a point or an interval.) Consider smoothness of
convex functions.

Theorem 3.15: Let J ⊂ R be an interval and f : J → R be a convex function.

i) Function f is continuous on int (J) and it can jump in extremal points of J . Jumps must keep
bounds: f (a) ≥ f (a+) if a is a left extremal point of J , f (a) ≥ f (a−) if a is a right extremal
point of J .

ii) Derivative from left and from right exist at each point t ∈ int (J); i.e.

f ′+ (t) = lim
h→0+

f (t+ h)− f (t)

h
∈ R ,

f ′− (t) = lim
h→0−

f (t+ h)− f (t)

h
∈ R.

We have f ′− (t) ≤ f ′+ (t) ≤ f ′− (s) ≤ f ′+ (s), whenever t, s ∈ int (J), t < s.

iii) f ′ exists on J except at most countably many point.

iv) f ′′ exists on J except a set of Lebesgue measure zero.

v) f fulfills an inequality f
(∑k

i=1 pixi

)
≤
∑k
i=1 pif (xi) for all x1, x2, . . . , xk ∈ J , p1 ≥ 0, p2 ≥ 0,

. . . , pk ≥ 0,
∑k
i=1 pi = 1.

vi) f fulfills Jensen’s inequality, i.e. f (E [X]) ≤ E [f (X)] for each real random variable X with a
finite mean and with P (X ∈ J) = 1.

Recall, v) is a particular case of vi) . To see that, consider a random variable X attaining values
x1, x2, . . . , xk with probabilities p1, p2, . . . , pk.

Now, we recall some basic criteria indicating convex functions.

Theorem 3.16: Let J ⊂ R be an open interval and f : J → R be a function, then we have:

• Function f is convex ⇔ f ′+ exists nondecreasing on J ⇔
⇔ f ′− exists nondecreasing on J .

• If f is differentiable on J , then

f is convex ⇔ f ′ is nondecreasing on J .

• If f possesses second derivative on J , then

f is convex ⇔ f ′′ ≥ 0 on J .
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3.2.2 Convex function of several variables

This section sums up basic properties of convex functions of several variables. Presented results are
listed without proofs. Interested readers can consult basic textbooks on mathematical analysis, linear
algebra and probability theory.

Consider a function f : D→ R defined on a convex set D ⊂ Rn.

Lemma 3.17 Let D ⊂ Rn, D 6= ∅ be a convex set, f1 : D→ R, f2 : D→ R, . . . , fk : D→ R be convex
functions, a1 ≥ 0, a2 ≥ 0, . . . , ak ≥ 0. Then,

∑k
i=1 aifi : D→ R is a convex function.

Proof: A proof is straightforward.

Q.E.D.

Theorem 3.18 (Jensen’s inequality): Let D ⊂ Rn be a nonempty convex set and f : D→ R be a convex

function. If a real random vector X = (X1, X2, . . . , Xk)
>

possesses finite mean and P (X ∈ D) = 1 then
we have E [X] ∈ D and f (E [X]) ≤ E [f (X)].

Proof: A proof can be found for example in [2], Theorem 5.9, p.26.

Q.E.D.

A consequence of Theorem 3.18 is a generalization of inequality (3.1) (“deterministic Jensen’s in-
equality”).

Theorem 3.19: Let D ⊂ Rn, D 6= ∅ be a convex set and f : D → R be a convex function. Then, an
inequality

f

(
k∑
i=1

pixi

)
≤

k∑
i=1

pif (xi) (3.3)

holds for all x1, x2, . . . , xk ∈ D, p1 ≥ 0, p2 ≥ 0, . . . , pk ≥ 0,
∑k
i=1 pi = 1.

Proof: The statement is a particular case of Theorem 3.18. To see that, consider a random variable
X attaining values x1, x2, . . . , xk with probabilities p1, p2, . . . , pk.

Q.E.D.

Convexity of a function can be verified by means of restrictions to lines.

Theorem 3.20: Let D ⊂ Rn, D 6= ∅ be a convex set and f : D→ R. Then, function f is convex if and
only if restriction fx,s : Dx,s → R is convex for all x ∈ D, s ∈ Rn.

Proof:

1. Take x ∈ D and s ∈ Rn.

For t1, t2 ∈ Dx,s and 0 < λ < 1 we have

x+ (λt1 + (1− λ)t2)s = λ(x+ t1s) + (1− λ)(x+ t2s) ∈ D,

since x+ t1s, x+ t2s ∈ D and D is a convex set.

We have proved Dx,s is a convex subset of R, therefore, it is an interval.



24 Smoothness of functions ∗ February 26, 2017:994

2. Let f be a convex function and x ∈ D, s ∈ Rn.

For t1, t2 ∈ Dx,s and 0 < λ < 1 we have

fx,s (λt1 + (1− λ)t2) =

= f (x+ (λt1 + (1− λ)t2)s) = f (λ(x+ t1s) + (1− λ)(x+ t2s))

≤ λf (x+ t1s) + (1− λ)f (x+ t2s) = λfx,s (t1) + (1− λ)fx,s (t2) .

We have verified fx,s is a convex function on an interval Dx,s.

3. Let function fx,s be convex on Dx,s for all x ∈ D and s ∈ Rn.

Take x, y ∈ D, 0 < λ < 1 and set s = x− y. Then, we have

f (λx+ (1− λ)y) = f (y + λs) = fy,s (λ)

≤ λfy,s (1) + (1− λ)fy,s (0) = λf (x) + (1− λ)f (y) .

We have verified f is a convex function.

Q.E.D.

This property enables us generalize criteria for convex function identification. Properties of the first
and the second derivative of restrictions to lines were prepared in Lemmas 2.10, 2.20.

Theorem 3.21: Let D ⊂ Rn, D 6= ∅ be a convex open set and f : D→ R be differentiable at D. Then,

f is convex ⇔ t ∈ Dx,s 7→ 〈∇f (x+ ts) , s 〉 is nondecreasing on Dx,s
for all x ∈ D, s ∈ Rn.

(3.4)

Proof: According to Theorem 3.20 we have to verify convexity of all restrictions to lines.
Take x ∈ D, s ∈ Rn and consider function fx,s.
Function f is differentiable at D, therefore according to Lemma 2.10, we have

f ′x,s (t) = 〈∇f (x+ ts) , s 〉 .

Hence, according to Theorem 3.16

fx,s is convex ⇔ t ∈ Dx,s 7→ 〈∇f (x+ ts) , s 〉 is a nondecreasing function.

The statement is proved.

Q.E.D.

Theorem 3.22: Let D ⊂ Rn, D 6= ∅ be a convex open set and f : D → R. If f is differentiable at D
and ∇f is differentiable at D, then, ∇2f exists on D, f is twice differentiable at D with

Hf (x) =
1

2
∇2f (x) +

1

2

(
∇2f (x)

)>
and

f is convex ⇔ Hf (x) is positively semidefinite for all x ∈ D. (3.5)
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Proof: According to Theorem 3.20 we have to verify convexity of all restrictions to lines.
Take x ∈ D, s ∈ Rn and consider function fx,s.
According to Lemma 2.20, we have

f ′′x,s (t) =

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(x+ ts) (x+ ts)sisj = s>∇2f (x+ ts) s.

Hence,

fx,s is convex ⇐⇒ ∀ t ∈ Dx,s we have s>∇2f (x+ ts) s ≥ 0

⇐⇒ ∀ t ∈ Dx,s we have s>Hf (x+ ts) s ≥ 0.

Finally, function f is convex if and only if Hf (x) is positively semidefinite for all x ∈ D.

Q.E.D.

Let us recall notion of positively semidefinite matrix and its equivalent definitions.

Lemma 3.23 For a symmetric matrix A ∈ Rn×n the following is equivalent:

• A is positively semidefinite.

• For all x ∈ Rn we have x>Ax ≥ 0.

• All eigenvalues of matrix A are nonnegative.

• Determinants of all principle minors of matrix A are nonnegative, i.e.

∀ I ⊂ {1, 2, . . . , n}, I 6= ∅ we have det (Ai,j , i, j ∈ I) ≥ 0.

• There are a regular matrix Q and a diagonal matrix Λ with nonnegative members on diagonal such
that A = Q>ΛQ.

Lemma 3.24 For a symmetric matrix A ∈ Rn×n the following is equivalent:

• A is positively definite.

• For all x ∈ Rn, x 6= 0 we have x>Ax > 0.

• All eigenvalues of matrix A are positive.

• Determinants of all corner principle minors of matrix A are positive, i.e.

∀ k ∈ {1, 2, . . . , n} we have det (Ai,j , i, j ∈ {1, 2, . . . , k}) > 0.

• There are a regular matrix Q and a diagonal matrix Λ with positive members on diagonal such
that A = Q>ΛQ.

Let us recall expression of form A = Q>ΛQ means transformation of a quadratic form to its polar
base. For that there is an effective algorithm known as Gauss-Jordan elimination. In fact, it is Gauss
elimination applied to rows and columns at ones, i.e. each elementary transformation applied to rows
must be applied to columns, too.

Let us recall smoothness of convex functions.
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Theorem 3.25: Let D ⊂ Rn, D 6= ∅ be a convex set and f : D → R be a convex function. Then, f is
continuous on rint (D).

Proof: Theorem is a reformulation of Theorem 3.5.

Q.E.D.

Theorem 3.26: Let D ⊂ Rn, D 6= ∅ be an open convex set and f : D → R be a function. If f is
differentiable at D, then

f is convex ⇐⇒ ∀ x, y ∈ D we have f (x)− f (y) ≥ 〈∇f (y) , x− y 〉 . (3.6)

Proof:

1. Let f be convex.

Take x, y ∈ D and denote h = x− y.

According to Lemma 2.10, fy,h is a differentiable convex function on Dy,h. Then, its derivative

f ′y,h (µ) = 〈∇f (y + µh) , h 〉 is nondecreasing.

According to “Theorem on mean value” there is θ ∈ (0, 1) such that

f (x)− f (y) = fy,h (1)− fy,h (0) = f ′y,h (θ)

≥ f ′y,h (0) = 〈∇f (y) , h 〉 = 〈∇f (y) , x− y 〉 ,

since derivative of a convex differentiable function is nondecreasing.

2. Let ∀ x, y ∈ D we have f (x)− f (y) ≥ 〈∇f (y) , x− y 〉
Take v, w ∈ D, λ ∈ (0, 1) and denote z = λv + (1− λ)w.

According to assumption we have:

f (v)− f (z) ≥ 〈∇f (z) , v − z 〉 ,
f (w)− f (z) ≥ 〈∇f (z) , w − z 〉 .

Hence,

λf (v) + (1− λ)f (w) ≥ f (z) + 〈∇f (z) , λ(v − z) + (1− λ)(w − z) 〉
= f (z) = f (λv + (1− λ)w) .

According to Theorem 3.3, f is convex.

Q.E.D.

This property is generalized by notion of subgradient.

Definition 3.27 Let D ⊂ Rn, D 6= ∅ be a set, f : D→ R be a function, x ∈ D and a ∈ Rn. We say, a
is a subgradient of f at x ∈ D (cz. subgradient), if we have

f (y)− f (x) ≥ 〈 a, y − x 〉 for all y ∈ D. (3.7)

Set of all subgradients of f at x will be called subdiferential of f at x (cz. subdiferenciál) and will be
denoted by ∂f (x).
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Using subdiferential we can equivalently rewrite definition of global minimum.

Theorem 3.28: Let D ⊂ Rn, x∗ ∈ D and f : D → R be a function. Then, x∗ is a global minimum of
f on D if and only if 0 ∈ ∂f (x∗).

Proof: Statement is a trivial consequence of subgradient definition, since

0 ∈ ∂f (x∗) ⇐⇒ ∀ x ∈ D f (x) ≥ f (x∗) .

Q.E.D.

The rewriting can be understand as a generalization of methodology to determine local minima seeking
for zero derivative. Unfortunately, it is a rewriting having no practical importance. Nothing new is
received by this idea.

Subgradient and subdiferencial are helpful tools for describing convex functions.

Theorem 3.29: Let D ⊂ Rn be a nonempty convex set and f : D → R be a convex function. Then,
∂f (x) 6= ∅ for each x ∈ rint (D).

Proof: Without any loss of generality we can assume int (D) 6= ∅.
Take x ∈ int (D).
Then, (x, f(x)) ∈ ∂ (epi (f)) and there is a supporting hyperplane determined by proper α ∈ Rn and

β ∈ R such that

(
α
β

)
6= 0 and for all (y, η) ∈ epi (f) we have

〈α, y 〉+ βη ≥ 〈α, x 〉+ βf(x).

Number η can be arbitrary large, therefore, β ≥ 0.

1) Assume β = 0.

Since x ∈ int (D), there is δ > 0 such that Uδ (x) ⊂ D.

Therefore, for all y ∈ Uδ (x) we have 〈α, y 〉 ≥ 〈α, x 〉 .
Then α = 0.

Hence,

(
α
β

)
= 0 which is a contradiction, because the vector must not be the origin.

2) Assume β > 0.

Consequently, for all (y, η) ∈ epi (f) we have〈
1

β
α, y

〉
+ η ≥

〈
1

β
α, x

〉
+ f(x).

Therefore, for all y ∈ Dom (f) we have

f(y)− f(x) ≥
〈

1

β
α, x− y

〉
=

〈
− 1

β
α, y − x

〉
.

We have found β > 0 and − 1
β α ∈ ∂f (x). Theorem is proved.

Q.E.D.
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Equivalent description of a convex function using non-emptiness of subdiferentials is in power if
function is defined on an open set.

Theorem 3.30: Let D ⊂ Rn be an open convex set and f : D → R. Then, f is a convex function if
and only if ∂f (x) 6= ∅ for each x ∈ D.

Proof:

1. According to Theorem 3.29, ∂f (x) 6= ∅ for each x ∈ D.

2. Assume ∂f (x) 6= ∅ for each x ∈ D.

Take x, y ∈ D and 0 < λ < 1.

Then z = λx+ (1− λ)y ∈ D, since D is a convex set.

Take α ∈ ∂f (z), which exists according to our assumption.

Definition of subgradient is giving

f(x)− f(z) ≥ 〈α, x− z 〉 ,
f(y)− f(z) ≥ 〈α, y − z 〉 .

Therefore,

λ(f(x)− f(z)) + (1− λ)(f(y)− f(z)) ≥ λ 〈α, x− z 〉+ (1− λ) 〈α, y − z 〉 .

Hence,

λf(x) + (1− λ)f(y)− f(z) ≥ 〈α, λx+ (1− λ)y − z 〉 = 0.

We have shown

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y).

Thus, f is convex according to Theorem 3.3.

Q.E.D.

For a continuous function, the characterization is also in power.

Theorem 3.31: Let D ⊂ Rn be a convex set and f : D → R be a continuous function. Then, f is a
convex function if and only if ∂f (x) 6= ∅ for each x ∈ rint (D).

Proof: Accordingly to Theorem 3.29, the condition is fulfilled for a convex function. We have to show
the opposite implication, only.

1. Accordingly to Theorem 3.30, f : rint (D)→ R is convex.

2. Take x, y ∈ D and 0 < λ < 1.

Since D is convex, we have D ⊂ clo (rint (D)).

Then, there are sequences xk, yk ∈ rint (D) such that xk → x and yk → y.

For each k ∈ N, we have

λf(xk) + (1− λ)f(yk) ≥ f(λxk + (1− λ)yk).

After limit passage k → +∞ and using continuity of f on D, we receive

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y).
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We have proved f is convex.

Q.E.D.

Lemma 3.32 If G ⊂ Rn is nonempty open convex set, f : G → R is a convex function and y ∈ G. If f
possesses gradient at y, then ∂f (y) = {∇f (y)}.

Proof: Take η ∈ ∂f (y) and i ∈ {1, 2, . . . , n}.
For sufficiently small λ > 0, we have y + λei:n, y − λei:n ∈ G. Therefore using convexity of f , we are
receiving bounds

f (y + λei:n)− f (y) ≥ 〈 η, λei:n 〉 = ληi,

f (y − λei:n)− f (y) ≥ 〈 η,−λei:n 〉 = −ληi.

Dividing by λ and letting λ→ 0+, we find

∂f

∂xi
(y) ≥ ηi,

− ∂f
∂xi

(y) ≥ −ηi.

Consequently, η = ∇f (y) for each η ∈ ∂f (y).

That is ∂f (y) = {∇f (y)}.

Q.E.D.

Lemma 3.33 Let G ⊂ Rn be a nonempty open convex set, f : G → R be a convex function and y ∈ G.
If ∂f (y) is a single-point set, then f is differentiable at y and ∂f (y) = {∇f (y)}.

Proof: Theorem from mathematical analysis.

Q.E.D.

Previous observations can be summed up in a lemma.

Lemma 3.34 Let G ⊂ Rn be a nonempty open convex set, f : G → R be a convex function and y ∈ G.
Hence, the following is equivalent:

1. f is differentiable at y and ∂f (y) = {∇f (y)}.

2. ∂f (y) is a single-point set.

3. f possesses a gradient at y.
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3.3 Vector valued convex functions

In this section we consider functions defined on a finite dimensional Euclidean space with values in a
Cartesian product of finite number of extended real lines, i.e. f : Rn → (R∗)m. We also understand

such a function as a vector of functions f = (f1, f2, . . . , fm)
>

.

Definition 3.35 For a function f : Rn → (R∗)m, we define its epigraph (cz. epigraf)

epi (f) =

{(
x
η

)
: f (x) ≤ η, x ∈ Rn, η ∈ Rm

}
, (3.8)

domain (cz. doména) and weak domain (cz. slabá doména)

Dom (f) = {x : fi (x) < +∞ for all i ∈ {1, 2, . . . ,m}, x ∈ Rn} , (3.9)

WDom (f) = {x : fi (x) < +∞ for some i ∈ {1, 2, . . . ,m}, x ∈ Rn} . (3.10)

Definition 3.36 A function f : Rn → (R∗)m is called monotone (cz. monotónńı), if f (x) ≤ f (y)
whenever x ≤ y.

Definition 3.37 A function f : Rn → (R∗)m is convex (cz. konvexńı), if WDom (f) = Dom (f) and
epi (f) is a convex set.

Convexity of a function can be equivalently explained.

Lemma 3.38 A function f : Rn → (R∗)m is convex if and only if Dom (f) = Dom (f1) = Dom (f2) =
· · · = Dom (fm), Dom (f) is a convex set and fi is a convex function for each i ∈ {1, 2, . . . ,m}.

Theorem 3.39: A function f : Rn → (R∗)m is convex if and only if Dom (f) = Dom (f1) = Dom (f2) =
· · · = Dom (fm), Dom (f) is a convex set and for all x, y ∈ Dom (f) and 0 < λ < 1 we have

f (λx+ (1− λ)y) ≤ λf (x) + (1− λ)f (y) . (3.11)

Proof: Statement is a consequence of Theorem 3.3 and Lemma 3.38.

Q.E.D.

Composition of functions preserves convexity of functions under some circumstances.

Lemma 3.40 If X ⊂ Rn is a convex set, h : Rn → Rm is an affine linear function and g : h (X )→ R
is a convex function, then, f : X → R : x 7→ g(h(x)) is a convex function.

Proof: Assumptions are corectly formulated, since h (X ) is a convex set, because X is a convex set
and h : Rn → Rm is an affine linear function.
For x, y ∈ X and λ ∈ (0, 1) we have

f (λx+ (1− λ)y) = g (h (λx+ (1− λ)y))

= g (λh (x) + (1− λ)h (y))

≤ λg (h (x)) + (1− λ)g (h (y))

= λf (x) + (1− λ)f (y) .

Q.E.D.
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Lemma 3.41 If X ⊂ Rn is a convex set, h : X → Rm is a convex function and
g : conv (h (X )) → R is a monotone convex function, then, f : X → R : x 7→ g(h(x)) is a convex
function.

Proof: For x, y ∈ X and λ ∈ (0, 1) we can estimate

f (λx+ (1− λ)y) = g (h (λx+ (1− λ)y))

≤ g (λh (x) + (1− λ)h (y))

≤ λg (h (x)) + (1− λ)g (h (y))

= λf (x) + (1− λ)f (y) .

Q.E.D.

3.4 Generalization of convex functions

Now, we introduce generalizations of convex functions which are useful for optimization.

Definition 3.42 Let S ⊂ D ⊂ Rn, S be an open set, x ∈ S and f : D→ R be differentiable at x.

1. We say, f is pseudoconvex at x with respect to S (cz. pseudokonvexńı v bodě x vzhledem k S), if

∀ y ∈ S, 〈∇f (x) , y − x 〉 ≥ 0 implies f (y) ≥ f (x) .

2. We say, f is strictly pseudoconvex at x with respect to S (cz. striktně pseudokonvexńı v bodě x
vzhledem k S), if

∀ y ∈ S, y 6= x, 〈∇f (x) , y − x 〉 ≥ 0 implies f (y) > f (x) .

3. We say, f is pseudoconcave at x with respect to S (cz. pseudokonkávńı v bodě x vzhledem k S), if
−f is pseudoconvex at x with respect to S.

4. We say, f is strictly pseudoconcave at x with respect to S (cz. striktně pseudokonkávńı v bodě x
vzhledem k S), if −f is strictly pseudoconvex at x with respect to S.

Definition 3.43 Let S ⊂ D ⊂ Rn, S be a nonempty open set and f : D→ R be differentiable at S.

1. We say, f is pseudoconvex on S (cz. pseudokonvexńı na S), if

∀x, y ∈ S, 〈∇f (x) , y − x 〉 ≥ 0 implies f (y) ≥ f (x) .

2. We say, f is strictly pseudoconvex on S (cz. striktně pseudokonvexńı na S), if

∀x, y ∈ S, x 6= y, 〈∇f (x) , y − x 〉 ≥ 0 implies f (y) > f (x) .

3. We say, f is pseudoconcave on S (cz. pseudokonkávńı na S), if −f is pseudoconvex on S.

4. We say, f is strictly pseudoconcave on S (cz. striktně pseudokonkávńı na S), if −f is strictly
pseudoconvex on S.

Definition 3.44 Let S ⊂ D ⊂ Rn, S be a convex set, x ∈ S and f : D→ R.
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1. We say, f is quasiconvex at x with respect to S (cz. quasikonvexńı v bodě x vzhledem k S) if

∀ y ∈ S, 0 < λ < 1 we have f (λx+ (1− λ)y) ≤ max {f (x) , f (y)} .

2. We say, f is quasiconvex on S (cz. quasikonvexńı na S), if

∀ y, z ∈ S, 0 < λ < 1 we have f (λy + (1− λ)z) ≤ max {f (y) , f (z)} .

Lemma 3.45 Let S ⊂ D ⊂ Rn, S be a nonempty convex set and f : D→ R be quasiconvex on S. Then,
level sets of f fulfill S ∩ lev≤∆f = {x ∈ S : f (x) ≤ ∆}, S ∩ lev<∆f = {x ∈ S : f (x) < ∆} are convex
for all ∆ ∈ R.

Proof: It is sufficient to verify S ∩ lev<∆f is convex, since S ∩ lev≤∆f =
⋂
β>∆ S ∩ lev<βf .

Take y, z ∈ S ∩ lev<∆f and 0 < λ < 1. Because f is quasiconvex on S, we have

f (λy + (1− λ)z) ≤ max {f (y) , f (z)} < ∆.

It means λy + (1− λ)z ∈ S ∩ lev<∆f . Thus, S ∩ lev<∆f is a convex set.

Q.E.D.

Lemma 3.46 Let S ⊂ D ⊂ Rn, S be a nonempty open convex set and h : D→ R be differentiable at S
and pseudoconvex on S. Then, h is quasiconvex on S.

Proof: Take x, y ∈ S, 0 < λ < 1 and denote z = λx+ (1− λ)y. Hence, z ∈ S, since S is a convex set.
Assume h (z) > h (x).
Function h is pseudoconvex on S, therefore, 〈∇h (z) , x− z 〉 < 0.
Consider,

x− z = x− (λx+ (1− λ)y) = (1− λ)(x− y),

y − z = y − (λx+ (1− λ)y) = λ(y − x) = −λ(x− y).

Hence,

y − z = − λ

(1− λ)
(x− z),

〈∇h (z) , y − z 〉 = − λ

(1− λ)
〈∇h (z) , x− z 〉 > 0 .

Function h is pseudoconvex on S, therefore, h (z) ≤ h (y).
Finally, h (λx+ (1− λ)y) ≤ max {h (x) , h (y)} and h is quasiconvex on S.

Q.E.D.

Lemma 3.47 Let S ⊂ D ⊂ Rn, S be a nonempty open convex set, f : D → R be differentiable at S
and pseudoconvex on S. Then, level sets of f fulfill S ∩ lev≤∆f = {x ∈ S : f (x) ≤ ∆}, S ∩ lev<∆f =
{x ∈ S : f (x) < ∆} are convex for all ∆ ∈ R.

Proof: The statement is a direct consequence of Lemma 3.46 and Lemma 3.45.

Q.E.D.

Function pseudoconvex at a point does not have to be quasiconvex at the point; see an example.

Example 3.48: Consider D = R, S = (−2, 1) and f (x) = −x2. Function f is pseudoconvex at −1
with respect to S, but it is not quasiconvex at −1 with respect to S.

4
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