Mathematics I - Derivatives

21/22

Mathematics I - Derivatives

Exercise (Motivation)

The farmer would like to enclose a rectangular place for sheep. She has 40 meters of fence and land by the river. What is the biggest possible area of the place?

Figure: https://www.cbr.com/shaun-the-sheep-best-worst-episodes-imdb/

Mathematics I - Derivative

Derivatives

Derivatives

Limit Definition of the Derivative f'(c)

Figure: https://ginsyblog.wordpress.com/2017/02/04/how-to-solve-the-problems-of-differential-calculus/

Definition

Let *f* be a function and $a \in \mathbb{R}$. Then

• the derivative of the function f at the point a is defined by

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

if the limit exists.

Figure: https://cs.wikipedia.org/wiki/Derivace

Definition

Let *f* be a function and $a \in \mathbb{R}$. Then

• the derivative of the function f at the point a is defined by

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h},$$

• the derivative of f at a from the right is defined by

$$f'_{+}(a) = \lim_{h \to 0+} \frac{f(a+h) - f(a)}{h},$$

• the derivative of f at a from the left is defined by

$$f'_{-}(a) = \lim_{h \to 0-} \frac{f(a+h) - f(a)}{h},$$

if the respective limits exist.

Example

Explore the derivatives of the functions

f(x) = k, k ∈ ℝ
f(x) = x
f(x) = x²
f(x) = ³√x, a = 0
f(x) = |x|, a = 0
f(x) = sgn x, a = 0

Definition

Suppose that the function f has a finite derivative at a point $a \in \mathbb{R}$. The line

$$T_a = \left\{ [x, y] \in \mathbb{R}^2; \ y = f(a) + f'(a)(x - a) \right\}.$$

is called the tangent to the graph of f at the point [a, f(a)].

https: //www.desmos.com/calculator/l0puzw0zvm

Exercise

Find the derivative of a function $f(x) = x^2$ at the point a = 2.

Examples

Mathematics I - Derivatives

8/50

2 3 4

Theorem 1

Suppose that the function f has a finite derivative at a point $a \in \mathbb{R}$. Then f is continuous at a.

 $(x^3 + 2x^2 - 3)' = 3x^2 + 4x$

 $(\operatorname{sgn} x)'(0) = \infty$

 $\left(\sqrt[3]{x}\right)' = \frac{1}{3\sqrt[3]{x^2}}$

|x|' at 0 does not exist

Mathematics I - Derivatives

Theorem 2 (arithmetics of derivatives)

Suppose that the functions f and g have finite derivatives at $a \in \mathbb{R}$ and let $\alpha \in \mathbb{R}$. Then

(i)
$$(f + g)'(a) = f'(a) + g'(a)$$
,
(ii) $(\alpha f)'(a) = \alpha \cdot f'(a)$,
(iii) $(fg)'(a) = f'(a)g(a) + f(a)g'(a)$,
(iv) if $g(a) \neq 0$, then

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}$$

 $f = \cos x \sin x$. Find f'.

A
$$\cos^2 x$$
C $\cos^2 x - \sin^2 x$ B $\sin^2 x$ D $-\sin x \cos x$

$$D = \sin x \cos x$$

 $f = \cos x \sin x. \text{ Find } f'.$ A $\cos^2 x$ B $\sin^2 x$ C $\cos^2 x - \sin^2 x$ D $-\sin x \cos x$ C

 $f = \cos x \sin x$. Find f'.

A
$$\cos^2 x$$
 C $\cos^2 x - \sin^2 x$

B
$$\sin^2 x$$
 D $-\sin x \cos x$

С

Exercise $f = e^7$. Find f'.A $7e^6$ B e^7 C 0

 $f = \cos x \sin x$. Find f'.

A
$$\cos^2 x$$
 C $\cos^2 x - \sin^2 x$

B
$$\sin^2 x$$
 D $-\sin x \cos x$

С

Exercise $f = e^7$. Find f'.A $7e^6$ B e^7 C 0C

$$f = \frac{e^{x}}{x^{2}} \operatorname{Find} f'.$$
A $\frac{e^{x}}{2x}$
B $\frac{e^{x}(x-2)}{x^{3}}$
C $\frac{e^{x}x^{2}-2xe^{x}}{x^{4}}$
D $\frac{e^{x}2x+x^{2}e^{x}}{x^{4}}$

Mathematics I - Derivatives

$$f = \frac{e^{x}}{x^{2}} \operatorname{Find} f'.$$

A $\frac{e^{x}}{2x}$

B $\frac{e^{x}(x-2)}{x^{3}}$

C $\frac{e^{x}x^{2}-2xe^{x}}{x^{4}}$

D $\frac{e^{x}2x+x^{2}e^{x}}{x^{4}}$

B, C

Mathematics I - Derivatives

Theorem 3 (derivative of a compound function)

Suppose that the function f has a finite derivative at $y_0 \in \mathbb{R}$, the function g has a finite derivative at $x_0 \in \mathbb{R}$, and $y_0 = g(x_0)$. Then

$$(f \circ g)'(x_0) = f'(y_0) \cdot g'(x_0).$$

Theorem 3 (derivative of a compound function)

Suppose that the function f has a finite derivative at $y_0 \in \mathbb{R}$, the function g has a finite derivative at $x_0 \in \mathbb{R}$, and $y_0 = g(x_0)$. Then

$$(f \circ g)'(x_0) = f'(y_0) \cdot g'(x_0).$$

Exercise

- $f = \sin x + e^{\sin x}$ Find f'.
 - A $\cos x + e^{\cos x}$
 - **B** $\cos x + e^{\sin x}$
 - $C \cos x + \sin x e^{\cos x}$
 - **D** $\cos x + \cos x e^{\sin x}$

Theorem 3 (derivative of a compound function)

Suppose that the function f has a finite derivative at $y_0 \in \mathbb{R}$, the function g has a finite derivative at $x_0 \in \mathbb{R}$, and $y_0 = g(x_0)$. Then

$$(f \circ g)'(x_0) = f'(y_0) \cdot g'(x_0).$$

Exercise

- $f = \sin x + e^{\sin x}$ Find f'.
 - A $\cos x + e^{\cos x}$
 - **B** $\cos x + e^{\sin x}$
 - $C \cos x + \sin x e^{\cos x}$
 - $D \cos x + \cos x e^{\sin x}$

D

Theorem 4 (derivative of an inverse function)

Let f be a function continuous and strictly monotone on an interval (a, b) and suppose that it has a finite and non-zero derivative $f'(x_0)$ at $x_0 \in (a, b)$. Then the function f^{-1} has a derivative at $y_0 = f(x_0)$ and

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}.$$

Exercise (True or false?)

- 1. If f'(x) = g'(x), then f(x) = g(x). (For every *x*.)
- 2. If $f'(a) \neq g'(a)$, then $f(a) \neq g(a)$. (We are talking about particular point *a*.)

Exercise (True or false?)

- 1. If f'(x) = g'(x), then f(x) = g(x). (For every *x*.)
- 2. If $f'(a) \neq g'(a)$, then $f(a) \neq g(a)$. (We are talking about particular point *a*.) False. For example $f(x) = x^2$, $g(x) = x^2 + 4$. False. For example $f(x) = x^2$, g(x) = x.

Derivatives of elementary functions

•
$$(\operatorname{const.})' = 0$$
,
• $(x^n)' = nx^{n-1}, x \in \mathbb{R}, n \in \mathbb{N}; x \in \mathbb{R} \setminus \{0\}, n \in \mathbb{Z}, n < 0$,
• $(\log x)' = \frac{1}{x} \text{ for } x \in (0, +\infty)$,
• $(\exp x)' = \exp x \text{ for } x \in \mathbb{R}$,
• $(x^a)' = ax^{a-1} \text{ for } x \in (0, +\infty), a \in \mathbb{R}$,
• $(x^a)' = a^x \log a \text{ for } x \in \mathbb{R}, a \in \mathbb{R}, a > 0$,
• $(\sin x)' = \cos x \text{ for } x \in \mathbb{R}, a \in \mathbb{R}, a > 0$,
• $(\sin x)' = \cos x \text{ for } x \in \mathbb{R}, a \in \mathbb{R}, a > 0$,
• $(\cos x)' = -\sin x \text{ for } x \in \mathbb{R}, a \in \mathbb{R}, a > 0$,
• $(\cos x)' = -\sin x \text{ for } x \in \mathbb{R}, a \in \mathbb{R}, a > 0$,
• $(\cos x)' = -\sin x \text{ for } x \in (-\frac{\pi}{2}, \frac{\pi}{2}) + k\pi, k \in \mathbb{Z},$
• $(\cos x)' = -\frac{1}{\sin^2 x} \text{ for } x \in (0, \pi) + k\pi, k \in \mathbb{Z},$
• $(\operatorname{arcsin} x)' = \frac{1}{\sqrt{1-x^2}} \text{ for } x \in (-1, 1)$,
• $(\operatorname{arccos} x)' = -\frac{1}{\sqrt{1-x^2}} \text{ for } x \in (-1, 1)$,
• $(\operatorname{arccos} x)' = -\frac{1}{1+x^2} \text{ for } x \in \mathbb{R},$
• $(\operatorname{arccos} x)' = -\frac{1}{1+x^2} \text{ for } x \in \mathbb{R}.$

Theorem 5 (necessary condition for a local extremum)

Suppose that a function f has a local extremum at $x_0 \in \mathbb{R}$. If $f'(x_0)$ exists, then $f'(x_0) = 0$.

Mathematics I - Derivatives

|x|

x/2

Mathematics I - Derivatives

First Derivative Test for Local Extrema

FIGURE 3.21 A function's first derivative tells how the graph rises and falls.

Figure: http://slideplayer.com/slide/7555868/

Theorem 6 (Rolle)

Suppose that $a, b \in \mathbb{R}$, a < b, and a function f has the following properties:

- (i) *it is continuous on the interval* [*a*, *b*],
- (ii) *it has a derivative (finite or infinite) at every point of the open interval (a, b),*

$$(iii) f(a) = f(b).$$

Then there exists $\xi \in (a, b)$ satisfying $f'(\xi) = 0$.

Figure: https://commons.wikimedia.org/wiki/File:Rolle%27s theorem.svg

Theorem 7 (Lagrange, mean value theorem)

Suppose that $a, b \in \mathbb{R}$, a < b, a function f is continuous on an interval [a, b] and has a derivative (finite or infinite) at every point of the interval (a, b). Then there is $\xi \in (a, b)$ satisfying $f'(\xi) = \frac{f(b) - f(a)}{b - a}.$

Figure: https://en.wikipedia.org/wiki/File: Mittelwertsatz3.svg

Mathematics I - Derivatives

Theorem 8 (sign of the derivative and monotonicity)

Let $J \subset \mathbb{R}$ be a non-degenerate interval. Suppose that a function f is continuous on J and it has a derivative at every inner point of J (the set of all inner points of J is denoted by Int J).

(i) If f'(x) > 0 for all $x \in \text{Int } J$, then f is increasing on J.

(ii) If f'(x) < 0 for all $x \in \text{Int } J$, then f is decreasing on J.

(iii) If $f'(x) \ge 0$ for all $x \in \text{Int } J$, then f in non-decreasing on J.

(iv) If $f'(x) \le 0$ for all $x \in \text{Int } J$, then f is non-increasing on J.

https://mathinsight.org/applet/derivative_ function https://www.geogebra.org/m/mCTqH7u4

Theorem 9 (l'Hospital's rule)

Suppose that functions f and g have finite derivatives on some punctured neighbourhood of $a \in \mathbb{R}^*$ and the limit $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exist. Suppose further that one of the following conditions hold:

- (i) $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0,$ (ii) $\lim_{x \to a} |g(x)| = +\infty.$
- Then the limit $\lim_{x\to a} \frac{f(x)}{g(x)}$ exists and

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Example

$$\lim_{x \to 1} \frac{x^{2}-1}{2x^{2}-x-1}, \lim_{x \to \infty} \frac{x}{e^{x}}, \lim_{x \to 0+} x \log x$$

Mathematics I - Derivatives

Exercise			
$\lim_{x\to\infty}\frac{\ln x}{x} =$			
A ∞	B 0	<mark>C</mark> 1	D A

Exercise			
$\lim_{x\to\infty}\frac{\ln x}{x} =$			
A ∞	B 0	C 1	D∄

Decide, when it is a good idea to use l'Hospital's rule:

Exercise			
$\lim_{x\to\infty}\frac{\ln x}{x} =$			
A ∞	B 0	C 1	DA

Decide, when it is a good idea to use l'Hospital's rule:

B, D, E

Mathematics I - Derivatives

Figure: Calculus: Single and Multivariable, 6th Ed., Hughes-Hallett, col.

Figure: Calculus: Single and Multivariable, 6th Ed., Hughes-Hallett, col.

Theorem 10 (computation of a one-sided derivative)

Suppose that a function f is continuous from the right at $a \in \mathbb{R}$ and the limit $\lim_{x\to a+} f'(x)$ exists. Then the derivative $f'_+(a)$ exists and

$$f'_{+}(a) = \lim_{x \to a+} f'(x).$$

Example

Let f = x|x|. Find f'.

Convex and concave functions

Convex and concave functions

Figure: https://www.math24.net/convex-functions/

Mathematics I - Derivatives

Figure: https://math.stackexchange.com/questions/3399/why-doesconvex-function-mean-concave-up

Mathematics I - Derivatives

Definition

We say that a function f is

• convex on an interval *I* if

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2),$$

for each $x_1, x_2 \in I$ and each $\lambda \in [0, 1]$;

• concave on an interval *I* if

$$f(\lambda x_1 + (1-\lambda)x_2) \ge \lambda f(x_1) + (1-\lambda)f(x_2),$$

for each $x_1, x_2 \in I$ and each $\lambda \in [0, 1]$;

• strictly convex on an interval *I* if

$$f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda)f(x_2),$$

for each $x_1, x_2 \in I$, $x_1 \neq x_2$ and each $\lambda \in (0, 1)$;

• strictly concave on an interval *I* if

$$f(\lambda x_1 + (1-\lambda)x_2) > \lambda f(x_1) + (1-\lambda)f(x_2).$$

for each $x_1, x_2 \in I$, $x_1 \neq x_2$ and each $\lambda \in (0, 1)$.

33/50

e +) 4 (+

33/50

ક રાષભ

Mathematics I - Derivatives

Lemma 11

A function f is convex on an interval I if and only if

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

for each three points $x_1, x_2, x_3 \in I$, $x_1 < x_2 < x_3$.

Mathematics I - Derivatives

Definition

Suppose that a function f has a finite derivative on some neighbourhood of $a \in \mathbb{R}$. The second derivative of f at a is defined by

$$f''(a) = \lim_{h \to 0} \frac{f'(a+h) - f'(a)}{h}$$

if the limit exists.

Definition

Suppose that a function f has a finite derivative on some neighbourhood of $a \in \mathbb{R}$. The second derivative of f at a is defined by

$$f''(a) = \lim_{h \to 0} \frac{f'(a+h) - f'(a)}{h}$$

if the limit exists.

Let $n \in \mathbb{N}$ and suppose that f has a finite nth derivative (denoted by $f^{(n)}$) on some neighbourhood of $a \in \mathbb{R}$. Then the (n + 1)th derivative of f at a is defined by

$$f^{(n+1)}(a) = \lim_{h \to 0} \frac{f^{(n)}(a+h) - f^{(n)}(a)}{h}$$

if the limit exists.

Theorem 12 (second derivative and convexity)

Let $a, b \in \mathbb{R}^*$, a < b, and suppose that a function f has a finite second derivative on the interval (a, b).

- (i) If f''(x) > 0 for each $x \in (a, b)$, then f is strictly convex on (a, b).
- (ii) If f''(x) < 0 for each $x \in (a, b)$, then f is strictly concave on (a, b).
- (iii) If $f''(x) \ge 0$ for each $x \in (a, b)$, then f is convex on (a, b). (iv) If $f''(x) \le 0$ for each $x \in (a, b)$, then f is concave on (a, b).

https://www.geogebra.org/m/rqebuwyw
https:

//www.khanacademy.org/math/ap-calculus-ab/ ab-diff-analytical-applications-new/ ab-5-9/e/

connecting-function-and-derivatives

Definition

Suppose that a function *f* has a finite derivative at $a \in \mathbb{R}$ and let T_a denote the tangent to the graph of *f* at [a, f(a)]. We say that the point [x, f(x)] lies below the tangent T_a if

$$f(x) < f(a) + f'(a) \cdot (x - a).$$

We say that the point [x, f(x)] lies above the tangent T_a if the opposite inequality holds.

Figure: https://www.math24.net/convex-functions/

Definition

Suppose that a function f has a finite derivative at $a \in \mathbb{R}$ and let T_a denote the tangent to the graph of f at [a, f(a)]. We say that a is an inflection point of f if there is $\Delta > 0$ such that

(i)
$$\forall x \in (a - \Delta, a) : [x, f(x)]$$
 lies below the tangent T_a ,

(ii) $\forall x \in (a, a + \Delta) : [x, f(x)]$ lies above the tangent T_a ,

or

(i) ∀x ∈ (a − Δ, a): [x, f(x)] lies above the tangent T_a,
(ii) ∀x ∈ (a, a + Δ): [x, f(x)] lies below the tangent T_a.

https://en.wikipedia.org/wiki/Inflection_ point#/media/File:Animated_illustration_ of_inflection_point.gif

Theorem 13 (necessary condition for inflection)

Let $a \in \mathbb{R}$ be an inflection point of a function f. Then f''(a) either does not exist or equals zero.

Theorem 14 (necessary condition for inflection)

Let $a \in \mathbb{R}$ be an inflection point of a function f. Then f''(a) either does not exist or equals zero.

 $(x^4 - x)'' = 12x^2$

Figure: https://commons.wikimedia.org/wiki/File:X_to_the_4th_minus_x.svg

Mathematics I - Derivatives

Theorem 15 (necessary condition for inflection)

Let $a \in \mathbb{R}$ be an inflection point of a function f. Then f''(a) either does not exist or equals zero.

Theorem 15 (necessary condition for inflection)

Let $a \in \mathbb{R}$ be an inflection point of a function f. Then f''(a) either does not exist or equals zero.

Theorem 16 (sufficient condition for inflection)

Suppose that a function f has a continuous first derivative on an interval (a, b) and $z \in (a, b)$. Suppose further that

•
$$\forall x \in (a,z) : f''(x) > 0$$
,

•
$$\forall x \in (z,b) : f''(x) < 0.$$

Then z is an inflection point of f.

Asymptote

Mathematics I - Derivatives

Asymptote

Definition

The line which is a graph of an affine function $x \mapsto kx + q$, $k, q \in \mathbb{R}$, is called an asymptote of the function f at $+\infty$ (resp. $v - \infty$) if

$$\lim_{x\to+\infty} (f(x)-kx-q)=0, \quad (\text{resp. } \lim_{x\to-\infty} (f(x)-kx-q)=0).$$

Definition

The line which is a graph of an affine function $x \mapsto kx + q$, $k, q \in \mathbb{R}$, is called an asymptote of the function f at $+\infty$ (resp. $v - \infty$) if

$$\lim_{x \to +\infty} (f(x) - kx - q) = 0, \quad (\text{resp. } \lim_{x \to -\infty} (f(x) - kx - q) = 0).$$

Proposition 17

A function *f* has an asymptote at $+\infty$ given by the affine function $x \mapsto kx + q$ if and only if

$$\lim_{x \to +\infty} \frac{f(x)}{x} = k \in \mathbb{R} \quad and \quad \lim_{x \to +\infty} (f(x) - kx) = q \in \mathbb{R}.$$

Find the asymptote of the function $f(x) = e^x$

Find the asymptote of the function $f(x) = e^x$ $y = 0, \not\exists$

Mathematics I - Derivatives

Find the asymptote of the function $f(x) = x + \arctan(x^2 - 1)$
Find the asymptote of the function $f(x) = x + \arctan(x^2 - 1)$ $y = x + \frac{\pi}{2}$

Mathematics I - Derivatives

47/50

Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

Mathematics I - Derivatives

Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

Mathematics I - Derivatives

Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

Mathematics I - Derivative

49/50

Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

Mathematics I - Derivatives

49/50

Investigation of a function

- 1. Determine the domain and discuss the continuity of the function.
- 2. Find out symmetries: oddness, evenness, periodicity.
- 3. Find the limits at the "endpoints of the domain".
- 4. Investigate the first derivative, find the intervals of monotonicity and local and global extrema. Determine the range.
- 5. Find the second derivative and determine the intervals where the function is concave or convex. Find the inflection points.
- 6. Find the asymptotes of the function.
- 7. Draw the graph of the function.