Mathematics I - Introduction

23/24

Sets

Exercise (True or false)
A - set of all animals living in Australia.
A $a \in A$
B $b \in A$
C $c \in A$
D $d \in A$
E $e \in A$

Sets

Exercise (True or false)
A - set of all animals living in Australia.
A $a \in A \quad$ B $b \in A$
C $c \in A$
D $d \in A$
E $e \in A$

True: A, B, C, E

Sets

Exercise (True or false)
A - set of all animals living in Australia.
A $a \notin A \quad$ B $b \notin A$
C $c \notin A$
D $d \notin A$
E $e \notin A$

a

Sets

Exercise (True or false)
A - set of all animals living in Australia.
A $a \notin A \quad$ B $b \notin A$
C $c \notin A$
D $d \notin A$
E $e \notin A$

a

True: D

Exercise
Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,3,5,7,9\}$ and $B=\{1,2,3,4,5\}$. Find

1. $A \cup B$
2. $A \cap B$
3. A^{c}
4. $\left(B^{c}\right)^{c}$
5. $A \backslash B$
6. $B \backslash A$

Exercise

Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,3,5,7,9\}$ and $B=\{1,2,3,4,5\}$. Find

1. $A \cup B$
2. $\{1,2,3,4,5,7,9\}$
3. $A \cap B$
4. $\{1,3,5\}$
5. A^{c}
6. $\{2,4,6,8\}$
7. $\left(B^{c}\right)^{c}$
8. B
9. $A \backslash B$
10. $\{7,9\}$
11. $B \backslash A$
12. $\{2,4\}$

Sets

Exercise
Let $A=\{1,2,3\}, B=\{2,4\}$. Find $A \times B, B \times B$ and sketch them.

Sets

Exercise
Let $A=\{1,2,3\}, B=\{2,4\}$. Find $A \times B, B \times B$ and sketch them.

Sets

Exercise
Let $A_{1}=\{0,1\}, A_{2}=\{0,2\}, A_{3}=\{0,3\}$. Find

$$
\text { 1. } \bigcup_{i=1}^{3} A_{i}
$$

Sets

Exercise
Let $A_{1}=\{0,1\}, A_{2}=\{0,2\}, A_{3}=\{0,3\}$. Find

$$
\text { 1. } \bigcup_{i=1}^{3} A_{i}
$$

$$
\text { 2. } \bigcap_{i \in\{1,2,3\}} A_{i}
$$

$\{0,1,2,3\},\{0\}$

Exercise

Which sets are bounded from below? Bounded from above?
Bounded?

A \mathbb{N}

B $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\}$
C $\mathbb{R} \backslash \mathbb{Q} \cap(-3,2]$

D $\{x \in \mathbb{R}: x<\pi\}$
$\mathrm{E}(-\infty,-1) \cup\{0\} \cup[1, \infty)$

Exercise

Which sets are bounded from below? Bounded from above?
Bounded?
A \mathbb{N}
B $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\}$
C $\mathbb{R} \backslash \mathbb{Q} \cap(-3,2]$
D $\{x \in \mathbb{R}: x<\pi\}$
$\mathrm{E}(-\infty,-1) \cup\{0\} \cup[1, \infty)$
below: A, B, C; above: B, C, D; bounded: B, C

Exercise

Find minimum and maximum:

1. $\{1,2,3,4\}$
2. $[-2,3]$
3. $(-2,3]$
4. $[-2,-1) \cup(0,25]$
5. $[0, \infty)$
6. $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$
7. \mathbb{N}
8. $(\mathbb{R} \backslash \mathbb{Q}) \cap[0, \pi]$

Exercise

Find minimum and maximum:

$$
\begin{aligned}
& \text { 1. }\{1,2,3,4\} \\
& \text { 2. }[-2,3] \\
& \text { 3. }(-2,3] \\
& \text { 4. }[-2,-1) \cup(0,25]
\end{aligned}
$$

$$
\text { 1. } \min =1, \quad \text { 3. } \nexists, 3
$$

$$
\max =4 \quad \text { 4. }-2,25
$$

$$
\text { 2. }-2,3
$$

$$
\text { 5. } 0, \nexists
$$

5. $[0, \infty)$
6. $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$
7. \mathbb{N}
8. $(\mathbb{R} \backslash \mathbb{Q}) \cap[0, \pi]$
9. $\nexists, 1$
10. $1, \nexists$
11. \nexists, π

Exercise

Find infimum, minimum, maximum and supremum:

1. $\{1,2,3,4\}$
2. $\{-1,-2,-3,-4\}$
3. $[-2,3]$
4. $(-2,3)$
5. $(-2,3]$
6. $[-2,-1) \cup(0,25]$
7. $(-7,-0) \cup(1,2)$
8. $[0, \infty)$
9. $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$
10. \mathbb{N}

Exercise

Find infimum, minimum, maximum and supremum:

1. $\{1,2,3,4\}$
2. $1,1,4,4$
3. $\{-1,-2,-3,-4\}$
4. $-4,-4,-1,-1$
5. $[-2,3]$
6. $-2,-2,3,3$
7. $(-2,3)$
8. $-2, \nexists, \nexists, 3$
9. $(-2,3]$
10. $-2, \nexists, 3,3$
11. $[-2,-1) \cup(0,25]$
12. $-2,-2,25,25$
13. $(-7,-0) \cup(1,2)$
14. $-7, \nexists, \nexists, 2$
15. $[0, \infty)$
16. $0,0, \nexists, \infty$
17. $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$
18. $0, \nexists, 1,1$
19. \mathbb{N}
20. $1,1, \nexists, \infty$

Exercise

Find the formula for a_{n}.

$$
\begin{aligned}
& \text { A. } a_{n}=\left(-\frac{1}{2}\right)^{n}-\frac{3}{2} \\
& \text { B. } a_{n}=\frac{1}{2} n+5 \\
& \text { C. } a_{n}=\frac{1}{2} n-2 \\
& \text { D. } a_{n}=-\frac{1}{2} n+\frac{5}{2} \\
& \text { E. } a_{n}=\frac{1}{2} n-\frac{5}{2}
\end{aligned}
$$

Figure:
https://www.cpp.edu/conceptests/question-library/mat116.shtml

Exercise

Find the formula for a_{n}.

$$
\begin{aligned}
& \text { A. } a_{n}=\left(-\frac{1}{2}\right)^{n}-\frac{3}{2} \\
& \text { B. } a_{n}=\frac{1}{2} n+5 \\
& \text { C. } a_{n}=\frac{1}{2} n-2 \\
& \text { D. } a_{n}=-\frac{1}{2} n+\frac{5}{2} \\
& \text { E. } a_{n}=\frac{1}{2} n-\frac{5}{2}
\end{aligned}
$$

Figure:
https://www.cpp.edu/conceptests/question-library/mat116.shtml

E

Exercise

Find the first 4 terms of the sequences

$$
\text { A } a_{n}=\frac{(-1)^{n}}{n} \quad \text { B } a_{n}=\frac{n+1}{n}
$$

Exercise

Find the first 4 terms of the sequences

$$
\begin{array}{ll}
\text { A } a_{n}=\frac{(-1)^{n}}{n} & \text { B } a_{n}=\frac{n+1}{n} \\
-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4} & 2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}
\end{array}
$$

Exercise

Find the first 4 terms of the sequences

$$
\begin{array}{ll}
\text { A } a_{n}=\frac{(-1)^{n}}{n} & \text { B } a_{n}=\frac{n+1}{n} \\
-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4} & 2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}
\end{array}
$$

Exercise

Find the formula for the following sequences

$$
\text { A } 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \quad \text { B }-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5} \cdots
$$

Exercise

Find the first 4 terms of the sequences
A $a_{n}=\frac{(-1)^{n}}{n}$
B $a_{n}=\frac{n+1}{n}$
$-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}$
$2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}$

Exercise

Find the formula for the following sequences

$$
\begin{array}{ll}
\text { A } 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots & \text { B }-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5} \ldots \\
\frac{1}{2^{n-1}} & \frac{(-1)^{n}}{n}
\end{array}
$$

Exercise

Which of these sequences are bounded?

A blue
B red
C yellow

Exercise

Which of these sequences are bounded?

A blue
B red
C yellow

B, C

Exercise

Find non-decreasing sequences.
A $a_{n}=-4$
B $a_{n}=(-2)^{n}$
C $a_{n}=\frac{(-1)^{n}}{3^{n}}$
D $a_{n}=\log n$
E $a_{n}=e^{-n}$

Exercise

Find non-decreasing sequences.
A $a_{n}=-4$
B $a_{n}=(-2)^{n}$
C $a_{n}=\frac{(-1)^{n}}{3^{n}}$
D $a_{n}=\log n$
E $a_{n}=e^{-n}$

A, D

Exercise

Use the definition and check, if the sequence is monotone:

$$
\begin{array}{ll}
\text { 1. } a_{n}=\frac{n}{n+1} & \text { 2. } a_{n}=\frac{n}{4+n^{2}}
\end{array}
$$

Exercise

Use the definition and check, if the sequence is monotone:

$$
\begin{array}{ll}
\text { 1. } a_{n}=\frac{n}{n+1} & \text { 2. } a_{n}=\frac{n}{4+n^{2}}
\end{array}
$$

$$
\begin{aligned}
? a_{n} & \leq a_{n+1} \\
\frac{n}{n+1} & \leq \frac{n+1}{n+2} \\
n(n+2) & \leq(n+1)(n+1) \\
n^{2}+2 n & \leq n^{2}+2 n+1 \\
0 & \leq 1
\end{aligned}
$$

https:
//www.geogebra.org/calculator/w4twpbu2

Exercise

Use the definition and check, if the sequence is monotone:

$$
\begin{array}{ll}
\text { 1. } a_{n}=\frac{n}{n+1} & \text { 2. } a_{n}=\frac{n}{4+n^{2}}
\end{array}
$$

Exercise

Use the definition and check, if the sequence is monotone:

$$
\text { 1. } \begin{aligned}
a_{n}=\frac{n}{n+1} & \quad \text { 2. } a_{n}=\frac{n}{4+n^{2}} \\
? a_{n} & \geq a_{n+1} \\
\frac{n}{4+n^{2}} & \geq \frac{n+1}{4+(n+1)^{2}} \\
n\left(4+n^{2}+2 n+1\right) & \geq(n+1)\left(4+n^{2}\right) \\
4 n+n^{3}+2 n^{2}+n & \geq 4 n+n^{3}+4+n^{2} \\
n^{2}+n & \geq 4
\end{aligned}
$$

true for $n \geq 2$.
https:
//www.geogebra.org/calculator/w4twpbu2

Exercise
Let $a_{n}=1,2,3,4,5, \ldots, b_{n}=(-1)^{n}$. Find
A $a_{n}+b_{n}$
B a_{n} / b_{n}
C $3 a_{n}$

Exercise
Let $a_{n}=1,2,3,4,5, \ldots, b_{n}=(-1)^{n}$. Find
A $a_{n}+b_{n}$
B a_{n} / b_{n}
C $3 a_{n}$
$a_{n}=1,2,3,4,5 \ldots$
$b_{n}=-1,1,-1,1,-1 \ldots$
A: $0,3,2,5,4 \ldots$
B: $-1,2,-3,4,-5 \ldots$
C: $3,6,9,12,15 \ldots$

Exercise

Find a sequence, which is

1. bounded and covergent
2. bounded and divergent
3. unbounded and covergent
4. unbounded and divergent

Exercise

Find a sequence, which is

1. bounded and covergent
2. bounded and divergent
3. unbounded and covergent
4. unbounded and divergent
5. $\frac{1}{n}, a_{n}=42$
6. $a_{n}=(-1)^{n}, a_{n}=\sin n$
7. impossible
8. $a_{n}=n, a_{n}=(-1)^{n} n^{2}$

Exercise

Let $a_{n}=3,7,4,1 / 2, \pi,-1$. Find $b_{n}=a_{2 n}$:
A $6,14,8 \ldots$
C $7,1 / 2,-1 \ldots$
B $5,9,6 \ldots$
D $4,1 / 2, \pi \ldots$

By:https://www.cpp.edu/conceptests/ question-library/mat116.shtm

Exercise (True or false)
Let $\lim a_{n}=A \in \mathbb{R}$ and $\lim b_{n}=B \in \mathbb{R}$. If $a_{n}<b_{n}$, then $A<B$.

Exercise (True or false)
Let $\lim a_{n}=A \in \mathbb{R}$ and $\lim b_{n}=B \in \mathbb{R}$. If $a_{n}<b_{n}$, then $A<B$. False. Consider $a_{n}=\frac{1}{n}, b_{n}=-\frac{1}{n}$.

Exercise Find the sandwich for the sequence $a_{n}=\frac{\cos n}{n}$.

Exercise

Give an example of $a_{n} \rightarrow \infty$ and find its lower bound.

Exercise

Give an example of $a_{n} \rightarrow \infty$ and find its lower bound. $a_{n}=\log n, b=0$.

Exercise

1. $2+\infty$
2. $-\infty+3$
3. $\pi \infty$
4. $-4(-\infty)$
5. -7∞
6. $\frac{\infty}{-3}$
7. $\frac{5}{\infty}$

Exercise
Find a sequence $\left\{x_{n}\right\}$ for a set $M=[2,5)$.

Exercise
Find a sequence $\left\{x_{n}\right\}$ for a set $M=[2,5)$.
$x_{n}=4,4.5,4 \frac{2}{3}, 4.75 \ldots, x_{n}=5-\frac{1}{n}$

Exercise

Find a convergent subsequence:

$$
\begin{aligned}
& \text { A } a_{n}=(-1)^{n} \\
& \text { B } a_{n}=\{0,2,0,0,2,0,0,0,2,0,0,0,0,2, \ldots\}
\end{aligned}
$$

Exercise

Find a convergent subsequence:
A $a_{n}=(-1)^{n}$
B $a_{n}=\{0,2,0,0,2,0,0,0,2,0,0,0,0,2, \ldots\}$

1. $1,1,1, \ldots$
2. $0,0,0, \ldots$

Exercise

Find the domain and range for the following mappings:

21.

22.

23. y

Figure: Calculus: Single and Multivariable, 6th Edition, Hughes-Hallett, col.

Exercise

Find the domain and range for the following mappings:

21.

22.

23.

Figure: Calculus: Single and Multivariable, 6th Edition, Hughes-Hallett, col.
20. $[0,4],[0,2]$
21. $[1,5],[1,6]$
22. $[-2,2],[-2,2]$
23. $[0,5],[0,4]$

Exercise

Which of the following functions has its domain the same as its range?
A x^{2}
B \sqrt{x}
C x^{3}
D $|x|$
E $2 x-3$
(Inspired by: Active Calculus \& Mathematical Modeling, Carroll College Mathematics Department)

Exercise

Which of the following functions has its domain the same as its range?
A x^{2}
B \sqrt{x}
C x^{3}
D $|x|$
E $2 x-3$
(Inspired by: Active Calculus \& Mathematical Modeling, Carroll College Mathematics Department) B, C, E

Exercise

Find the image:
A $[-6,-2]$
B $[-1,1)$
C $[0,2)$
D $[2, \infty)$

Exercise

Find the image:
A $[-6,-2]$
B $[-1,1)$
C $[0,2)$
D $[2, \infty)$

$\mathrm{A}[2,8], \mathrm{B}(-1,0] \cup\{3\}, \mathrm{C}(-1,3], \mathrm{D}(4,5]$.

Exercise

Find the preimage:
A $\{-1\}$
B $[2,3]$
C $[0,1]$
D $[0,1)$

Exercise

Find the preimage:
A $\{-1\}$
B $[2,3]$
$\mathrm{C}[0,1]$
D $[0,1)$

$\mathrm{A}\{-5,-1,1,5\}, \mathrm{B}[-9,-8] \cup[8,9]$,
$\mathrm{C}[-7,-6] \cup[-4,-2] \cup\{0\} \cup[2,4] \cup[6,7]$,
$\mathrm{D}(-7,-6] \cup[-4,-3) \cup(-3,-2] \cup\{0\} \cup[2,3) \cup(3,4] \cup[6,7)$

Exercise

Find $g(f(4))$.
A - 2
B -1
C 0
D 1
E 2

Exercise

Find $g(f(4))$.
A - 2
B -1
C 0
D 1
E 2

A

Exercise

Find $g(f(4))$.
A - 2
B -1
C 0
D 1
E 2

A
Find x, if $f(g(x))=2$.

Exercise

Find $g(f(4))$.
A - 2
B -1
C 0
D 1
E 2

A
Find x, if $f(g(x))=2$.
B, D

Exercise

In the table we can find values of functions f and g.

x	-2	-1	0	1	2
$f(x)$	1	0	-2	2	-1
$g(x)$	-1	1	2	0	-2

Find $g(f(1))$.
A - 2
B -1
C 0
D 1
E 2

Exercise

In the table we can find values of functions f and g.

x	-2	-1	0	1	2
$f(x)$	1	0	-2	2	-1
$g(x)$	-1	1	2	0	-2

Find $g(f(1))$.
A - 2
B -1
C 0
D 1
E 2

A

Exercise

In the table we can find values of functions f and g.

x	-2	-1	0	1	2
$f(x)$	1	0	-2	2	-1
$g(x)$	-1	1	2	0	-2

Find $g(f(1))$.
A - 2
B -1
C 0
D 1
E 2

A
Find $f(f(0))$.
A - 2
B -1
C 0
D 1
E 2

Exercise

In the table we can find values of functions f and g.

x	-2	-1	0	1	2
$f(x)$	1	0	-2	2	-1
$g(x)$	-1	1	2	0	-2

Find $g(f(1))$.
A - 2
B -1
C 0
D 1
E 2

A
Find $f(f(0))$.
A - 2
B -1
C 0
D 1
E 2

D

Exercise

In the table we can find values of functions f and g. If $f(g(x))=-2$, find x.

x	-2	-1	0	1	2
$f(x)$	1	0	-2	2	-1
$g(x)$	-1	1	2	0	-2

A - 2
B -1
C 0
D 1
E 2

Exercise

In the table we can find values of functions f and g. If $f(g(x))=-2$, find x.

x	-2	-1	0	1	2
$f(x)$	1	0	-2	2	-1
$g(x)$	-1	1	2	0	-2

A - 2
B -1
C 0
D 1
E 2

D

Exercise

A e^{x}
B x^{3}
C $\sin x$
D $\tan x$
E $\frac{1}{x}$

Which functions are onto \mathbb{R} ?
Which functions are one-to-one?
Which functions are bijections?

Exercise

A e^{x}
B x^{3}
C $\sin x$
D $\tan x$
E $\frac{1}{x}$

Which functions are onto \mathbb{R} ?
Which functions are one-to-one?
Which functions are bijections?
B, D
A, B, E
B

Exercise

Find inverse mappings at \mathbb{R} :
A e^{x}
C $\sqrt[3]{x}$
B $2 x+1$
D x^{2}

Exercise

$$
e^{x} \text { vs } \log x
$$

$$
2 x+1 \text { vs } \frac{x-1}{2}
$$

x^{3} vs $\sqrt[3]{x}$
x^{2} vs \sqrt{x}

Exercise

Decide, which functions are monotone on its domain:

Exercise

Decide, which functions are monotone on its domain:

non-decreasing, nothing, decreasing, nothing

Exercise

Decide, which functions are bounded from above, bounded from below, bounded:

Exercise

Decide, which functions are bounded from above, bounded from below, bounded:

red: bounded, blue: bounded from below, green: unbounded, yellow: bounded from above

Exercise

Decide, which functions are even or odd:

Exercise

Decide, which functions are even or odd:

A odd, B even, D odd, E odd

Exercise

Decide, which functions are even or odd:
A $x^{3}+1$
C $|x-2|$
E $|1+\cos x|$
B $x\left(x^{2}+1\right)$
D $e^{x^{2}} \sin x$

Exercise

Decide, which functions are even or odd:
A $x^{3}+1$
C $|x-2|$
E $|1+\cos x|$
B $x\left(x^{2}+1\right)$
D $e^{x^{2}} \sin x$

B odd, D odd, E even

Exercise

Decide, which functions are periodic

Exercise

Decide, which functions are periodic

No, yes

Exercise

Sketch in the function so that it is periodic with the smallest possible period

Exercise Sketch in the function so that it is periodic with the smallest possible period

Exercise

Find $\lim _{x \rightarrow 0} f(x)$
A - 3
B 0
C 5
D 7
E ∞

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 0} f(x)$
A - 3
B 0
C 5
D 7
E ∞

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 2} f(x)$
A ∞
B 3
C 2

E does not exist

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 2} f(x)$
A ∞
B 3

C 2
D 0

E does not exist

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 4} f(x)$
A 4
C 0
E does
exists
B 8
D ∞
not

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 4} f(x)$
A 4
C 0
E does
exists
B 8
D ∞
not

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find
A $B^{+}(1,1 / 2)$
B $P^{-}(-2,1 / 4)$
C $B^{-}(+\infty, 1 / 50)$
D $P^{+}(-\infty, 1 / 42)$

Exercise

Find
A $B^{+}(1,1 / 2)$
B $P^{-}(-2,1 / 4)$
C $B^{-}(+\infty, 1 / 50)$
D $P^{+}(-\infty, 1 / 42)$
A $[1,1.5)$
B $(-2.25,-2)$
C $(50, \infty)$
D $(-\infty,-42)$

Exercise

Find $\lim _{x \rightarrow 2-} f(x)$.
Find $\lim _{x \rightarrow 2+} f(x)$.
A 0
B 1
C 2
D 3
E \#

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 2-} f(x)$.
Find $\lim _{x \rightarrow 2+} f(x)$.
A 0
B 1
C 2
D 3
E \#

Figure: Calculus: Single and Multivariable, Hughes-Hallet
D, C

Exercise

Find $\lim _{x \rightarrow 1+} f(x)+2 g(x)$
A 13
C 8
E 3
B 9
D 6

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 1+} f(x)+2 g(x)$
A 13
C 8
E 3
B 9
D 6

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 1-} f(x) g(x)$
A 20
C 4
B 15
D 3

E does not exist

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 1-} f(x) g(x)$
A 20
C 4
B 15
D 3
E does not exist

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Which functions are continuous at \mathbb{R} ?
A $x^{3}+\sin (4-x)$
C $\frac{2+x}{e^{x}}$
$\mathrm{E} \ln \left(2+x^{2}\right)$
B $\frac{e^{x}}{2+x}$
D $\cos \left(e^{\sqrt[3]{x}}\right)$

Exercise

Which functions are continuous at \mathbb{R} ?
A $x^{3}+\sin (4-x)$
C $\frac{2+x}{e^{x}}$
$\mathrm{E} \ln \left(2+x^{2}\right)$
B $\frac{e^{x}}{2+x}$
D $\cos \left(e^{\sqrt[3]{x}}\right)$

A, C, D, E

Exercise

$$
\lim _{x \rightarrow \infty} \ln \left(\frac{x-1}{x+2}\right)
$$

A 0
B 1
C $\ln 1$
D $-\frac{1}{2}$
E ∞

Exercise

$$
\lim _{x \rightarrow \infty} \ln \left(\frac{x-1}{x+2}\right)
$$

A 0
B 1
C $\ln 1$
D $-\frac{1}{2} \quad \mathrm{E} \infty$

Exercise

$$
\lim _{x \rightarrow-\infty} \cos \frac{1}{x}
$$

A 0
 B 1

C π
E does not exist
D $-\infty$

Exercise

$$
\lim _{x \rightarrow \infty} \ln \left(\frac{x-1}{x+2}\right)
$$

A 0
B 1
$C \ln 1$
D $-\frac{1}{2} \quad \mathrm{E} \infty$

Exercise

$$
\lim _{x \rightarrow-\infty} \cos \frac{1}{x}
$$

A 0
C π
E does not exist
B 1
D $-\infty$

Exercise

$$
\lim _{x \rightarrow 0} \arctan \frac{1}{x^{2}}
$$

A 0
B 1
C $\frac{\pi}{\pi}$

Exercise

Is there $x \in[0,2]$ such that

- $x^{5}-2 x-1=0$
- $x^{3}-4 x^{2}+4 x+1=0$
- $5 x^{3}-15 x^{2}+10 x+1=0$
https:
//www.geogebra.org/calculator/pqbtmk54

Exercise

Is there $x \in[0,2]$ such that

- $x^{5}-2 x-1=0$
- $x^{3}-4 x^{2}+4 x+1=0$
- $5 x^{3}-15 x^{2}+10 x+1=0$
https:
//www.geogebra.org/calculator/pqbtmk54
Yes, Hard to say, Hard to say

Exercise
Find the derivative of a function $f(x)=x^{2}$ at the point $a=2$.

Exercise

$f=\cos x \sin x$. Find f^{\prime}.
A $\cos ^{2} x$
C $\cos ^{2} x-\sin ^{2} x$
B $\sin ^{2} x$
D $-\sin x \cos x$

Exercise

$f=\cos x \sin x$. Find f^{\prime}.
A $\cos ^{2} x$
C $\cos ^{2} x-\sin ^{2} x$
B $\sin ^{2} x$
D $-\sin x \cos x$

C

Exercise

$f=\cos x \sin x$. Find f^{\prime}.
A $\cos ^{2} x$
C $\cos ^{2} x-\sin ^{2} x$
B $\sin ^{2} x$
D $-\sin x \cos x$

C
Exercise
$f=e^{7}$. Find f^{\prime}.
A $7 e^{6}$
B e^{7}
C 0

Exercise
$f=\cos x \sin x$. Find f^{\prime}.
A $\cos ^{2} x$
C $\cos ^{2} x-\sin ^{2} x$
B $\sin ^{2} x$
D $-\sin x \cos x$

C
Exercise
$f=e^{7}$. Find f^{\prime}.
A $7 e^{6}$
B e^{7}
C 0

C

Exercise
$f=\frac{e^{x}}{x^{2}}$ Find f^{\prime}.

$$
\begin{aligned}
& \text { А } \frac{e^{x}}{2 x} \\
& \text { В } \frac{e^{x}(x-2)}{x^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C } \frac{e^{x} x^{2}-2 x e^{x}}{x^{4}} \\
& \text { D } \frac{e^{x} 2 x+x^{2} e^{x}}{x^{4}}
\end{aligned}
$$

Exercise
$f=\frac{e^{x}}{x^{2}}$ Find f^{\prime}.
A $\frac{e^{x}}{2 x}$
B $\frac{e^{x}(x-2)}{x^{3}}$

$$
\begin{aligned}
& \mathrm{C} \frac{e^{x} x^{2}-2 x e^{x}}{x^{4}} \\
& \mathrm{D} \frac{e^{x} 2 x+x^{2} e^{x}}{x^{4}}
\end{aligned}
$$

B, C

Exercise

$f=\sin x+e^{\sin x}$ Find f^{\prime}.
A $\cos x+e^{\cos x}$
B $\cos x+e^{\sin x}$
$\mathrm{C} \cos x+\sin x e^{\cos x}$
D $\cos x+\cos x e^{\sin x}$

Exercise
$f=\sin x+e^{\sin x}$ Find f^{\prime}.
A $\cos x+e^{\cos x}$
B $\cos x+e^{\sin x}$
$\mathrm{C} \cos x+\sin x e^{\cos x}$
D $\cos x+\cos x e^{\sin x}$
D

Exercise (True or false?)

1. If $f^{\prime}(x)=g^{\prime}(x)$, then $f(x)=g(x)$. (For every x.)
2. If $f^{\prime}(a) \neq g^{\prime}(a)$, then $f(a) \neq g(a)$.
(We are talking about particular point a.)

Exercise (True or false?)

1. If $f^{\prime}(x)=g^{\prime}(x)$, then $f(x)=g(x)$. (For every x.)
2. If $f^{\prime}(a) \neq g^{\prime}(a)$, then $f(a) \neq g(a)$.
(We are talking about particular point a.)
False. For example $f(x)=x^{2}, g(x)=x^{2}+4$.
False. For example $f(x)=x^{2}, g(x)=x$.

Exercise $\lim _{x \rightarrow \infty} \frac{\ln x}{x}=$

A ∞
B 0
C 1
D A

Exercise
$\lim _{x \rightarrow \infty} \frac{\ln x}{x}=$
A ∞
B 0
C 1
D \nexists

Exercise

Decide, when it is a good idea to use l'Hospital's rule:
A $\lim _{x \rightarrow \pi} \frac{\cos x}{x}$
C $\lim _{x \rightarrow 0+} \frac{e^{-\frac{1}{x}}}{x}$
B $\lim _{x \rightarrow \infty} e^{-x} x^{2}$
D $\lim _{x \rightarrow 0} \frac{\arctan x}{x}$
E
$\lim _{x \rightarrow 0} \frac{\sin x-x}{\cos (2 x)-1}$

Exercise
$\lim _{x \rightarrow \infty} \frac{\ln x}{x}=$
A ∞
B 0
C 1
D \nexists

Exercise

Decide, when it is a good idea to use l'Hospital's rule:
A $\lim _{x \rightarrow \pi} \frac{\cos x}{x}$
B $\lim _{x \rightarrow \infty} e^{-x} x^{2}$

$$
\begin{aligned}
& \text { C } \lim _{x \rightarrow 0+} \frac{e^{-\frac{1}{x}}}{x} \\
& \text { D } \lim _{x \rightarrow 0} \frac{\arctan x}{x}
\end{aligned}
$$

E
$\lim _{x \rightarrow 0} \frac{\sin x-x}{\cos (2 x)-1}$

B, D, E

Exercise

Find

$$
\lim _{x \rightarrow 4} \frac{f(x)}{g(x)} .
$$

A 4
C 0
E-2
B 1
D -1

Figure: Calculus: Single and Multivariable, 6th Ed., Hughes-Hallett, col.

Exercise

Find

$$
\lim _{x \rightarrow 4} \frac{f(x)}{g(x)} .
$$

A 4
C 0
E-2
B 1
D -1

Figure: Calculus: Single and Multivariable, 6th Ed., Hughes-Hallett, col.

E

Exercise

Find the asymptote of the function $f(x)=e^{x}$

Exercise

Find the asymptote of the function $f(x)=e^{x}$ $y=0, \nexists$

Exercise

Find the asymptote of the function $f(x)=x+\arctan \left(x^{2}-1\right)$

Exercise

Find the asymptote of the function $f(x)=x+\arctan \left(x^{2}-1\right)$ $y=x+\frac{\pi}{2}$

Exercise

Let us assume that a function $y=f(x)$ is continuous at \mathbb{R}. Sketch f.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

Exercise

Let us assume that a function $y=f(x)$ is continuous at \mathbb{R}. Sketch f.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

Exercise

Let us assume that a function $y=f(x)$ is continuous at \mathbb{R}. Sketch f.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

Exercise

Let us assume that a function $y=f(x)$ is continuous at \mathbb{R}. Sketch f.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

