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Used symbols

R...... real line, Euclidean space

R* ...... extended real line

N...... natural numbers
0

eimn=| 1 | <« ithrow ...... it" unit vector of dimension n
0
0

int (4) ...... interior of a set A

rint (A) ...... relative interior of a set A

clo(A) ...... closure of a set A

0(A) ...... boundary of a set A

Dom (f) ...... domain of a function f

graph (f) ...... graph of a function f

epi(f) ...... epigraph of a function f

hypo (f) ...... hypograph of a function f

fas ooen. a function f restricted to a line going through x with direction s

Dgs ... definition region of f; s



Chapter 1

(General notions

We consider functions defined on a finite dimensional Euclidean space with values in an extended real
line, i.e. real values enlarged with +00 and —oo. Extended real line is denoted by R*.

Definition 1.1 For a function f : R™ — R*, we define its epigraph (cz. epigraf) and hypograph (cz.
hypograf)

witf) = {(7):r@<ncer, ner}. (1.1)

woo(f) = {(5):s@zn acr nerf (12)

and its domain (cz. doména)
Dom (f) ={z : f(z) < 400, z € R"}. (1.3)

Definition 1.2 We say, function f: R™ — R* is proper (cz. vlastni), if Dom (f) # 0 and f (x) > —o0
for all x € R™.

Acceptance of value +o0o is important for optimization, particularly for its theory. It allows more
simple and readable description of an optimization program.
For example optimization program inf { f (z) : € D} can be rewritten as an unconstrained problem

inf {f(x) sz € R”}, where
f@) = f(x) if zeD, (1.4)
= 400 otherwise. (1.5)

Epigraph of a function is a particular set, and, mapping between a function and its epigraph is a
bijection.

Lemma 1.3 Set E C R™"! is an epigraph of a function f: R™ — R* if and only if for all x € R"™ we
have

{7] : ( i ) € E} is either ® or R or [f,+00) for a proper 7 € R.

If E is an epigraph of a function f: R™ — R*, then f (x) = min{n : ( i ) € E}
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Proof: Property is evident.

Q.E.D.

Infimum and supremum of functions is related to union and intersection of epigraphs.

Lemma 1.4 Let I be an index set and for each i € I a function f; : R™ — R* be given. Then,

epi (Sup fi) = (epi(f:), hypo (Hg fi) = (Y hypo (f:), (1.6)

i€l iel icl
epi [inf f; ) D epi(f;), hypo(sup f; | D hypo (f;) . 1.7
p (ielf> LGJI pi (fi), hyp (iel;f) Ler ypo (f:) (1.7)

If I is finite, we receive equalities

epi (min fi) = Jepi(f:), hypo (rgeagc fi) = Jhypo (f;). (1.8)

iel
el i€l

Proof: Statement is a direct consequence of Lemma 1.3. Intersection or union of a finite number of
intervals of type [£, +00) is giving again an interval of the same type. Union of infinite number of such
intervals can violate this property. Similarly, intersection or union of a finite number of intervals of type
(—00,¢] is again a interval of the same type. Union of infinite number of such intervals can violate this

property.
Q.E.D.

Important role is played by restrictions of functions to lines.

Definition 1.5 Let DCR", D# 0 and f: D = R. For allx € D, s € R", we define
a restriction of f to a line going through x with direction s (cz. restrikce funkce f na primku) as fgs
Dys > R:t€Dgys— f(x+ts), where Dy s ={t : v +tse€D,t € R}

To abbreviate notation, we will employ shifts of a set.

Definition 1.6 Let D C R", D # 0 and x € R™. We define D shifted to x (cz. posun mnoZiny D) as

D,=D—-z={y—=z:yeD}



Chapter 2

Differentiability of a function

2.1 On the real line

Definition 2.1 Let D C R, z € int (D) and f : D — R. We say, f is differentiable at x (cz. diferen-
covatelnd v bodé x) if there is f' () € R such that for all y € D we have

fW=f@+f (@ @W-2)+ly—Ri(y—afa)), (2.1)
where Ry (v f,x) : D, — R and yli_r)nz Ry (y—x; f,x) = 0; for D, see Definition 1.6.
y €D .
Equivalently, f is differentiable at x if and only if limy,_q M = f'(x) eR.

If S C int (D), then we say f is differentiable at S (cz. diferencovatelnd v mnoziné S), if it is
differentiable at each point x € S.

Lemma 2.2 I[fDCR, z €int (D) and f : D — R is differentiable at x then [ is continuous at x.

Continuity of f at x follows immediately (2.1).

Lemma 2.3 Let a,b € R, a < b, f: [a,b] = R be differentiable at (a,b), right-continuous at a and
left-continuous at b. Then,

b
[reds = ro-r@. (2.2)

2.2 Several arguments

Definition 2.4 Let D CR™, z € int (D), f: D - R and h € R™. We say, [ is
differentiable at x in direction h (cz. diferencovatelnd v bodé x ve sméru h) if there is f' (z;h) € R such
that for allt € Dy, we have

F (o th) = @)+ £ (2 h) t+ [t By (8 fo, ). (2.3)
where Ry (+; f,z) : Dgp — R and , li%l Ry (t; f,x,h) = 0; for D, see Definition 1.5.
—
te€Dgn

Equivalently, f is differentiable at x in direction h if and only if lim;_,q w = f'(z;h) €R.
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Definition 2.5 Let D C R™, x € int (D), f : D = R and i € {1,2,...,n}. We say, f possesses a
partial derivative at x w.r.t. x; (cz. parcidlnd derivace v bodé x vzhledem k x;) if f is differentiable at
in direction e;., and we denote

@) = o).

If f possesses a partial derivative at x w.r.t. x; for alli € {1,2,...,n} we say f possesses a gradient at x
(cz. gradient v bodé x) and we denote

viw = (L)

i=1

In the text, we are using differentiability of a function convenient for optimization, see e.g. [1], [5].
We will introduce necessary terminology and basic properties of differentiable functions.

Definition 2.6 Let D C R"*, z € int (D) and f : D — R. We say, f is differentiable at x (or, possesses
total differential at x, is Fréchet differentiable at x) (cz. diferencovatelnd v bodé x) if f possesses a
gradient V f (z) € R"™ and for all y € D we have

f@W=Ff@+(Vf@),y—2)+ly—z|Ri(y—=zfz)), (2.4)
where Ry (; f,z) : Dy — R and Jim Ry (y — a3 f,x) = 0.
yeD

If S C int (D), then we say f is differentiable at S (cz. diferencovatelnd v mnoziné S), if it is
differentiable at each point x € S.

Definition 2.7 Let D C R", x € int (D) and f : D — R.

We say, f is continuously differentiable at x (cz. spojité diferencovatelnd v bode x), if there is § > 0
such that U (x,0) C D, f is differentiable at U (z,6) and gradient V f is continuous at x.

We say, [ is continuously differentiable at a neighborhood of x (cz. spojité diferencovatelnd v okoli
bodu x), if there is § > 0 such that U (x,0) C D, f is differentiable at U (x,5) and gradient V f is
continuous at U (x,9).

Gradient is necessary for expansion (2.4).

Lemma 2.8 Let D C R™, z € int (D) and f: D — R. Let f fulfill an ezpansion for all y € D

FW)=r@)+(&y—x)+lly—=lely—=), (2.5)
where £ € R", ¢ : D, — R and lim o(y —z) = 0.
veD

Then f is differentiable at ©, € = Vf(x), ¢ = Ry (:; f,z) and f'(x;h) = (Vf(x),h) for all
directions h € R™.

Proof: Using (2.5) for a direction h € R™ and ¢ € R small enough, we have
[ (@ +th) = f(x) + (& th) + [[th]| o (th).
Consider derivative ratio and let t — 0:
o f Gt th) — f ()
t—0 t
Setting h = e;.,,, we receive §; = % (z).
We have verified ¢ is the gradient of f at =, f is differentiable at x, ¢ = R; (-; f,x) and directional
derivatives possess announced form.

= (&) + Il im Moen) = (&)



Lemma 2.9 Let D CR", z € int (D) and f: D — R.
If f is differentiable at x then f is continuous at x.

Continuity of f at x follows immediately (2.4).

There are nice consequences for restrictions to lines.

Lemma 2.10 Let DCR™", x € D, he R" and f: D - R.

(i) Ift € R, z+th € int (D) and f is differentiable at x+th then directional derivative f' (x + th; h)
exists and fg 5 is differentiable at t with

fon @)= f'(x+th;h) = (Vf(z+th),h). (2.6)

(ii) Let a,8 € R, a < 8 and x + th € int (D) for allt € (o, B). If f is differentiable at x + th for
all t € (o, B), fo,n is right-continuous at o and left-continuous at 5 then

B8
f@+Bh) — f(atah) = fon(B)— fon(a)= / f (1) dt (2.7)

/5<Vf(x+th),h>dt.

(i) follows Lemma 2.8 and (ii) is a consequence of Lemma 2.3.

2.3 Vector valued functions
Start with a curve.

Definition 2.11 Let D C R, ¢t € int (D) and f: D — R™. Consider the function expressed as a vector
of functions f = (f1, fa,.. .,fm)T. We say,

o f s differentiable at t if f; is differentiable att for each j € {1,2,...,m}. We denote the derivative
by f (1) = (L (0), S5 (0) o, S ()
e IfS Cint(D), f is differentiable at S if f; is differentiable at S for each j € {1,2,...,m}.

And now a general case. We start with a notion of multidimensional scalar product.

Definition 2.12 Let n,m € N, x € R™ and A € R"*™. We define denotation
<Ayz> = ((A,z),(Agz),. .. (Amz))'.

Using matriz notation, we have <A, x> = A'x.
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Definition 2.13 Let D CR™, n > 2, x € int (D) and f: D — R™. Consider the function expressed as
a vector of functions f = (f1, f2,. .-, fm)T. We say,

o f possesses a gradient at x if f; possesses a gradient at x for each j € {1,2,...,m}. We denote

V(@)= (Vfi(2),Vf(z),....Vfn(2)).
o f is differentiable at = if f; is differentiable at x for each j € {1,2,...,m}.

e IfS Cint(D), f is differentiable at S if f; is differentiable at S for each j € {1,2,...,m}.

Lemma 2.14 Let D C R*, z € int (D) and f: D — R. Then, f is differentiable at x if and only if f
possesses a gradient V f (x) € R™*™ and for all y € D we have

f=f@+<Vf@),y—az>+|y—aRi(y—af ), (2.8)
where Ry (v f,x) : D, — R™ and yh_I}lx Ri(y—uxz; f,x) =0.
y €D

The expression becomes more simple for a curve. Let D C R, ¢t € int (D) and f : D — R™. Then, f
is differentiable at t if and only if f possesses a derivative f' (t) € R™ and for all s € D we have

f&)=f)+(s=t)f" () +|s —t|Ri (s = t; f,1), (2.9)
where Ry (- f,t) : D; — R™ and sliglt Ri(s—t; f,t) =
seD

It is a straightforward rewriting of definition.

2.4 Chain rule
Differentiability directly implies chain rule (cz. retizkové pravidlo).

Lemma 2.15 Let I CR, int (I) #0, DCR™, int (D) #0,g: I - D, f: D= R andt € int (I) such
that g(t) € int (D). If f is differentiable at g(t) and g is differentiable at t, then f o g is differentiable at
t and

ox;
i=1 v

(fog)(t) = (g()gi () =(Vf(g(t).g (#)). (2.10)

Take s € I, s # t. Accordingly to differentiability of f at g(¢) and differentiability of g at ¢,
we have

f(g(s)) = f(9(t))
= (Vf(g®),g9(s) —g(t)) + llg(s) — g(®)[| Ra (9(s) — g(t); f, 9(¢))
= (Vfg®),(s=1)g (t) +|s =t Ra (s — t;9,1))
+l(s =) g (1) +[s — t] Ba (s — t:9,1) [ Ra (g(s) — 9(t); f,9(2))
= (s=0(VSg®),g" ®)+ s =t(Vf(g(t), Ra(s —t;g,1))

s H|j§|g () + Ry (s — t;g,wH Ry (9(s) — 9(0): £, g(0)
s (VI (g (6)g () + st B (s — t: fogt),



Petr Lachout * February 26, 2017:994 11

where

Ri(w;fog,t) = (Vf(g(),Ri(w;g,t))
+g' () + i (wi g, )| Ba (gt +w) = g(8); f,9())
if we Ii,w>0,
= (Vf(g@),Ri(w;g,t))
Hl=g" () + B (wi g, )| Ra (g(t +w) = 9(1); £, 9(1))
ifwe I;,w <0,
= 0ifw=0.

Thus, f o g is differentiable at ¢ and (2.10) is shown.

Q.E.D.

2.5 Second derivative

Also, second derivative will be employed.

Definition 2.16 Let D C R™, z € int (D) and f: D — R. We say, [ possesses
second partial derivatives at x (cz. md druhé parcidlni derivace v x), if f possesses a gradient on a

neighborhood of x and all partial derivatives of gradient at x exists; i.e. a%j (gj) (x) exists for all

indezes i,j € {1,2,...,n}.

Then, we denote % (x) = % (%) (x) for all 4,5 € {1,2,...,n}. Matriz of second partial
0z y P

n,n

derivatives is denoted by V2 f (z) = (85-28];- (x)) and called Hessian matriz.
i0%; i=1,5=1

Definition 2.17 Let D C R", z € int (D) and f : D — R. We say, f is twice differentiable at x

(or, possessing Second Peano Derivative) (cz. dvakrdt diferencovatelnd v x), if there is a gradient

Vf(z) € R" and a symmetric matriz Hy (x) € R™*™ such that for all y € D we have

FW) = F@ (V@) —)+ 5y —a Hy (@) (s~ ) (211)
+ly — al* Ry (y — 3 f, ),

where Ry (+; f,x) : D, — R and ylgllw Ry (y — x; f,x) = 0.
yeDb
IfS C int (D), then we say, f is twice differentiable at S (cz. dvakrdt diferencovatelnd v mnoziné S),
if it is twice differentiable at each x € S.

Matrix Hy (x) can differ from Hessian matrix. The reasons are
e V f does not exist in any neighborhood of =z,
e V[ exists in a neighborhood of  and V2 f (z) does not exist.

e Vf exists in a neighborhood of x, V2f () exist, but, asymmetric.

Lemma 2.18 Let D C R", € int (D) and f : D — R. If f is twice differentiable at x then matric
Hy (x) is uniquely determined.



12 *
Assume two symmetric matrices A, B such that for all y € D we have

Fly) = F@+(Vi@).y—2)+5{y—zAly—2))+lly -2l ply - 2),

fly) = Fl@)+(Vf@@),y—z)+

NI ORI

(y—2,Bly—2))+ |y — =l x(y — @),

where p: D, = R, x : D, = R with ylignx ply—xz) =0, ylignxx(y —2) = 0. Then,
yeb y €D

(y—2,(A=B)(y—2)) + lly —2l* (poly — 2) — x(y —2)).

N |

Fix h € R™. Hence, x + ah € D for o > 0 sufficiently small, since « € int (D). Then,

0 = 5{ah,(4—Blah) + k] (p(ah) - x(ah)
After multiplication with %, we receive
0 = (h(A=B)h)+2|hl* (p(ah) - x(ah)).
Letting o vanish we receive
0 = (h,(A—B)h) forall heR™

That indicates A = B, because A — B is symmetric.

Lemma 2.19 Let D C R", z € int (D) and f : D — R. If f is differentiable at a neighborhood of x
and V f is differentiable at x, then, V2 f (z) exists and f is twice differentiable at x with

Hy@) = 3V27@)+5 (V@)

If, moreover, Hessian matriz is symmetric, i.e. af_zafxv (x) = 65_25;_ () for alli,j € {1,2,...,n}, then
0 30w;
Hp(z) = V?f(z).

According to our assumptions, there is § > 0 such that U (z,d) C D and for all y € U (z, ),
heR", ||hl| <6 — |y — x| we have

fly+h)=fy)=(Vf),h)+IhllR(h;fy),
Vi) —Vf@) =<(Vf(@) y—ae>+|y—z|Ri(y—a;Vfa).

According to Lemma 2.10

f(a:+h)—f(x):/0 (Vf(x+th),h) dt.



Using expansion of gradient, we are receiving
1
flath)= @) =(V@).h) = [ (Tfasth)=Vf@).h) e
1
:/ (<(V2F @) " th >+ |th]| By (th: ¥ f,2) B ) e
0

1 ) T 1 .
:/0 H{<(V27 (@) ,h>,h>dt+/0 4] (11| Ry (th: V £,2) , ) dit

=5 (@) ) i? [ (R v ) o

=3 {ma (Pr@ s @r@) ) e [0 (m 0. g ) o

where
1

lim [t| ( Ry (th;Vf,x), N dt =0 since lim Ry (s;Vf,z)=0.
h—0 J, Hh” 5—0

We have proved f is twice differentiable at = with Hj (z) = 1 (VQf (x) + (V2f (x))T)

Lemma 2.20 Let D C R", z € int (D), f: D - R, and h € R™.
(i) If f is twice differentiable at x, then

i L) @) (V@) b
t—0 12

(h, Hy (z)h) . (2.12)

N |

(ii) If f is differentiable at a neighborhood of x and V f is differentiable at z, then, V2f (z) exists
and restriction f; n possesses derivatives

f;,h (t) = (Vf(xz+th),h) forallt small enough, (2.13)
fin () = (h,V?f(x)h). (2.14)

1. (i) follows (2.11), since for ¢ # 0
fletth) - f(z) —t(Vf(z) h)
t2
2. (ii) follows Lemma 2.19 and (2.4), (2.8), since for s # 0
Jon (t+5) = for () _ flz+({E+s)h) - f(z+th)

S S
(Vf(x+th),h)+||h|| Ry (sh; f,z +th),

2 (8) = fon(0)_ (Vf(z+sh),h)—(Vf(z),h)
(h,V2f (@) ) + ||l Ry (sh; V f, ).

(h,Hy (@) h) + |l Ry (th; f ).

N~
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2.6 Arguments for differentiability

Existence and continuity of gradient, resp. of Hessian, are sufficient conditions for differentiability in
the sense of Definitions 2.6 and 2.17.

Lemma 2.21 Let I CR, int(I) #0, DCR", int(D)#0,g: I =D, f: D—R andt € int(I) such
that g(t) € int (D). If gradient of f exists on a neighborhood of g(t) and is continuous at g(t) and g is
differentiable at t, then f o g is differentiable at t with

(fog)(t) = Z oz, (9@®)g; () =(Vf(g®),g" (1)) (2.15)
For s,tel, s#t,i€{1,2,...,n}, u €[0,1], we denote
f(u’svt7i> = (gl(t>7'-'>gifl(t)7gi(t)+u(9i(8)_gi(t))agiJrl<S>7'-'>gn(s))'
Then,
ng(S) —ng(t) = Z[f (S(sttai)) _f(g(()vs’t’i))]
= Y 1 of u, S, t,1 i (s) — gs U
= 3 gy 608 50 5) 0 )

Divide formula by s — ¢ and let s — ¢.
We receive formula (2.15), since gradient of f is continuous at g (¢).

Using Lemma 2.21, we derive differentiability of a function.

Lemma 2.22 Let D C R”, z € int (D) and f : D — R. If gradient of f exists on a neighborhood of
g(t) and is continuous at x, then f is differentiable at x with

f@+h)=f(x)+(Vf(x),h)+I[hl R (h;f ), (2.16)
|Ry (hs fo2) | < Vnmax {|[Vf (z+x) = V[ (2)[| - x € R™, [[x[| < [|Al]}
if h € R™ is sufficiently small.
For h e R i€ {1,2,...,n}, u € [0,1], we denote
E(u,z,hyi) = (21, @1, @ + whi, g1 + higr, o T + By, )

For h € R™ sufficiently small, we receive an expansion

n

DI (€@, by i) — £ (£(0, 2, b, 1))

=1

n 1 8
- Zhi/o 33{ (6(u, @, h, 1)) du
i=1 g
of

(V@b [ g i) - 3 @ d

(Vf (@), h) + [l By (s f, ),
Ry (h; f,2)| < Vomax{|[Vf(z+x) = Vf (@I : x €R" x| < [All}.

fle+h) = f(x)




Lemma 2.23 Let D C R™, z € int (D) and f : D — R. Then, f is continuously differentiable at a
neighborhood of x if and only if there is § > 0 such that V f exists on U (x,0) and is continuous at
U (z,9).

A consequence of Lemma 2.22.

Lemma 2.24 Let D C R", x € int (D) and f : D — R. If Vf, V2f exist on a neighborhood of x and
V2f is continuous at x, then Hessian V2 f (x) is a symmetric matriz and f is twice differentiable at x
with

F @)+ (VS @) h) 5 (P @) h) + B2 R (s o), (217)

gmax{uwf(x +x) = V(@) x €R™ |Ixll < [I2)I}

flx+h)

IN

if h € R™ is sufficiently small. Moreover, H (z) = V*f (z).

1. Symmetry of Hessian

Take two coordinates 4,5 € {1,2,...,n}, i # j and for «, 8 € R consider:

f(z+aein + Bejn) — f (2 + aein) — f(z+ Bejn) + f(2)

1 5
— [3/0 832 (x + aejn + ufejr,) — &Tf] (z + ufejn) du

1 1 82f
— aﬂ/o (/0 O0x;0x; (2 + vaein + ubejn) dv> du.

Since second partial derivatives are continuous at x, we observe

hm f (LC + ;. + 5ej:n) - f ((E + aei:n) - f ({I? + Bej:n) + f (LU) _ 1 82f T
g —>8 Ozﬂ N 2 83:]6331 '

By definitions of partial derivatives we have

f (:L' + agjp + ﬁej:n) - f (x + aei:n) - f (ﬂf + ﬂej:n) + f (:E) _ 1 a2f

5% af = 202,01
) . _ . _ . 2

lim lim f ({I? +aein + Bejin) f (iE + aez:n) f (LC + Bej:n) + f (l') _ 1 1o} f (x) .

A=00=0 af 2 92,0z,

. 92 9
Finally, a:ciaj;j (z) = axjgx,; (z).
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2. For he R", i e€{1,2,...,n}, u €]0,1], we denote
f(u,x,h,i) = (xl,...,xi_l,xi—i-uhi,xiﬂ+hi+1,...,xn+hn,).

For h € R™ sufficiently small, we receive an expansion

n

fla+n)—f(z) = Z[f(f(l,m,z'))—f(f(o,x,h,z‘m

i=1

= Zh ; 6351 (&(u,x,h, 1)) du

= i@+ [ L i) - 2L @) o

= (VI3 gf (6. h0) = 52 (€00, )
+Zh (Z / o k))fgaf (0,2, h, k)) du>
=1 k=i+1 v g

1 2
= <Vf(x)7h>+2h?/ u ; 855; (&(uv, x, h,i)) dvdu

+Zh (Z hk/ i 8%8% (&(v,z,h, k)) dvdu)

=1 k=i+1

= (V7 @)k} + 5 (VT @) h)

Lo ey 2°f
2 D) —
+Zhi /0 u G0, (&(uv, z, h, 1)) 95,07, (z) dvdu

n n 1 1 82f an
v 2 M / Dwd SO E) = oy (@) dudu

= (VF (@) h) + 5 (b V2F @) h) + [ Ra (h: Foa),

where

By (hifo2)| < S max {[[V2f (@) = V2F @)]] : x € B [l < 0]}

Hence, function f is twice differentiable, because Hessian is continuous at x.



Chapter 3

Convex functions

3.1 Definition of a convex function

Definition 3.1 A function f: R™ — R* is convex (cz. konvexni), if epi (f) is a convex set.
Convexity of a function can be equivalently explained.

Lemma 3.2 If a function f: R™ — R* is convex, then Dom (f) is a convex set.

Let z,y € Dom (f) and 0 < A < 1.
Then, there is 1, £ € R such that f(z) <nand f(y) <¢&.

Hence, ( i ),( Zg ) € epi(f).
Since epi (f) is convex, (Az + (1 — Ny, An+ (1 — X)¢) € epi (f).

Hence, f (Az + (1= A)y) < An+ (1 —A)§ < +oo.
Therefore, Az + (1 — A)y € Dom (f) and convexity of Dom (f) is shown.

Theorem 3.3: Function f : R™ — R* is convez if and only if Dom (f) is a convexr set and for all
x,y € Dom (f) and 0 < A < 1 we have

Sz + 1 =Ny) <Af(2)+ 1 -Af(y). (3.1)

1. Let f is convex.
Then accordingly to Lemma 3.2, Dom (f) is a convex set.
Let z,y € Dom (f) and 0 < A < 1.
Then for all n,£ € R fulfilling f (z) <nand f (y) <&,

onehas(i),(zg)eepi(f).

epi (f) is convex, then, (Az + (1 — Ay, An + (1 — X)) € epi (f).
Hence, f (Az+ (1 = N)y) < An—+ (1 — A€ < +o0.

Minimum over all possible 7, £ is giving (3.1).

17
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2. Let property (3.1) be fulfilled.

Take ( ) ( ) €epi(f) and 0 < A < 1. Then,

A+ (=N Af(2) + (1 =Nf(y) = f Az + (1= A)y).
Hence, (Az + (1 = Ny, An+ (1 — X)&) € epi(f).

We found epi (f) is a convex set, therefore, f is a convex function.

Theorem 3.3 shows, that new definition 3.1 coincides with classical definition of a convex function,
if function is proper and a restriction f : Dom (f) — R is considered.
A convex function attaining value —oo is degenerated.

Lemma 3.4 Let f : R® — R* be a convex function. Then, either f(x) € R for all x € Dom (f) or
f(x) = —o0 for all € rint (Dom (f)).

Let € Dom (f) and f (z) = —o0.
If y € rint (Dom (f)), then there is z € Dom (f) and 0 < A <1 such that y = Az + (1 — \)z.
Using property (3.1), we receive

f) = FQz+(1=X)2) <Af(z)+ (1= A)f(2) = —oc.

Theorem 3.5: If function f: R™ — R* is convex and proper, then it is continuous on rint (Dom (f)).

Without any loss of generality we can assume, int (Dom (f)) # (). Otherwise, we will consider
the problem in coordinate system of the smallest lineal containing Dom (f).

Let x € int (Dom (f)).

Then, there is A > 0 such that « + Ae;.,,, z — Ae;.,, € Dom (f) for all
i€{1,2,...,n}.

Dom (f) is convex, therefore,

M = conv ({x + Aejp,x — Aeyy, 1€ {1,2,...,n}}) C Dom (f).

Each point y € M can be written as

n

y o= D Ar(@tlenn) + Y N (x— Aeyn),

=1 i=1

where zn:)\i7+ + z":)%_ =1, M4+2>0,A_>0

i=1 i=1
Hence for y € M we receive a bound
Fl) < DY Nipf@+Dein)+ Y N f(z—Aeiy) <E < +00,

=1

where Z:=max{f (x + Aepp), f(z— Aeyy) 1 i € {1,2,...,n}}.



Point y € M can be also represented as y = x + ds, where Y, |s;/ =Aand 0 < < 1.
Then,

fly) = fla+ds)=f((1-0d)z+d(x+s) <(1—-6)f(z)+df (x+s)
< (1-6)f(z)+ 05,
f(z) = f<1i6(z+55)+1j_6(1’s))

< Lf(:L'Jrés)Jr%f(x—s)

149 1
S )T
= 1+ W s

Finally, we are receiving
(1+0)f (z) —0E< f(y) <(1=0)f () +6=.

Thus, f is continuous at each x € int (Dom (f)).

Continuity of a convex function at boundary of its domain is not an easy task. A necessary condition
is valid for a general proper function.

Theorem 3.6: Let a function f: R™ — R* be proper and continuous on Dom (f). Then,

epi (f) = clo(epi (f)) N (Dom (f) x R). (3-2)

Let 2 € Dom (f) and ( i ) € clo (epi (£)).

Then, there is a sequence (zx,n) € epi (f) converging to ( i >

Hence, we have f (zy) < ny.
Function is continuous on Dom (f), after a limit passage we receive f (z) < 7.

Thus, we have shown < Z > € epi(f).

Theorem possesses a nice consequence.

Let f : R™ — R* be a proper function continuous on Dom (f) and Dom (f) be a closed
set. Then, epi(f) is also a closed set.

Statement is a direct consequence of Theorem 3.6, since Dom (f) is a closed set, and hence,

epi (f) = clo(epi (f)) N (Dom (f) x R) is a closed set.

Theorem 3.7: Let I be a nonempty index set and a convex function f; : R™ — R* is given for all

i€ 1. Then sup f; : R™ — R* is also convex.
iel
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Proof: According to Lemma 1.4 we have epi (sup fz) = () epi (fi).
iel icl

Intersection of convex sets is a convex set, thus, sup f; is a convex function and a proof is done.
icl

Q.E.D.

Definition 3.8 Let f : R™ — R* be a function. We define (lower) level sets of [ (cz.  (dolni)
droviiové mnoziny) leveaf = {x €D : f(z) <A}, leveaf = {z €D : f(z) <A} for all A € R,
and, (upper) level sets of f (cz. (horni) droviiové mnozZiny) levsaf = {x € D : f(x) > A}, levaaf =
{reD: f(z)> A} for all A € R.

Theorem 3.9: If f : R” — R* is a convex function, then lev<, f, levo f are convex sets for all a € R.

Proof: It is sufficient to verify lev., f is convex, since lev<, f = ﬂﬁ>a levgf.
Take y,z € leveo f and 0 < A < 1. Then, y, z € Dom (f) and we have

fQy+ 1 =X22) <A W)+ A -Nf(2) <a.
It means Ay + (1 — M)z € leveo f. Thus, leve, f is a convex set.

Q.E.D.

As a consequence of Theorem 3.9, we are receiving that the set of all feasible solutions (cz. mnozina
pripustnych Feseni) of a convex program is convex, i.e.

{.’ﬂ eER" : gl(‘x) < alaQQ(w) < a?»"'agk(w) < ak}

is a convex set, having functions ¢1, 9o, ..., gr convex.
Convexity of level sets {z : f(z) < a}, {z : f(x) < a} is not implying convexity of the function f.

Example 3.10: Function

f(x) = log(x) if x>0,

= +oo otherwise

is not convex, but, its level sets {z : f(z) < a} = (0,e%], {z : f(z) < a} = (0,e*) are convex for all
aeR.

Definition 3.11 We say, function f: R" — R* is

1) strictly convex (cz. ryze konvexni), if Dom (f) is a nonempty convex set and for all couple of
points x,y € Dom (f), x vy and 0 < X\ < 1 we have inequality

FOr+A=Ny) < Af(@)+0=-2f(y).

1) concave (cz. konkdvni), if the function —f is convexz.



i) strictly concave, (cz. ryze konkdvni), if the function —f is strictly convexz.

Concave function can be equivalently defined as a function with convex hypograph.
Consider, strictly convex function is always proper.

Lemma 3.12 If f : R™ — R* is a strictly convez function with Dom (f) containing two different points
then f is proper.

Assume x € Dom (f) with f (z) = —oc.
There is y € Dom (f), y # x.
Then, for all a € (0,1) we have f (az+ (1 —a)y) < af () + (1 —a)f (y) = —oc0.
That is impossible.
Therefore, f must be proper.

Convex functions are very important at optimization theory, since its local minima are immediately
global minima.

Theorem 3.13: Let f : R™ — R* be a proper convex function. Then, each local minimum of f on
Dom (f) is a global minimum of f on Dom (f).
The set of all global minimizers f on Dom (f) is convex.

Let & € Dom (f) be a local minimum of f on Dom (f), but, it is not a global minimum.
Then, there is y € Dom (f) such that f (y) < f ().
Then, for all « € (0,1) we have f(aZ + (1 —a)y) < af(@)+ (1 —a)f (y) < f(2).
That is a contradiction, since & is a local minimum of f on Dom (f).
Hence, Z is a global minimum of f on Dom (f).
Denote A =inf {f (y) : y € R™}. The set of all global minimizers f on Dom (f).

{r €eDom(f): f(z)=A} = {zeR": f(x) <A}

is convex, according to Theorem 3.9.

Theorem 3.14: Let f: R™ — R* be a strictly convezx function with Dom (f) containing two different
points. If there is a local minimum of f on Dom (f), then, it is uniquely determined and it is the unique
global minimum of f on Dom (f).

According to Theorem 3.13, each local minimum of f on Dom (f) is also its global minimum.
It is sufficient to show uniqueness of global minimum of f on Dom (f).
Take & a global minimum of f on Dom (f) and y € Dom (f), y # &. Applying strict convexity of f, we
receive

1.1 1.1
f<2$+2y) < §f(33)+§f(y)-

Hence,

F 21 (3a+p) = 1) 220 @)~ 1) = 1 @),

We have shown & is unique global minimum of f on Dom (f).
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3.2 Basic properties of convex functions

Let us recapitulate basic properties of convex functions.

3.2.1 Convex functions of one variable

This section sums up basic properties of convex functions of one variable. Presented results are listed
without proofs. Interested readers can consult basic textbooks on mathematical analysis and on prob-
ability theory.

We will consider a function f : J — R defined on a convex set J C R (Recall simple structure of
convex sets on real line. They are either empty set or a point or an interval.) Consider smoothness of
convex functions.

Theorem 3.15: Let J C R be an interval and f: J — R be a convex function.

1) Function f is continuous on int (J) and it can jump in extremal points of J. Jumps must keep
bounds: f (a) > f(a+) if a is a left extremal point of J, f(a) > f(a—) if a is a right extremal
point of J.

1) Derivative from left and from right exist at each point t € int (J); i.e.

fE+h) = f(@)

£ = i SRR
@ = hll%twﬁ&

We have f’ (t) < fi (t) < fL(s) < f) (s), whenever t,s € int (J), t < s.

wi) [’ exists on J except at most countably many point.

iv) f" exists on J except a set of Lebesgue measure zero.

v) f fulfills an inequality f (Zle pﬂ:,-) < Zle pif (x;) for all x1,29,...,2x € J, p1 >0, p2 >0,
s Pk 20, Zlepi =L

vi) f fulfills Jensen’s inequality, i.e. f(E[X]) < E[f(X)] for each real random variable X with a
finite mean and with P (X € J) = 1.

Recall, v) is a particular case of vi) . To see that, consider a random variable X attaining values
1, T3, ..., 2T with probabilities p1, pa, ..., pk.
Now, we recall some basic criteria indicating convex functions.

Theorem 3.16: Let J C R be an open interval and f: J — R be a function, then we have:

o Function f is convex <& fi exists nondecreasing on J &

< f' ewists nondecreasing on J.

o If f is differentiable on J, then

f is convex < f' is nondecreasing on J.

o If f possesses second derivative on J, then

f is convex & " >0 onJ.



3.2.2 Convex function of several variables

This section sums up basic properties of convex functions of several variables. Presented results are
listed without proofs. Interested readers can consult basic textbooks on mathematical analysis, linear
algebra and probability theory.

Consider a function f: D — R defined on a convex set D C R".

Lemma 3.17 Let D C R®, D # () be a convex set, f1: D =R, fo: D—=R, ..., fr: D — R be convex
functions, a; >0, as >0, ..., ax > 0. Then, Zf:l a; fi : D = R is a convex function.

A proof is straightforward.

Theorem 3.18 (Jensen’s inequality): Let D C R™ be a nonempty convex set and f : D — R be a convex
function. If a real random vector X = (X1, Xo, ... ,Xk)—r possesses finite mean and P (X € D) =1 then
we have E[X] € D and f(E[X]) < E[f (X)].

A proof can be found for example in [2], Theorem 5.9, p.26.

A consequence of Theorem 3.18 is a generalization of inequality (3.1) (“deterministic Jensen’s in-
equality”).

Theorem 3.19: Let D C R™, D # () be a convex set and f : D — R be a convex function. Then, an
inequality

k
f (ZPN&) < szf(l’v) (3.3)

holds for all x1,z9,...,2, €D, p1 >0, p2 >0, ..., pr >0, Zlep,» =1.

The statement is a particular case of Theorem 3.18. To see that, consider a random variable
X attaining values 1, s, ...,z with probabilities p1, po, ..., pk.

Convexity of a function can be verified by means of restrictions to lines.

Theorem 3.20: Let D C R™, D # 0 be a convex set and f: D — R. Then, function f is convex if and
only if restriction fy s : Dy s — R is convez for all z € D, s € R".

1. Take x € D and s € R™.
For t1,t2 € Dy s and 0 < A < 1 we have

x4+ M1+ (1= Nta)s = Az +t18) + (1 — A)(z + t2s) € D,

since x + t1s,x + tos € D and D is a convex set.

We have proved D, s is a convex subset of R, therefore, it is an interval.
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2. Let f be a convex function and = € D, s € R™.

For t1,t2 € Dy s and 0 < XA < 1 we have

fo,s M1+ (1= Nita) =
=f(z+ M1+ (1 —=Nt2)s) = f (AMz+t18) + (1 — N)(z + t2s))
SA(@+tis) + (L= A)f(z+tas) = Moy (1) + (1= A) fas (t2) -

We have verified f, s is a convex function on an interval D ;.

3. Let function f; s be convex on D, s for all x € D and s € R".

Take z,y € D, 0 < A < 1 and set s = x — y. Then, we have

FOz+ (1 =Ny)=f(y+As) = fys(A)
SAfys (D) + (1 =N fys (0) = Af (z) + (1 =N f(y)-

We have verified f is a convex function.

This property enables us generalize criteria for convex function identification. Properties of the first
and the second derivative of restrictions to lines were prepared in Lemmas 2.10, 2.20.

Theorem 3.21: Let D C R™, D # () be a convex open set and f : D — R be differentiable at D. Then,

t€Dys— (Vf(x+ts),s) is nondecreasing on Dy g

forallz € D, s € R™. (3.4)

f is conver <

According to Theorem 3.20 we have to verify convexity of all restrictions to lines.
Take z € D, s € R” and consider function f ;.
Function f is differentiable at D, therefore according to Lemma 2.10, we have

fos®)=(Vf(x+ts),s).
Hence, according to Theorem 3.16
fosisconvex & te€Dgys— (Vf(rxr+ts),s) isa nondecreasing function.

The statement is proved.

Theorem 3.22: Let D C R™, D # () be a convexr open set and f : D — R. If f is differentiable at D
and V f is differentiable at D, then, V2 f exists on D, f is twice differentiable at D with

H@) = 39f(@)+5 (V3 (@)
and

[ is convex &  Hy (x) is positively semidefinite for all z € D. (3.5)



According to Theorem 3.20 we have to verify convexity of all restrictions to lines.
Take z € D, s € R” and consider function f .
According to Lemma 2.20, we have

f;l,s (t) = Z Z 82858] ($ + tS) (,’E + fS)SiSj = STVQf (:)3 4+ ts) S.

Hence,

frsisconvex <= VteD,, wehaves V2f(z+ts)s>0
< VteD,, wehaves' Hy(x+1ts) s> 0.

Finally, function f is convex if and only if Hy (x) is positively semidefinite for all 2 € D.

Let us recall notion of positively semidefinite matrix and its equivalent definitions.
Lemma 3.23 For a symmetric matrix A € R"*™ the following is equivalent:
o A is positively semidefinite.

e For all z € R™ we have x T Az > 0.

All eigenvalues of matrix A are nonnegative.

Determinants of all principle minors of matriz A are nonnegative, i.e.

VIc{1,2,....,n}, I#0 wehave det(A;;,i,j¢€l)>0.

There are a reqular matriz Q@ and a diagonal matrixz A with nonnegative members on diagonal such

that A = QT AQ.
Lemma 3.24 For a symmetric matriz A € R™*" the following is equivalent:
e A is positively definite.
e Forallx € R, x # 0 we have 2" Ax > 0.

o All eigenvalues of matrix A are positive.

Determinants of all corner principle minors of matriz A are positive, i.e.

Vke{l,2,...,n} wehave det(A;;, i,j¢€{1,2,...,k})>0.

e There are a reqular matriz QQ and a diagonal matriz A with positive members on diagonal such

that A = QTAQ.

Let us recall expression of form A = QTAQ means transformation of a quadratic form to its polar
base. For that there is an effective algorithm known as Gauss-Jordan elimination. In fact, it is Gauss
elimination applied to rows and columns at ones, i.e. each elementary transformation applied to rows
must be applied to columns, too.

Let us recall smoothness of convex functions.
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Theorem 3.25: Let D C R, D # () be a convex set and f : D — R be a convex function. Then, f is
continuous on rint (D).

Proof: Theorem is a reformulation of Theorem 3.5.

Q.E.D.

Theorem 3.26: Let D C R™, D # 0 be an open convex set and f : D — R be a function. If f is
differentiable at D, then

f is convex <= VYV x,y € D we have f (x) — f(y) >(Vf(y),z—y). (3.6)
Proof:
1. Let f be convex.

Take z,y € D and denote h =z — y.

According to Lemma 2.10, f, 5 is a differentiable convex function on Dy . Then, its derivative
fon () = (Vf(y+uph),h) is nondecreasing.

According to “Theorem on mean value” there is § € (0,1) such that
fE)=f@) = fun@) = fun(0) =1, (0)
= fyn(0)=(VI(),h)=(V y),z—y),

since derivative of a convex differentiable function is nondecreasing.

2. Let Va,y € D we have f (z) — f(y) > (V[ (y),x —y)
Take v,w € D, A€ (0,1) and denote z = Av + (1 — N)w.

According to assumption we have:

Hence,
Af)+ A =Nf(w) = f2)+(Vf(2),AMv—2)+1-N(w-2))
fGE)=FfOv+1-=Nw).
According to Theorem 3.3, f is convex.

Q.E.D.

This property is generalized by notion of subgradient.

Definition 3.27 Let D C R", D # () be a set, f: D — R be a function, x € D and a € R". We say, a
is a subgradient of [ at x € D (cz. subgradient), if we have

fly)—f(x)>(a,y—x) forally e D. (3.7

Set of all subgradients of f at x will be called subdiferential of [ at x (cz. subdiferencidl) and will be
denoted by Of (x).




Using subdiferential we can equivalently rewrite definition of global minimum.

Theorem 3.28: Let D C R™, z* € D and f: D — R be a function. Then, x* is a global minimum of
f on D if and only if 0 € Of (x*).

Statement is a trivial consequence of subgradient definition, since

0c0f(z*) <= VazeDf(z)>f(z").

The rewriting can be understand as a generalization of methodology to determine local minima seeking
for zero derivative. Unfortunately, it is a rewriting having no practical importance. Nothing new is
received by this idea.

Subgradient and subdiferencial are helpful tools for describing convex functions.

Theorem 3.29: Let D C R™ be a nonempty convex set and f : D — R be a convex function. Then,
Af (z) # 0 for each x € rint (D).

Without any loss of generality we can assume int (D) # 0.
Take z € int (D).
Then, (x, f(x)) € O (epi(f)) and there is a supporting hyperplane determined by proper o € R™ and

B € R such that ( g ) # 0 and for all (y,7n) € epi(f) we have

(oyy) +Bn 2 (a,z)+ Bf(z).
Number 7 can be arbitrary large, therefore, 5 > 0.

1) Assume 8 = 0.
Since z € int (D), there is § > 0 such that U5 (x) C D.
Therefore, for all y € Us (x) we have (o, y) > (a, ).

Then a = 0.
Hence, ( g ) = 0 which is a contradiction, because the vector must not be the origin.

2) Assume § > 0.
Consequently, for all (y,7n) € epi(f) we have

<;a7y>+n><;a,x>+f($)~

Therefore, for all y € Dom (f) we have

f<y>f<z>z<;a,xy><;a,yx>.

We have found 8 > 0 and —% a € 9f (x). Theorem is proved.
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Equivalent description of a convex function using non-emptiness of subdiferentials is in power if
function is defined on an open set.

Theorem 3.30: Let D C R™ be an open convex set and f: D — R. Then, f is a convex function if
and only if Of (x) # 0 for each x € D.

1. According to Theorem 3.29, 9f (x) # 0 for each z € D.

2. Assume Of (x) # 0 for each = € D.
Take z,y € Dand 0 < A < 1.
Then z = Ax + (1 — A)y € D, since D is a convex set.
Take a € 0f (z), which exists according to our assumption.

Definition of subgradient is giving

fl@) = f(2) =2 (a2 — 2),
fy) = f(z) =2 (a,y — 2)
Therefore,
AUf(x) = f(2) + A =N)(f(y) = f(z)) 2 Mo,z —2) + (1 = A)(,y — 2).

Hence,

‘We have shown

Af(@) + (1= f(y) = fAz + (1 = Ay).

Thus, f is convex according to Theorem 3.3.

For a continuous function, the characterization is also in power.

Theorem 3.31: Let D C R™ be a convez set and f : D — R be a continuous function. Then, f is a
convex function if and only if Of (x) # 0 for each x € rint (D).

Accordingly to Theorem 3.29, the condition is fulfilled for a convex function. We have to show
the opposite implication, only.

1. Accordingly to Theorem 3.30, f : rint (D) — R is convex.
2. Take xr,y € Dand 0 < A < 1.

Since D is convex, we have D C clo (rint (D)).
Then, there are sequences zy, yx € rint (D) such that z — = and y; — y.
For each k € N, we have

AMf(zr) + (1= A) f(ye) = Az + (1= ANyg).
After limit passage k — +o00 and using continuity of f on D, we receive

Af(@) + (1= f(y) = fAz+ (1= A)y).



We have proved f is convex.

Lemma 3.32 If G C R™ is nonempty open convez set, f: G — R is a convex function andy € G. If f
possesses gradient at y, then Of (y) ={Vf (y)}.

Take n € 0f (y) and i € {1,2,...,n}.
For sufficiently small A > 0, we have y + \ej.,, ¥y — Aej., € G. Therefore using convexity of f, we are
receiving bounds

f (y + /\ei:n) - f (y) > <77a Aei:n> = )\nu
fly—2ein) = fy) > (n,—Aein) = —Ami.
Dividing by A and letting A — 0+, we find
of
> .
8$i (y) — 771?
of
_ > _n
O, (y) = i

Consequently, n = V f (y) for each n € f (y).
That is 9f (y) = {V [ (y)}.

Lemma 3.33 Let G C R™ be a nonempty open convex set, f: G — R be a convex function and y € G.
If 0f (y) is a single-point set, then f is differentiable at y and 0f (y) ={V f (y)}.

Theorem from mathematical analysis.

Previous observations can be summed up in a lemma.

Lemma 3.34 Let G C R" be a nonempty open convez set, f: G — R be a convex function and y € G.
Hence, the following is equivalent:

1. f is differentiable at y and Of (y) = {V f(y)}.
2. 0f (y) is a single-point set.

3. f possesses a gradient at y.
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3.3 Vector valued convex functions

In this section we consider functions defined on a finite dimensional Euclidean space with values in a
Cartesian product of finite number of extended real lines, i.e. f: R™ — (R*)™. We also understand
such a function as a vector of functions f = (f1, f2, ..., fm)T.

Definition 3.35 For a function f: R™ — (R*)™, we define its epigraph (cz. epigraf)
wit) = {(7):r@snoer, gernl, 9)
domain (cz. doména) and weak domain (cz. slabd doména)
Dom(f) = {z: fi(z) <+4oo foralliec{1,2,...,m}, z € R"}, (3.9)
WDom (f) = {z: fi(z) < +oo for somei € {1,2,...,m}, x € R"}. (3.10)

Definition 3.36 A function f : R* — (R*)™ is called monotone (cz. monoténni), if f(z) < f(y)
whenever x < y.

Definition 3.37 A function f : R™ — (R*)™ is convex (cz. konvexni), if WDom (f) = Dom (f) and
epi (f) is a convex set.

Convexity of a function can be equivalently explained.

Lemma 3.38 A function f: R™ — (R*)™ is convez if and only if Dom (f) = Dom (f1) = Dom (f2) =
-+ =Dom (f,,), Dom (f) is a convex set and f; is a convex function for each i € {1,2,...,m}.

Theorem 3.39: A function f: R™ — (R*)™ is convez if and only if Dom (f) = Dom (f1) = Dom (f2) =
-+« =Dom (fm), Dom (f) is a convex set and for all z,y € Dom (f) and 0 < A < 1 we have

fAz+ (1 =Ny) <Af(z) + 1 =X2f(y). (3.11)

Statement is a consequence of Theorem 3.3 and Lemma 3.38.

Composition of functions preserves convexity of functions under some circumstances.

Lemma 3.40 If X C R" is a convex set, h : R™ — R™ is an affine linear function and g : h (X) — R
is a convex function, then, f: X — R: x — g(h(z)) is a convex function.

Assumptions are corectly formulated, since h (X) is a convex set, because X is a convex set
and h : R™ — R™ is an affine linear function.
For z,y € X and X € (0,1) we have

fOQz+(1-=Ny) = ghQz+(1-Ny))
= g(\(z)+ (1 - Nh(y))
< Ag(h(z)+ (1 —=ANg(h(y)

Af () + (1 =N f(y).
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Lemma 3.41 If X C R" is a convex set, h: X — R™ is a convex function and
g : conv (h (X)) = R is a monotone convex function, then, f : X — R : z + g(h(z)) is a convex

function.
Proof: For z,y € X and A € (0,1) we can estimate
fQz+(1=A)y) g(h Az + (1= A)y))
g (M (@) + (1= A)h(y))
Ag (h(z)) + (1 = Ng (h(y))
Af (@) + (=N ] (y).

IN A

Q.E.D.

3.4 Generalization of convex functions
Now, we introduce generalizations of convex functions which are useful for optimization.

Definition 3.42 Let S C D C R", S be an open set, x €S and f: D — R be differentiable at x.

1. We say, f is pseudoconvez at x with respect to S (cz. pseudokonveznd v bodé x vzhledem k' S), if

VyesS, (Vf(z),y—x)>0 implies f(y) > f (z).

2. We say, [ is strictly pseudoconvex at x with respect to S (cz. strikiné pseudokonvexni v bodé x

vzhledem k' S), if

VyeS, y#z, (Vf(x),y—x) >0 implies f (y) > f ().

3. We say, f is pseudoconcave at x with respect to S (cz. pseudokonkdvnd v bodé x vzhledem k' S), if
—f is pseudoconvex at x with respect to S.

4. We say, f is strictly pseudoconcave at x with respect to S (cz. striktné pseudokonkduvni v bodé x
vzhledem k' S), if —f is strictly pseudoconver at x with respect to S.

Definition 3.43 Let S C D C R™, S be a nonempty open set and f: D — R be differentiable at S.

1. We say, f is pseudoconver on S (cz. pseudokonvexni na S), if

Ve,yeS, (Vf(x),y—x) >0 implies f (y) > f(x).

2. We say, f is strictly pseudoconvex on S (cz. strikiné pseudokonvexni na S), if

Ve,y€S, x#£y, (Vf(x),y—x) >0 implies [ (y) > f ().

3. We say, [ is pseudoconcave on S (cz. pseudokonkdvni na S), if —f is pseudoconvex on S.

4. We say, [ is strictly pseudoconcave on' S (cz. strikiné pseudokonkdavni na S), if —f is strictly
pseudoconvez on S.

Definition 3.44 LetSC D CR", S be a convex set, x €S and f: D — R.
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1. We say, f is quasiconvex at x with respect to S (cz. quasikonveznd v bodé x vzhledem k S) if

VyesS, 0 <A<l wehave f(Ax+ (1 —N)y) <max{f(x),f(y)}.

2. We say, [ is quasiconvex on S (cz. quasikonvezni na S), if

Vy,z€S, 0< A <1 wehave f(Ay+ (1 —N)z) <max{f(y),f(2)}.

Lemma 3.45 LetS C D C R", S be a nonempty convex set and f : D — R be quasiconvexr on S. Then,
level sets of f fulfillSNleveaf ={z €S : f(z) <A}, SNleveaf ={z €S : f(x) <A} are convex
for all A € R.

It is sufficient to verify SNlevca f is convex, since SNleven f = ﬂﬂ>A SNlevegf.
Take y,z € SNlevea f and 0 < A < 1. Because f is quasiconvex on S, we have

fQy+ (1 =N)2) <max{f(y),f(2)} <A.
It means Ay + (1 — A)z € SNleveaf. Thus, SNlevea f is a convex set.

Lemma 3.46 Let S C D C R"™, S be a nonempty open convex set and h : D — R be differentiable at S
and pseudoconver on S. Then, h is quasiconver on S.

Take 2,y €S, 0 < A < 1 and denote z = Az + (1 — \)y. Hence, z € S, since S is a convex set.
Assume h (z) > h(x).
Function h is pseudoconvex on S, therefore, (Vh (2),z —z) < 0.

Consider,
x—z = z—Az+(1=Ny)=(1-XN(z—y),
y—z = y— Qe+ (1-Ny) =AMy —=z)=-Az—-y)
Hence,
A
y—z2 = —(1_)\)(1‘—2’),
A
(Vh(z),y—z) = —m<Vh(z),x—z>>0.

Function h is pseudoconvex on S, therefore, h (2) < h (y).
Finally, h (Ax + (1 — A)y) < max {h (z),h (y)} and h is quasiconvex on S.

Lemma 3.47 Let S C D C R", S be a nonempty open convexr set, f : D — R be differentiable at S
and pseudoconver on S. Then, level sets of f fulfill SNleveaf ={x €S : f(z) <A}, SNleveaf =
{zr €S : f(x) <A} are convex for all A € R.

The statement is a direct consequence of Lemma 3.46 and Lemma 3.45.

Function pseudoconvex at a point does not have to be quasiconvex at the point; see an example.

Example 3.48: Consider D = R, S = (—2,1) and f () = —2%. Function f is pseudoconvex at —1
with respect to S, but it is not quasiconvex at —1 with respect to S.
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