Mathematics I - Introduction

23/24

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Exercise (True or false) A - set of all animals living in Australia.

A $a \in A$ **B** $b \in A$ **C** $c \in A$ **D** $d \in A$ **E** $e \in A$

Exercise (True or false) A - set of all animals living in Australia.

A $a \in A$ **B** $b \in A$ **C** $c \in A$ **D** $d \in A$ **E** $e \in A$

True: A, B, C, E

Exercise (True or false) A - set of all animals living in Australia. A $a \notin A$ B $b \notin A$ C $c \notin A$ D $d \notin A$ E $e \notin A$

Exercise (True or false) A - set of all animals living in Australia. A $a \notin A$ B $b \notin A$ C $c \notin A$ D $d \notin A$ E $e \notin A$

True: D

Exercise Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 3, 5, 7, 9\}$ and $B = \{1, 2, 3, 4, 5\}$. Find

 1. $A \cup B$ 3. A^c 5. $A \setminus B$

 2. $A \cap B$ 4. $(B^c)^c$ 6. $B \setminus A$

イロト (同) (ヨ) (ヨ) (つ) (つ)

Exercise Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 3, 5, 7, 9\}$ and $B = \{1, 2, 3, 4, 5\}$. Find

 1. $A \cup B$ 3. A^c 5. $A \setminus B$

 2. $A \cap B$ 4. $(B^c)^c$ 6. $B \setminus A$

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト つので

1. $\{1, 2, 3, 4, 5, 7, 9\}$ 4. B2. $\{1, 3, 5\}$ 5. $\{7, 9\}$ 3. $\{2, 4, 6, 8\}$ 6. $\{2, 4\}$

Exercise Let $A = \{1, 2, 3\}$, $B = \{2, 4\}$. Find $A \times B$, $B \times B$ and sketch them.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Exercise Let $A = \{1, 2, 3\}$, $B = \{2, 4\}$. Find $A \times B$, $B \times B$ and sketch them.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Exercise Let $A_1 = \{0, 1\}, A_2 = \{0, 2\}, A_3 = \{0, 3\}$. Find 1. $\bigcup_{i=1}^{3} A_i$ 2. $\bigcap_{i \in \{1, 2, 3\}} A_i$

▲□▶ ▲課▶ ▲注▶ ★注▶ … 注: のへで

Exercise Let $A_1 = \{0, 1\}, A_2 = \{0, 2\}, A_3 = \{0, 3\}$. Find 1. $\bigcup_{i=1}^{3} A_i$ 2. $\bigcap_{i \in \{1, 2, 3\}} A_i$

イロト (同) (ヨ) (ヨ) (つ) (つ)

 $\{0,1,2,3\},\,\{0\}$

Which sets are bounded from below? Bounded from above? Bounded?

 $\begin{array}{l} A \ \mathbb{N} \\ B \ \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\} \\ C \ \mathbb{R} \setminus \mathbb{Q} \cap (-3, 2] \end{array}$

D { $x \in \mathbb{R} : x < \pi$ } E $(-\infty, -1) \cup \{0\} \cup [1, \infty)$

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト つので

Which sets are bounded from below? Bounded from above? Bounded?

$$\begin{array}{ll} A & \mathbb{N} & & \\ B & \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\} \\ C & \mathbb{R} \setminus \mathbb{Q} \cap (-3, 2] & & \\ E & (-\infty, -1) \cup \{0\} \cup [1, \infty) \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

below: A, B, C; above: B, C, D; bounded: B, C

Exercise Find minimum and maximum:

1.
$$\{1, 2, 3, 4\}$$

2. $[-2, 3]$
3. $(-2, 3]$
4. $[-2, -1) \cup (0, 25]$

5. $[0, \infty)$ 6. $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ 7. \mathbb{N} 8. $(\mathbb{R} \setminus \mathbb{Q}) \cap [0, \pi]$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Exercise Find minimum and maximum:

1.
$$\{1, 2, 3, 4\}$$

2. $[-2, 3]$
3. $(-2, 3]$
4. $[-2, -1) \cup (0, 25]$

 1. min = 1, max = 4
 3. $\not \exists$, 3

 max = 4 4. -2, 25

 2. -2, 3
 5. 0, $\not \exists$

5. $[0, \infty)$ 6. $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ 7. \mathbb{N} 8. $(\mathbb{R} \setminus \mathbb{Q}) \cap [0, \pi]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

Find infimum, minimum, maximum and supremum:

1.
$$\{1, 2, 3, 4\}$$

2. $\{-1, -2, -3, -4\}$
3. $[-2, 3]$
4. $(-2, 3)$
5. $(-2, 3]$

6. $[-2, -1) \cup (0, 25]$ 7. $(-7, -0) \cup (1, 2)$ 8. $[0, \infty)$ 9. $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ 10. \mathbb{N}

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Find infimum, minimum, maximum and supremum:

1. $\{1, 2, 3, 4\}$ **2.** $\{-1, -2, -3, -4\}$ 3. [-2,3]**4.** (-2,3)5. (-2,3]1. 1, 1, 4, 4 2. -4, -4, -1, -13, -2, -2, 3, 3**4**. −2, *A*, *A*, 3 **5**. −2. *A*. **3**. **3**

- 6. $[-2, -1) \cup (0, 25]$ 7. $(-7, -0) \cup (1, 2)$ 8. $[0, \infty)$ 9. $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ 10. \mathbb{N}
- 6. -2, -2, 25, 25
 7. -7, ∄, ∄, 2
 8. 0, 0, ∄, ∞
 9. 0, ∄, 1, 1
 10. 1, 1, ∄, ∞

イロト (同) (ヨ) (ヨ) (つ) (つ)

Exercise Find the formula for a_n .

Figure:

https://www.cpp.edu/conceptests/question-library/mat116.shtml

(日)(同)(日)(日)(日)(日)

Exercise Find the formula for a_n .

Figure:

https://www.cpp.edu/conceptests/question-library/mat116.shtml

(日)(同)(日)(日)(日)(日)

A
$$a_n = \frac{(-1)^n}{n}$$
 B $a_n = \frac{n+1}{n}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Exercise

Find the formula for the following sequences

A
$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$
 B $-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5} \dots$

ヘロト 4 目 ト 4 目 ト 4 目 ト 9 0 0

Exercise

Find the formula for the following sequences

A
$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

B $-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \dots$
 $\frac{1}{2^{n-1}}$
 $\frac{(-1)^n}{n}$

ヘロト 4 目 ト 4 目 ト 4 目 ト 9 0 0

Which of these sequences are bounded?

A blue

B red

C yellow

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Which of these sequences are bounded?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A blue B red C yellow

B, C

Find non-decreasing sequences.

A
$$a_n = -4$$

B $a_n = (-2)^n$
C $a_n = \frac{(-1)^n}{3^n}$
D $a_n = \log n$
E $a_n = e^{-n}$

Find non-decreasing sequences.

A
$$a_n = -4$$

B $a_n = (-2)^n$
C $a_n = \frac{(-1)^n}{3^n}$
D $a_n = \log n$
E $a_n = e^{-n}$
A, **D**

Use the definition and check, if the sequence is monotone:

- コント 4 日 > 4 日 > 4 日 > 1 日 → 1 日 →

1.
$$a_n = \frac{n}{n+1}$$
 2. $a_n = \frac{n}{4+n^2}$

Use the definition and check, if the sequence is monotone:

1.
$$a_n = \frac{n}{n+1}$$
 2. $a_n = \frac{n}{4+n^2}$

?
$$a_n \le a_{n+1}$$

 $\frac{n}{n+1} \le \frac{n+1}{n+2}$
 $n(n+2) \le (n+1)(n+1)$
 $n^2 + 2n \le n^2 + 2n + 1$
 $0 \le 1$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

https: //www.geogebra.org/calculator/w4twpbu2

Use the definition and check, if the sequence is monotone:

1.
$$a_n = \frac{n}{n+1}$$
 2. $a_n = \frac{n}{4+n^2}$

Use the definition and check, if the sequence is monotone:

1.
$$a_n = \frac{n}{n+1}$$

2. $a_n = \frac{n}{4+n^2}$
 $? a_n \ge a_{n+1}$
 $\frac{n}{4+n^2} \ge \frac{n+1}{4+(n+1)^2}$
 $n(4+n^2+2n+1) \ge (n+1)(4+n^2)$
 $4n+n^3+2n^2+n \ge 4n+n^3+4+n^2$
 $n^2+n \ge 4$

true for $n \ge 2$. https: //www.geogebra.org/calculator/w4twpbu2

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Exercise Let $a_n = 1, 2, 3, 4, 5, ..., b_n = (-1)^n$. Find A $a_n + b_n$ B a_n/b_n C $3a_n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Exercise Let $a_n = 1, 2, 3, 4, 5, \dots, b_n = (-1)^n$. Find

A $a_n + b_n$ **B** a_n/b_n **C** $3a_n$

イロト (同) (ヨ) (ヨ) (つ) (つ)

- $a_n = 1, 2, 3, 4, 5 \dots$ $b_n = -1, 1, -1, 1, -1 \dots$
- A: 0, 3, 2, 5, 4...B: -1, 2, -3, 4, -5...C: 3, 6, 9, 12, 15...

Find a sequence, which is

- 1. bounded and covergent
- 2. bounded and divergent
- 3. unbounded and covergent
- 4. unbounded and divergent

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Find a sequence, which is

- 1. bounded and covergent
- 2. bounded and divergent
- 3. unbounded and covergent
- 4. unbounded and divergent

1.
$$\frac{1}{n}, a_n = 42$$

2. $a_n = (-1)^n, a_n = \sin n$
3. impossible

4.
$$a_n = n, a_n = (-1)^n n^2$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Exercise Let $a_n = 3, 7, 4, 1/2, \pi, -1$. Find $b_n = a_{2n}$: A 6, 14, 8... B 5, 9, 6... D 4, 1/2, π ...

By:https://www.cpp.edu/conceptests/ question-library/mat116.shtm

イロト (同) (ヨ) (ヨ) (つ) (つ)

Exercise (True or false) Let $\lim a_n = A \in \mathbb{R}$ and $\lim b_n = B \in \mathbb{R}$. If $a_n < b_n$, then A < B.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Exercise (True or false)

Let $\lim a_n = A \in \mathbb{R}$ and $\lim b_n = B \in \mathbb{R}$. If $a_n < b_n$, then A < B. False. Consider $a_n = \frac{1}{n}$, $b_n = -\frac{1}{n}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exercise Find the sandwich for the sequence $a_n = \frac{\cos n}{n}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Exercise Give an example of $a_n \to \infty$ and find its lower bound.

Give an example of $a_n \to \infty$ and find its lower bound. $a_n = \log n, b = 0.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 1. $2 + \infty$ 4. $-4(-\infty)$ 7. $\frac{5}{\infty}$

 2. $-\infty + 3$ 5. -7∞

 3. $\pi\infty$ 6. $\frac{\infty}{-3}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Exercise Find a sequence $\{x_n\}$ for a set M = [2, 5).

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Exercise Find a sequence $\{x_n\}$ for a set M = [2, 5). $x_n = 4, 4.5, 4\frac{2}{3}, 4.75 \dots, x_n = 5 - \frac{1}{n}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Find a convergent subsequence:

A
$$a_n = (-1)^n$$

B $a_n = \{0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, \ldots\}$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Find a convergent subsequence:

A
$$a_n = (-1)^n$$

B $a_n = \{0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, ...\}$
1. 1, 1, 1, ...
2. 0, 0, 0, ...

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Find the domain and range for the following mappings:

Figure: Calculus: Single and Multivariable, 6th Edition, Hughes-Hallett, col.

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト つので

Find the domain and range for the following mappings:

Figure: Calculus: Single and Multivariable, 6th Edition, Hughes-Hallett, col.

イロト 不得 とうき とうとう

3

20. [0,4], [0,2]22. [-2,2], [-2,2]21. [1,5], [1,6]23. [0,5], [0,4]

Which of the following functions has its domain the same as its range?

A x^2 **B** \sqrt{x} **C** x^3 **D** |x| **E** 2x-3

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(Inspired by: Active Calculus & Mathematical Modeling, Carroll College Mathematics Department)

Which of the following functions has its domain the same as its range?

A x^2 **B** \sqrt{x} **C** x^3 **D** |x| **E** 2x-3

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(Inspired by: Active Calculus & Mathematical Modeling, Carroll College Mathematics Department) B, C, E

Exercise Find the image:

▲□▶▲□▶▲□▶▲□▶ ■ つく⊙

Exercise Find the image:

▲□▶ ▲圖▶ ▲言▶ ▲言▶ 二言 - わえの

Exercise Find the preimage:

A {-1} B [2,3] C [0,1] D [0,1)

Exercise Find the preimage:

A $\{-1\}$ **B** [2,3] **C** [0,1] **D** [0,1)

A {-5, -1, 1, 5}, B [-9, -8] \cup [8, 9], C [-7, -6] \cup [-4, -2] \cup {0} \cup [2, 4] \cup [6, 7], D (-7, -6] \cup [-4, -3) \cup (-3, -2] \cup {0} \cup [2, 3) \cup (3, 4] \cup [6, 7)

Find g(f(4)).

A -2 B -1 C 0 D 1 E 2

Find g(f(4)).

A -2 B -1 C 0 D 1 E 2 A

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Find g(f(4)).

A -2 B -1 C 0 D 1 E 2

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

A Find x, if f(g(x)) = 2.

Find g(f(4)).

A -2 B -1 C 0 D 1 E 2

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

A Find x, if f(g(x)) = 2. B, D

In the table we can find values of functions f and g.

x	-2	-1	0	1	2
f(x)	1	0	-2	2	-1
g(x)	-1	1	2	0	-2

Find g(f(1)).

A -2 **B** -1 **C** 0 **D** 1 **E** 2

▲□▶▲圖▶★≧▶★≧▶ ≧ の��

In the table we can find values of functions f and g.

x	-2	-1	0	1	2
f(x)	1	0	-2	2	-1
g(x)	-1	1	2	0	-2

Find g(f(1)).

A -2 B -1 C 0 D 1 E 2

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

А

In the table we can find values of functions f and g.

x	-2	-1	0	1	2
f(x)	1	0	-2	2	-1
g(x)	-1	1	2	0	-2

Find g(f(1)).

A -2 B -1 C 0 D 1 E 2 A Find f(f(0)).

A -2 B -1 C 0 D 1 E 2

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

In the table we can find values of functions f and g.

x	-2	-1	0	1	2
f(x)	1	0	-2	2	-1
g(x)	-1	1	2	0	-2

Find g(f(1)).

A -2 B -1 C 0 D 1 E 2 A Find f(f(0)).

A -2 B -1 C 0 D 1 E 2 D

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

In the table we can find values of functions f and g. If f(g(x)) = -2, find x.

x	-2	-1	0	1	2
f(x)	1	0	-2	2	-1
g(x)	-1	1	2	0	-2

A -2 B -1 C 0 D 1 E 2

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ●□ ● ●

In the table we can find values of functions f and g. If f(g(x)) = -2, find x.

x	-2	-1	0	1	2
f(x)	1	0	-2	2	-1
g(x)	-1	1	2	0	-2

A -2 B -1 C 0 D 1 E 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

D

A e^x B x^3 C sin x D tan x E $\frac{1}{x}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Which functions are onto \mathbb{R} ? Which functions are one-to-one? Which functions are bijections?

A e^x B x^3 C sin x D tan x E $\frac{1}{x}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Which functions are onto \mathbb{R} ? Which functions are one-to-one? Which functions are bijections? B, D A, B, E B

Exercise Find inverse mappings at \mathbb{R} :

▲ロト▲園と▲目と▲目と、目、釣A@

Exercise Decide, which functions are monotone on its domain:

▲ロト▲圖▶▲目▶▲目▶ ■ の名の

Exercise Decide, which functions are monotone on its domain:

イロト イポト イヨト イヨト 二日

decreasing, nothing

Decide, which functions are bounded from above, bounded from below, bounded:

Decide, which functions are bounded from above, bounded from below, bounded:

red: bounded, blue: bounded from below, green: unbounded, yellow: bounded from above

A odd, B even, D odd, E odd

▲□▶▲□▶▲目▶▲目▶ 目 のへの

A
$$x^{3} + 1$$

B $x(x^{2} + 1)$
C $|x - 2|$
D $e^{x^{2}} \sin x$
E $|1 + \cos x|$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A
$$x^{3} + 1$$

B $x(x^{2} + 1)$
C $|x - 2|$
D $e^{x^{2}} \sin x$
E $|1 + \cos x|$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

B odd, D odd, E even

Exercise Decide, which functions are periodic

(日)(同)(日)(日)(日)(日)

Exercise Decide, which functions are periodic

イロト イポト イヨト イヨト

э

No, yes

Sketch in the function so that it is periodic with the smallest possible period

Sketch in the function so that it is periodic with the smallest possible period

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Exercise Find $\lim_{x\to 0} f(x)$

A -3 B 0 C 5 D 7 E ∞

Figure: Calculus: Single and Multivariable, Hughes-Hallet

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Exercise Find $\lim_{x\to 0} f(x)$

A -3 B 0 C 5 D 7 E ∞

Figure: Calculus: Single and Multivariable, Hughes-Hallet

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Exercise Find $\lim_{x\to 2} f(x)$

A ∞ C 2

B 3

D 0

E does not exist

▲□▶ ▲課▶ ▲注▶ ★注▶ … 注: のへで

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise Find $\lim_{x\to 2} f(x)$

A ∞ C 2

B 3

D 0

E does not exist

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise Find $\lim_{x\to 4} f(x)$

A 4C 0E doesexistsB 8 $D \infty$ not

Figure: Calculus: Single and Multivariable, Hughes-Hallet

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Exercise Find $\lim_{x\to 4} f(x)$

A 4C 0E doesexistsB 8 $D \infty$ not

Figure: Calculus: Single and Multivariable, Hughes-Hallet

▲□▶ ▲課▶ ▲注▶ ★注▶ … 注: のへで

Exercise Find

A
$$B^+(1, 1/2)$$

B $P^-(-2, 1/4)$
C $B^-(+\infty, 1/50)$
D $P^+(-\infty, 1/42)$

Exercise Find

A $B^+(1, 1/2)$ **B** $P^{-}(-2, 1/4)$ **C** $B^{-}(+\infty, 1/50)$ **D** $P^+(-\infty, 1/42)$ **A** [1, 1.5) **B** (-2.25, -2)C $(50,\infty)$ **D** $(-\infty, -42)$

イロト (同) (ヨ) (ヨ) (つ) (つ)

Exercise Find $\lim_{x\to 2^-} f(x)$. Find $\lim_{x\to 2^+} f(x)$.

A 0 **B** 1 **C** 2 **D** 3 **E** ∄

Figure: Calculus: Single and Multivariable, Hughes-Hallet

▲□▶ ▲課▶ ▲注▶ ★注▶ … 注: のへで

Exercise Find $\lim_{x\to 2^-} f(x)$. Find $\lim_{x\to 2^+} f(x)$.

A 0 B 1 C 2 D 3 E \nexists

Figure: Calculus: Single and Multivariable, Hughes-Hallet

D, C

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ― 国 - のへで

Exercise Find $\lim_{x\to 1+} f(x) + 2g(x)$

A 13 C 8 B 9 D 6

Figure: Calculus: Single and Multivariable, Hughes-Hallet

E 3

Exercise Find $\lim_{x\to 1+} f(x) + 2g(x)$

A 13 C 8 B 9 D 6

E 3

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise Find $\lim_{x\to 1-} f(x)g(x)$

A 20 C 4 B 15 D 3

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise Find $\lim_{x\to 1-} f(x)g(x)$

A 20 C 4 B 15 D 3

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise Which functions are continuous at \mathbb{R} ?

A
$$x^3 + \sin(4-x)$$
 C $\frac{2+x}{e^x}$
B $\frac{e^x}{2+x}$ D $\cos(e^{\sqrt[3]{x}})$

E
$$\ln(2+x^2)$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Exercise Which functions are continuous at \mathbb{R} ?

A
$$x^3 + \sin(4-x)$$
 C $\frac{2+x}{e^x}$ E $\ln(2+x^2)$
B $\frac{e^x}{2+x}$ D $\cos(e^{\sqrt[3]{x}})$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A, C, D, E

$$\lim_{x \to \infty} \ln \left(\frac{x-1}{x+2} \right)$$

A 0 B 1 C ln 1 D $-\frac{1}{2}$ E ∞

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

$$\lim_{x \to \infty} \ln \left(\frac{x-1}{x+2} \right)$$

A 0 B 1 C ln 1 D $-\frac{1}{2}$ E ∞

Exercise

$$\lim_{x \to -\infty} \cos \frac{1}{x}$$
A 0 C π E does not exist
B 1 D $-\infty$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

$$\lim_{x \to \infty} \ln \left(\frac{x-1}{x+2}\right)$$
A 0 B 1 C ln 1 D $-\frac{1}{2}$ E ∞
Exercise
$$\lim_{x \to -\infty} \cos \frac{1}{x}$$
A 0 C π E does not exist
B 1 D $-\infty$

Exercise

$$\lim_{x \to 0} \arctan \frac{1}{x^2}$$

Is there $x \in [0, 2]$ such that

•
$$x^5 - 2x - 1 = 0$$

• $x^3 - 4x^2 + 4x + 1 = 0$
• $5x^3 - 15x^2 + 10x + 1 = 0$

https:

//www.geogebra.org/calculator/pqbtmk54

▲□▶ ▲課▶ ▲注▶ ★注▶ … 注: のへで

Is there $x \in [0, 2]$ such that

•
$$x^{5} - 2x - 1 = 0$$

• $x^{3} - 4x^{2} + 4x + 1 = 0$
• $5x^{3} - 15x^{2} + 10x + 1 = 0$

https:

//www.geogebra.org/calculator/pqbtmk54
Yes, Hard to say, Hard to say

イロト (同) (ヨ) (ヨ) (つ) (つ)

Exercise Find the derivative of a function $f(x) = x^2$ at the point a = 2.

Exercise $f = \cos x \sin x$. Find f'.

A $\cos^2 x$ C $\cos^2 x - \sin^2 x$ B $\sin^2 x$ D $-\sin x \cos x$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Exercise $f = \cos x \sin x$. Find f'. A $\cos^2 x$ C $\cos^2 x - \sin^2 x$ B $\sin^2 x$ D $-\sin x \cos x$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

С

Exercise $f = \cos x \sin x$. Find f'. A $\cos^2 x$ C $\cos^2 x - \sin^2 x$ B $\sin^2 x$ D $-\sin x \cos x$

С

Exercise $f = e^7$. Find f'.A $7e^6$ B e^7 C 0

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Exercise $f = \cos x \sin x$. Find f'. A $\cos^2 x$ C $\cos^2 x - \sin^2 x$ B $\sin^2 x$ D $-\sin x \cos x$ C

Exercise $f = e^7$. Find f'.A $7e^6$ B e^7

C 0

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

С

・ロト・個ト・モト・モト ヨー わえで

▲□▶ ▲課▶ ▲注▶ ★注▶ … 注: のへで

B, C

- $f = \sin x + e^{\sin x}$ Find f'.
 - A $\cos x + e^{\cos x}$
 - **B** $\cos x + e^{\sin x}$
 - $\mathbf{C} \cos x + \sin x e^{\cos x}$
 - **D** $\cos x + \cos x e^{\sin x}$

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖▶ 圖 のへで

- $f = \sin x + e^{\sin x}$ Find f'.
 - A $\cos x + e^{\cos x}$
 - **B** $\cos x + e^{\sin x}$
 - $\mathbf{C} \cos x + \sin x e^{\cos x}$
 - **D** $\cos x + \cos x e^{\sin x}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

D

▲□▶▲圖▶▲≣▶▲≣▶ ■ 少々⊙

Exercise (True or false?)

1. If f'(x) = g'(x), then f(x) = g(x). (For every *x*.)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

2. If $f'(a) \neq g'(a)$, then $f(a) \neq g(a)$. (We are talking about particular point *a*.)

Exercise (True or false?)

- 1. If f'(x) = g'(x), then f(x) = g(x). (For every *x*.)
- 2. If $f'(a) \neq g'(a)$, then $f(a) \neq g(a)$. (We are talking about particular point *a*.) False. For example $f(x) = x^2$, $g(x) = x^2 + 4$. False. For example $f(x) = x^2$, g(x) = x.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Exercise $\lim_{x \to \infty} \frac{\ln x}{x} =$ A ∞ B 0 C 1 D \nexists

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Exercise $\lim_{x \to \infty} \frac{\ln x}{x} =$ A ∞ B 0 C 1 D $\not\exists$

Exercise

Decide, when it is a good idea to use l'Hospital's rule:

A
$$\lim_{x \to \pi} \frac{\cos x}{x}$$

B $\lim_{x \to \infty} e^{-x} x^2$
D $\lim_{x \to 0} \frac{\arctan x}{x}$
E $\lim_{x \to 0} \frac{\sin x - x}{\cos(2x) - 1}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Exercise $\lim_{x \to \infty} \frac{\ln x}{x} =$ A ∞ B 0 C 1 D \nexists

Exercise

Decide, when it is a good idea to use l'Hospital's rule:

$$\begin{array}{ccc} \mathbf{A} & \lim_{x \to \pi} \frac{\cos x}{x} \\ \mathbf{B} & \lim_{x \to \infty} e^{-x} x^2 \\ \mathbf{D} & \lim_{x \to 0} \frac{\arctan x}{x} \end{array} \qquad \begin{array}{c} \mathbf{E} \\ \lim_{x \to 0} \frac{\sin x - x}{\cos(2x) - 1} \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

B, D, E

Figure: Calculus: Single and Multivariable, 6th Ed., Hughes-Hallett, col.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Figure: Calculus: Single and Multivariable, 6th Ed., Hughes-Hallett, col.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Е

Exercise Find the asymptote of the function $f(x) = e^x$

Exercise Find the asymptote of the function $f(x) = e^x$ $y = 0, \not\exists$

▲□▶ ▲課▶ ▲注▶ ★注▶ … 注: のへで

Exercise Find the asymptote of the function $f(x) = x + \arctan(x^2 - 1)$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Exercise Find the asymptote of the function $f(x) = x + \arctan(x^2 - 1)$ $y = x + \frac{\pi}{2}$

Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト つので