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Exercise (Motivation)
The farmer would like to enclose a rectangular place for sheep.
She has 40 meters of fence and land by the river. What is the
biggest possible area of the place?

Figure: https://www.cbr.com/shaun-the-sheep-best-worst-episodes-imdb/
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Derivatives

Figure: https://ginsyblog.wordpress.com/2017/02/04/how-to-solve-
the-problems-of-differential-calculus/
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Definition
Let f be a function and a ∈ R. Then

the derivative of the function f at the point a is defined by

f ′(a) = lim
h→0

f (a + h)− f (a)
h

,

if the limit exists.

Figure: https://cs.wikipedia.org/wiki/Derivace
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Definition
Let f be a function and a ∈ R. Then

the derivative of the function f at the point a is defined by

f ′(a) = lim
h→0

f (a + h)− f (a)
h

,

the derivative of f at a from the right is defined by

f ′+(a) = lim
h→0+

f (a + h)− f (a)
h

,

the derivative of f at a from the left is defined by

f ′−(a) = lim
h→0−

f (a + h)− f (a)
h

,

if the respective limits exist.
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Example
Explore the derivatives of the functions

f (x) = k, k ∈ R
f (x) = x
f (x) = x2

f (x) = 3
√

x, a = 0
f (x) = |x|, a = 0
f (x) = sgn x, a = 0
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Definition
Suppose that the function f has a finite derivative at a point
a ∈ R. The line

Ta =
{
[x, y] ∈ R2; y = f (a) + f ′(a)(x − a)

}
.

is called the tangent to the graph of f at the point [a, f (a)].

https:
//www.desmos.com/calculator/l0puzw0zvm

Exercise
Find the derivative of a function f (x) = x2 at the point a = 2.
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Examples
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Theorem 1
Suppose that the function f has a finite derivative at a point
a ∈ R. Then f is continuous at a.
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(x3 + 2x2 − 3)′ = 3x2 + 4x

( 3
√

x)′ = 1
3 3√x2

(sgn x)′(0) = ∞

|x|′ at 0 does not exist
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Theorem 2 (arithmetics of derivatives)
Suppose that the functions f and g have finite derivatives at
a ∈ R and let α ∈ R. Then

(i) (f + g)′(a) = f ′(a) + g′(a),
(ii) (αf )′(a) = α · f ′(a),

(iii) (fg)′(a) = f ′(a)g(a) + f (a)g′(a),
(iv) if g(a) ̸= 0, then(

f
g

)′

(a) =
f ′(a)g(a)− f (a)g′(a)

g2(a)
.
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Exercise
f = cos x sin x. Find f ′.

A cos2 x
B sin2 x

C cos2 x − sin2 x
D − sin x cos x

C

Exercise
f = e7. Find f ′.

A 7e6 B e7 C 0

C
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Exercise

f =
ex

x2 Find f ′.

A
ex

2x

B
ex(x − 2)

x3

C
exx2 − 2xex

x4

D
ex2x + x2ex

x4

B, C
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Theorem 3 (derivative of a compound function)
Suppose that the function f has a finite derivative at y0 ∈ R, the
function g has a finite derivative at x0 ∈ R, and y0 = g(x0).
Then

(f ◦ g)′(x0) = f ′(y0) · g′(x0).

Exercise

f = sin x + esin x Find f ′.
A cos x + ecos x

B cos x + esin x

C cos x + sin x ecos x

D cos x + cos x esin x

D
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Theorem 4 (derivative of an inverse function)
Let f be a function continuous and strictly monotone on an
interval (a, b) and suppose that it has a finite and non-zero
derivative f ′(x0) at x0 ∈ (a, b). Then the function f −1 has a
derivative at y0 = f (x0) and

(f −1)′(y0) =
1

f ′(x0)
=

1
f ′(f −1(y0))

.
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Exercise (True or false?)
1. If f ′(x) = g′(x), then f (x) = g(x). (For every x.)
2. If f ′(a) ̸= g′(a), then f (a) ̸= g(a).

(We are talking about particular point a.)

False. For example f (x) = x2, g(x) = x2 + 4.
False. For example f (x) = x2, g(x) = x.
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Derivatives of elementary functions
(const.)′ = 0,
(xn)′ = nxn−1, x ∈ R, n ∈ N; x ∈ R \ {0}, n ∈ Z, n < 0,
(log x)′ = 1

x for x ∈ (0,+∞),
(exp x)′ = exp x for x ∈ R,
(xa)′ = axa−1 for x ∈ (0,+∞), a ∈ R,
(ax)′ = ax log a for x ∈ R, a ∈ R, a > 0,
(sin x)′ = cos x for x ∈ R,
(cos x)′ = − sin x for x ∈ R,
(tg x)′ = 1

cos2 x for x ∈ (−π
2 ,

π
2 ) + kπ, k ∈ Z,

(cotg x)′ = − 1
sin2 x for x ∈ (0, π) + kπ, k ∈ Z,

(arcsin x)′ = 1√
1−x2

for x ∈ (−1, 1),

(arccos x)′ = − 1√
1−x2

for x ∈ (−1, 1),

(arctg x)′ = 1
1+x2 for x ∈ R,

(arccotg x)′ = − 1
1+x2 for x ∈ R.
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Theorem 5 (necessary condition for a local extremum)
Suppose that a function f has a local extremum at x0 ∈ R. If
f ′(x0) exists, then f ′(x0) = 0.

(x2)′ = 2x

(sin x)′ = cos x
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(x3)′ = 3x2

|x| x/2
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Figure: http://slideplayer.com/slide/7555868/
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Theorem 6 (Rolle)
Suppose that a, b ∈ R, a < b, and a function f has the following
properties:

(i) it is continuous on the interval [a, b],
(ii) it has a derivative (finite or infinite) at every point of the

open interval (a, b),
(iii) f (a) = f (b).
Then there exists ξ ∈ (a, b) satisfying f ′(ξ) = 0.

Figure: https://commons.wikimedia.org/wiki/File:
Rolle%27s_theorem.svg
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Theorem 7 (Lagrange, mean value theorem)
Suppose that a, b ∈ R, a < b, a function f is continuous on an
interval [a, b] and has a derivative (finite or infinite) at every
point of the interval (a, b). Then there is ξ ∈ (a, b) satisfying

f ′(ξ) =
f (b)− f (a)

b − a
.

Figure: https://en.wikipedia.org/wiki/File:
Mittelwertsatz3.svg
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Theorem 8 (sign of the derivative and monotonicity)
Let J ⊂ R be a non-degenerate interval. Suppose that a function
f is continuous on J and it has a derivative at every inner point
of J (the set of all inner points of J is denoted by Int J).

(i) If f ′(x) > 0 for all x ∈ Int J, then f is increasing on J.
(ii) If f ′(x) < 0 for all x ∈ Int J, then f is decreasing on J.

(iii) If f ′(x) ≥ 0 for all x ∈ Int J, then f in non-decreasing on J.
(iv) If f ′(x) ≤ 0 for all x ∈ Int J, then f is non-increasing on J.

https://mathinsight.org/applet/derivative_
function
https://www.geogebra.org/m/mCTqH7u4
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Theorem 9 (l’Hospital’s rule)
Suppose that functions f and g have finite derivatives on some
punctured neighbourhood of a ∈ R∗ and the limit lim

x→a

f ′(x)
g′(x) exist.

Suppose further that one of the following conditions hold:
(i) lim

x→a
f (x) = lim

x→a
g(x) = 0,

(ii) lim
x→a

|g(x)| = +∞.

Then the limit lim
x→a

f (x)
g(x) exists and

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

Example

limx→1
x2−1

2x2−x−1 , limx→∞
x
ex , limx→0+ x log x
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Exercise

lim
x→∞

ln x
x

=

A ∞ B 0 C 1 D ̸ ∃

Exercise
Decide, when it is a good idea to use l’Hospital’s rule:

A lim
x→π

cos x
x

B lim
x→∞

e−xx2

C lim
x→0+

e−
1
x

x

D lim
x→0

arctan x
x

E
lim
x→0

sin x − x
cos(2x)− 1

B, D, E
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Exercise
Find

lim
x→4

f (x)
g(x)

.

A 4
B 1

C 0
D -1

E -2

Figure: Calculus: Single and Multivariable, 6th Ed., Hughes-Hallett,
col.

E
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Theorem 10 (computation of a one-sided derivative)
Suppose that a function f is continuous from the right at a ∈ R
and the limit lim

x→a+
f ′(x) exists. Then the derivative f ′+(a) exists

and
f ′+(a) = lim

x→a+
f ′(x).

Example

Let f = x|x|. Find f ′.
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Convex and concave functions

Inspired by: realisticky.cz
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Convex and concave functions

Figure: https://www.math24.net/convex-functions/
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Figure: https://math.stackexchange.com/questions/3399/why-does-
convex-function-mean-concave-up
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Convex combination

2 x1 x
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Convex combination

2 x1 x

1 · x1 + 0 · x2 = x1 + 0 · (x2 − x1) = x1
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Convex combination

2 x1 x

0 · x1 + 1 · x2 = x1 + 1 · (x2 − x1) = x2
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Convex combination

2 x1 x

1
2

x1 +
1
2

x2 = x1 +
1
2
(x2 − x1)

Mathematics I - Derivatives 31 / 50



Convex combination

2 x1 x

3
4

x1 +
1
4

x2 = x1 +
1
4
(x2 − x1)
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Convex combination

2 x1 x

1
4

x1 +
3
4

x2 = x1 +
3
4
(x2 − x1)
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Convex combination

2 x1 x

λx1 + (1 − λ)x2 = x1 + (1 − λ)(x2 − x1), λ ∈ [0, 1]
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Definition
We say that a function f is

convex on an interval I if

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2),

for each x1, x2 ∈ I and each λ ∈ [0, 1];
concave on an interval I if

f (λx1 + (1 − λ)x2) ≥ λf (x1) + (1 − λ)f (x2),

for each x1, x2 ∈ I and each λ ∈ [0, 1];
strictly convex on an interval I if

f (λx1 + (1 − λ)x2) < λf (x1) + (1 − λ)f (x2),

for each x1, x2 ∈ I, x1 ̸= x2 and each λ ∈ (0, 1);
strictly concave on an interval I if

f (λx1 + (1 − λ)x2) > λf (x1) + (1 − λ)f (x2).

for each x1, x2 ∈ I, x1 ̸= x2 and each λ ∈ (0, 1).
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)2f(x

)1f(x

2 x1 x
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Lemma 11
A function f is convex on an interval I if and only if

f (x2)− f (x1)

x2 − x1
≤ f (x3)− f (x2)

x3 − x2

for each three points x1, x2, x3 ∈ I, x1 < x2 < x3.

)2f(x

2 x

)3f(x

)1f(x

3 x1 x

)2f(x )1f(x

2 x1 x
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Definition
Suppose that a function f has a finite derivative on some
neighbourhood of a ∈ R. The second derivative of f at a is
defined by

f ′′(a) = lim
h→0

f ′(a + h)− f ′(a)
h

if the limit exists.

Let n ∈ N and suppose that f has a finite nth derivative (denoted
by f (n)) on some neighbourhood of a ∈ R. Then the (n + 1)th
derivative of f at a is defined by

f (n+1)(a) = lim
h→0

f (n)(a + h)− f (n)(a)
h

if the limit exists.
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Theorem 12 (second derivative and convexity)
Let a, b ∈ R∗, a < b, and suppose that a function f has a finite
second derivative on the interval (a, b).

(i) If f ′′(x) > 0 for each x ∈ (a, b), then f is strictly convex on
(a, b).

(ii) If f ′′(x) < 0 for each x ∈ (a, b), then f is strictly concave
on (a, b).

(iii) If f ′′(x) ≥ 0 for each x ∈ (a, b), then f is convex on (a, b).
(iv) If f ′′(x) ≤ 0 for each x ∈ (a, b), then f is concave on (a, b).

https://www.geogebra.org/m/rqebuwyw
https:
//www.khanacademy.org/math/ap-calculus-ab/
ab-diff-analytical-applications-new/
ab-5-9/e/
connecting-function-and-derivatives
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Definition
Suppose that a function f has a finite derivative at a ∈ R and let
Ta denote the tangent to the graph of f at [a, f (a)]. We say that
the point [x, f (x)] lies below the tangent Ta if

f (x) < f (a) + f ′(a) · (x − a).

We say that the point [x, f (x)] lies above the tangent Ta if the
opposite inequality holds.
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Figure: https://www.math24.net/convex-functions/
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Definition
Suppose that a function f has a finite derivative at a ∈ R and let
Ta denote the tangent to the graph of f at [a, f (a)]. We say that a
is an inflection point of f if there is ∆ > 0 such that

(i) ∀x ∈ (a −∆, a) : [x, f (x)] lies below the tangent Ta,
(ii) ∀x ∈ (a, a +∆): [x, f (x)] lies above the tangent Ta,
or

(i) ∀x ∈ (a −∆, a) : [x, f (x)] lies above the tangent Ta,
(ii) ∀x ∈ (a, a +∆): [x, f (x)] lies below the tangent Ta.
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https://en.wikipedia.org/wiki/Inflection_
point#/media/File:Animated_illustration_
of_inflection_point.gif
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Theorem 13 (necessary condition for inflection)

Let a ∈ R be an inflection point of a function f . Then f ′′(a)
either does not exist or equals zero.

Mathematics I - Derivatives 41 / 50



Theorem 14 (necessary condition for inflection)

Let a ∈ R be an inflection point of a function f . Then f ′′(a)
either does not exist or equals zero.

(x4 − x)′′ = 12x2

Figure:
https://commons.wikimedia.org/wiki/File:X to the 4th minus x.svg
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Theorem 15 (necessary condition for inflection)

Let a ∈ R be an inflection point of a function f . Then f ′′(a)
either does not exist or equals zero.

Theorem 16 (sufficient condition for inflection)
Suppose that a function f has a continuous first derivative on an
interval (a, b) and z ∈ (a, b). Suppose further that

∀x ∈ (a, z) : f ′′(x) > 0,
∀x ∈ (z, b) : f ′′(x) < 0.

Then z is an inflection point of f .
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Asymptote

Definition
The line which is a graph of an affine function x 7→ kx + q,
k, q ∈ R, is called an asymptote of the function f at +∞ (resp.
v −∞) if

lim
x→+∞

(f (x)− kx − q) = 0, (resp. lim
x→−∞

(f (x)− kx − q) = 0).
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Definition
The line which is a graph of an affine function x 7→ kx + q,
k, q ∈ R, is called an asymptote of the function f at +∞ (resp.
v −∞) if

lim
x→+∞

(f (x)− kx − q) = 0, (resp. lim
x→−∞

(f (x)− kx − q) = 0).

Proposition 17
A function f has an asymptote at +∞ given by the affine
function x 7→ kx + q if and only if

lim
x→+∞

f (x)
x

= k ∈ R and lim
x→+∞

(f (x)− kx) = q ∈ R.
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Exercise
Find the asymptote of the function f (x) = ex

y = 0, ̸ ∃
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Exercise
Find the asymptote of the function f (x) = x + arctan(x2 − 1)

y = x + π
2
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Exercise
Let us assume that a function y = f (x) is continuous at R.
Sketch f .

Figure: Calculus, Hughes-Hallet, Gleason, McCallum
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Exercise
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Investigation of a function

1. Determine the domain and discuss the continuity of the
function.

2. Find out symmetries: oddness, evenness, periodicity.
3. Find the limits at the “endpoints of the domain”.
4. Investigate the first derivative, find the intervals of

monotonicity and local and global extrema. Determine the
range.

5. Find the second derivative and determine the intervals
where the function is concave or convex. Find the
inflection points.

6. Find the asymptotes of the function.
7. Draw the graph of the function.
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