Sketching graphs of a function $f: \mathbb{R} \rightarrow \mathbb{R}$

Algorithm

1. Find the domain. Be careful especially of: fractions, radices, logarithm, arc functions.
2. Intercepts with axes. What happens, if $x=0$? When $y=0$?
3. Even, odd or periodic? Check the domain, if it is symmetric - then you can investigate $f(-x)$. Check the domain, if it is periodic, and the function, if it contains $\sin x$ or \cos (it can be hidden in $\tan x$ or $\cot x$) - then investigate periodicity.
4. Limits at the endpoints of the domain. Do not forget about $\pm \infty$ (if they are endpoints of the domain). Compute limits at some special points. (Rmk: Periodic functions can not have limit at $\pm \infty$.)
5. Continuity. Is the function sum, product, composition of continuous functions?
6. The first derivative f^{\prime}. Derive mechanically. Find the domain of f^{\prime}.
7. f^{\prime} in special points. Can you find points, where the function f is defined, but the mechanical derivative is not? Compute the left and right derivative as a limit.
8. Monotonicity. Find the zero points for the derivative. Sketch a diagram with the domain of f, domain of f^{\prime} and the zero points - it gives intervals. Find sign of f^{\prime} on these intervals and find monotonicity.
9. Extrema. From the previous step you have suspects of extremas.
10. The second derivative $f^{\prime \prime}$. Find the 2nd derivative mechanically. (Do not care about one sided 2 n derivatives.)
11. Convexity/Concavity. Find zero points of $f^{\prime \prime}$. Make similar diagram as in the previous steps and find sign of $f^{\prime \prime}$. Then decide about concavity and convexity of f. Find points of inflection (warning: an inflection point needs to have the 1st derivative).
12. Asymptotes. Find the limits $k=\lim _{x \rightarrow \pm \infty} f(x) / x$ and $q=\lim _{x \rightarrow \pm \infty} f(x)-k x$. If they exist, you have asymptotes at $\pm \infty-y=k x+q$. Rmk: for the first limit you can apply L'Hospital rule.

13. Sketch the graph.

14. Extremas. Check the extremas - points with zero derivative, points without derivative, endpoints of intervals. Decide, if they are local or global. Rmk: there can be extremum only if the point is in the domain ($=$ no infinities).
15. Range. Find the range.
