Mathematics I - Functions 2

23/24

Limit of a function

Definition

Let $c \in \mathbb{R}$ and $\varepsilon>0$. We define

- a neighbourhood of a point c with radius ε by

$$
B(c, \varepsilon)=(c-\varepsilon, c+\varepsilon),
$$

Limit of a function

Definition

Let $c \in \mathbb{R}$ and $\varepsilon>0$. We define

- a neighbourhood of a point c with radius ε by

$$
B(c, \varepsilon)=(c-\varepsilon, c+\varepsilon)
$$

- a punctured neighbourhood of a point c with radius ε by $P(c, \varepsilon)=(c-\varepsilon, c+\varepsilon) \backslash\{c\}$.

Definition

We say that $A \in \mathbb{R}$ is a limit of a function f at a point $c \in \mathbb{R}$ if

$$
\forall \varepsilon \in \mathbb{R}, \varepsilon>0 \exists \delta \in \mathbb{R}, \delta>0 \forall x \in P(c, \delta): f(x) \in B(A, \varepsilon)
$$

The fact that f has a limit $A \in \mathbb{R}$ at $c \in \mathbb{R}$ is denoted by
$\lim _{x \rightarrow c} f(x)=A$.
$x \rightarrow c$
https://www.geogebra.org/m/tCnmrWg2
https://www.geogebra.org/m/wfdvtRTb

Definition

We say that $A \in \mathbb{R}$ is a limit of a function f at a point $c \in \mathbb{R}$ if

$$
\forall \varepsilon \in \mathbb{R}, \varepsilon>0 \exists \delta \in \mathbb{R}, \delta>0 \forall x \in P(c, \delta): f(x) \in B(A, \varepsilon)
$$

The fact that f has a limit $A \in \mathbb{R}$ at $c \in \mathbb{R}$ is denoted by
$\lim _{x \rightarrow c} f(x)=A$.
$x \rightarrow c$
https://www.geogebra.org/m/tCnmrWg2
https://www.geogebra.org/m/wfdvtRTb

Exercise

https:
//www.geogebra.org/calculator/xjkuxemz

Theorem 1 (uniqueness of a limit)

Let f be a function and $c \in \mathbb{R}$. Then f has a most one limit $A \in \mathbb{R}$ at c.

Exercise

Find $\lim _{x \rightarrow 0} f(x)$
A -3
B 0
C 5
D 7
$\mathrm{E} \infty$

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 0} f(x)$
A -3
B 0
C 5
D 7
$\mathrm{E} \infty$

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 2} f(x)$
A ∞
C 2
B 3
D 0

E does not exist

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 2} f(x)$
A ∞
C 2
B 3
D 0

E does not exist

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 4} f(x)$
A 4
C 0
E does
exists
B 8
D ∞
not

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 4} f(x)$
A 4
C 0
E does
exists
B 8
D ∞
not

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Definition

Let $\varepsilon>0$. A neighbourhood and a punctured neighbourhood of $+\infty$ (resp. $-\infty$) is defined as follows:

$$
\begin{aligned}
& P(+\infty, \varepsilon)=B(+\infty, \varepsilon)=(1 / \varepsilon,+\infty) \\
& P(-\infty, \varepsilon)=B(-\infty, \varepsilon)=(-\infty,-1 / \varepsilon)
\end{aligned}
$$

Example

$$
\begin{aligned}
P\left(+\infty, \frac{1}{10}\right) & =B\left(+\infty, \frac{1}{10}\right)=(10,+\infty) \\
P\left(-\infty, \frac{1}{200}\right) & =B\left(-\infty, \frac{1}{200}\right)=(-\infty,-200)
\end{aligned}
$$

Definition

Let $\varepsilon>0$. A neighbourhood and a punctured neighbourhood of $+\infty$ (resp. $-\infty$) is defined as follows:

$$
\begin{aligned}
& P(+\infty, \varepsilon)=B(+\infty, \varepsilon)=(1 / \varepsilon,+\infty) \\
& P(-\infty, \varepsilon)=B(-\infty, \varepsilon)=(-\infty,-1 / \varepsilon)
\end{aligned}
$$

Definition

We say that $A \in \mathbb{R}^{*}$ is a limit of a function f at $c \in \mathbb{R}^{*}$ if

$$
\forall \varepsilon \in \mathbb{R}, \varepsilon>0 \exists \delta \in \mathbb{R}, \delta>0 \forall x \in P(c, \delta): f(x) \in B(A, \varepsilon)
$$

Definition

Let $\varepsilon>0$. A neighbourhood and a punctured neighbourhood of $+\infty$ (resp. $-\infty$) is defined as follows:

$$
\begin{aligned}
& P(+\infty, \varepsilon)=B(+\infty, \varepsilon)=(1 / \varepsilon,+\infty) \\
& P(-\infty, \varepsilon)=B(-\infty, \varepsilon)=(-\infty,-1 / \varepsilon)
\end{aligned}
$$

Definition

We say that $A \in \mathbb{R}^{*}$ is a limit of a function f at $c \in \mathbb{R}^{*}$ if

$$
\forall \varepsilon \in \mathbb{R}, \varepsilon>0 \exists \delta \in \mathbb{R}, \delta>0 \forall x \in P(c, \delta): f(x) \in B(A, \varepsilon)
$$

Theorem 1 holds also for $c \in \mathbb{R}^{*}, A \in \mathbb{R}^{*}$, so we can again use the notation $\lim _{x \rightarrow c} f(x)=A$.

Exercise

https:
//www.geogebra.org/calculator/xjkuxemz

Definition

Let $c \in \mathbb{R}$ and $\varepsilon>0$. We define

- a right neighbourhood of c by $B^{+}(c, \varepsilon)=[c, c+\varepsilon)$,
- a left neighbourhood of c by $B^{-}(c, \varepsilon)=(c-\varepsilon, c]$,
- a right punctured neighbourhood of c by $P^{+}(c, \varepsilon)=(c, c+\varepsilon)$,
- a left punctured neighbourhood of c by

$$
P^{-}(c, \varepsilon)=(c-\varepsilon, c)
$$

- a left neighbourhood and left punctured neighbourhood of $+\infty$ by $B^{-}(+\infty, \varepsilon)=P^{-}(+\infty, \varepsilon)=(1 / \varepsilon,+\infty)$,
- a right neighbourhood and right punctured neighbourhood of $-\infty$ by $B^{+}(-\infty, \varepsilon)=P^{+}(-\infty, \varepsilon)=(-\infty,-1 / \varepsilon)$.

Exercise

Find
A $B^{+}(1,1 / 2)$
B $P^{-}(-2,1 / 4)$
C $B^{-}(+\infty, 1 / 50)$
D $P^{+}(-\infty, 1 / 42)$

Exercise

Find
A $B^{+}(1,1 / 2)$
B $P^{-}(-2,1 / 4)$
C $B^{-}(+\infty, 1 / 50)$
D $P^{+}(-\infty, 1 / 42)$
A $[1,1.5)$
B $(-2.25,-2)$
C $(50, \infty)$
D $(-\infty,-42)$

Definition

Let $A \in \mathbb{R}^{*}, c \in \mathbb{R} \cup\{-\infty\}$. We say that a function f has a limit from the right at c equal to $A \in \mathbb{R}^{*}$ (denoted by $\left.\lim _{x \rightarrow++} f(x)=A\right)$ if

$$
\forall \varepsilon \in \mathbb{R}, \varepsilon>0 \exists \delta \in \mathbb{R}, \delta>0 \forall x \in P^{+}(c, \delta): f(x) \in B(A, \varepsilon) .
$$

Analogously we define the notion of limit from the left at $c \in \mathbb{R} \cup\{+\infty\}$ and we use the notation $\lim _{x \rightarrow c-} f(x)$.

Definition

Let $A \in \mathbb{R}^{*}, c \in \mathbb{R} \cup\{-\infty\}$. We say that a function f has a limit from the right at c equal to $A \in \mathbb{R}^{*}$ (denoted by $\lim _{x \rightarrow c+} f(x)=A$) if

$$
\forall \varepsilon \in \mathbb{R}, \varepsilon>0 \exists \delta \in \mathbb{R}, \delta>0 \forall x \in P^{+}(c, \delta): f(x) \in B(A, \varepsilon)
$$

Analogously we define the notion of limit from the left at $c \in \mathbb{R} \cup\{+\infty\}$ and we use the notation $\lim _{x \rightarrow c-} f(x)$.

Remark

Let $c \in \mathbb{R}, A \in \mathbb{R}^{*}$. Then

$$
\lim _{x \rightarrow c} f(x)=A \Leftrightarrow\left(\lim _{x \rightarrow c+} f(x)=A \& \lim _{x \rightarrow c-} f(x)=A\right) .
$$

Exercise

Find $\lim _{x \rightarrow 2-} f(x)$.
Find $\lim _{x \rightarrow 2+} f(x)$.
A 0
B 1
C 2
D 3
E \#

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 2-} f(x)$.
Find $\lim _{x \rightarrow 2+} f(x)$.
A 0
B 1
C 2
D 3
E \#

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Definition

We say that a function f is continuous at a point $c \in \mathbb{R}$ if

$$
\lim _{x \rightarrow c} f(x)=f(c) .
$$

Definition

Let $c \in \mathbb{R}$. We say that a function f is continuous at c from the right (from the left, resp.) if $\lim _{x \rightarrow c+} f(x)=f(c)$ $\left(\lim _{x \rightarrow c-} f(x)=f(c)\right.$, resp. $)$.

Theorem 2

Let f has a finite limit at $c \in \mathbb{R}^{*}$. Then there exists $\delta>0$ such that f is bounded on $P(c, \delta)$.

Theorem 3 (arithmetics of limits)

Let $c \in \mathbb{R}^{*}, \lim _{x \rightarrow c} f(x)=A \in \mathbb{R}^{*}$ and $\lim _{x \rightarrow c} g(x)=B \in \mathbb{R}^{*}$. Then
(i) $\lim _{x \rightarrow c}(f(x)+g(x))=A+B$ if the expression $A+B$ is defined,
(ii) $\lim _{x \rightarrow c} f(x) g(x)=A B$ if the expression $A B$ is defined, (iii) $\lim _{x \rightarrow c} f(x) / g(x)=A / B$ if the expression A / B is defined.

Exercise

Find $\lim _{x \rightarrow 1+} f(x)+2 g(x)$
A 13
C 8
E 3
B 9
D 6

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 1+} f(x)+2 g(x)$
A 13
C 8
E 3
B 9
D 6

Figure: Calculus: Single and Multivariable, Hughes-Hallet

D

Exercise

Find $\lim _{x \rightarrow 1-} f(x) g(x)$
A 20
C 4
B 15
D 3

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find $\lim _{x \rightarrow 1-} f(x) g(x)$
A 20
C 4
B 15
D 3

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Corollary

Suppose that the functions f and g are continuous at $c \in \mathbb{R}$. Then also the functions $f+g$ and $f g$ are continuous at c. If moreover $g(c) \neq 0$, then also the function f / g is continuous at c.

Corollary

Suppose that the functions f and g are continuous at $c \in \mathbb{R}$. Then also the functions $f+g$ and $f g$ are continuous at c. If moreover $g(c) \neq 0$, then also the function f / g is continuous at c.

Exercise

Which functions are continuous at \mathbb{R} ?
A $x^{3}+\sin (4-x)$
C $\frac{2+x}{e^{x}}$
$\mathrm{E} \ln \left(2+x^{2}\right)$
B $\frac{e^{x}}{2+x}$
D $\cos \left(e^{\sqrt[3]{x}}\right)$

Corollary

Suppose that the functions f and g are continuous at $c \in \mathbb{R}$. Then also the functions $f+g$ and $f g$ are continuous at c. If moreover $g(c) \neq 0$, then also the function f / g is continuous at c.

Exercise

Which functions are continuous at \mathbb{R} ?
A $x^{3}+\sin (4-x)$
C $\frac{2+x}{e^{x}}$
$\mathrm{E} \ln \left(2+x^{2}\right)$
B $\frac{e^{x}}{2+x}$
D $\cos \left(e^{\sqrt[3]{x}}\right)$

A, C, D, E

Theorem 4

Let $c \in \mathbb{R}^{*}, \lim _{x \rightarrow c} g(x)=0, \lim _{x \rightarrow c} f(x)=A \in \mathbb{R}^{*}$ and $A>0$. If there exists $\eta>0$ such that the function g is positive on $P(c, \eta)$, then $\lim _{x \rightarrow c}(f(x) / g(x))=+\infty$.

Theorem 5 (limits and inequalities)

Suppose that $c \in \mathbb{R}^{*}$ and $\lim _{x \rightarrow c} f(x), \lim _{x \rightarrow c} g(x)$ exist. (i) If $\lim _{x \rightarrow c} f(x)>\lim _{x \rightarrow c} g(x)$, then there exists $\delta>0$ such that

$$
\forall x \in P(c, \delta): f(x)>g(x)
$$

Theorem 5 (limits and inequalities)

Suppose that $c \in \mathbb{R}^{*}$ and $\lim _{x \rightarrow c} f(x), \lim _{x \rightarrow c} g(x)$ exist. (i) If $\lim _{x \rightarrow c} f(x)>\lim _{x \rightarrow c} g(x)$, then there exists $\delta>0$ such that

$$
\forall x \in P(c, \delta): f(x)>g(x)
$$

(ii) If there exists $\delta>0$ such that $\forall x \in P(c, \delta): f(x) \leq g(x)$, then

$$
\lim _{x \rightarrow c} f(x) \leq \lim _{x \rightarrow c} g(x) .
$$

Theorem 5 (limits and inequalities)

Suppose that $c \in \mathbb{R}^{*}$ and $\lim _{x \rightarrow c} f(x), \lim _{x \rightarrow c} g(x)$ exist.
(i) If $\lim _{x \rightarrow c} f(x)>\lim _{x \rightarrow c} g(x)$, then there exists $\delta>0$ such that

$$
\forall x \in P(c, \delta): f(x)>g(x)
$$

(ii) If there exists $\delta>0$ such that $\forall x \in P(c, \delta): f(x) \leq g(x)$, then

$$
\lim _{x \rightarrow c} f(x) \leq \lim _{x \rightarrow c} g(x)
$$

(iii) (two policemen/sandwich theorem) Suppose that there exists $\eta>0$ such that

$$
\forall x \in P(c, \eta): f(x) \leq h(x) \leq g(x)
$$

If moreover $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=A \in \mathbb{R}^{*}$, then the limit $\lim _{x \rightarrow c} h(x)$ also exists and equals A.
$\frac{x^{2}}{3} \cos (8 x+3) \quad \frac{\sin (4 x)}{x}$

https:
//www.geogebra.org/calculator/dvqdpqag

Corollary

Let $c \in \mathbb{R}^{*}, \lim _{x \rightarrow c} f(x)=0$ and suppose there exists $\eta>0$ such that g is bounded on $P(c, \eta)$. Then $\lim _{x \rightarrow c}(f(x) g(x))=0$.

Example

$$
\lim _{x \rightarrow 0}(\sin x)(\operatorname{sgn} x)
$$

Theorem 6 (limit of a composition)

Let $c, A, B \in \mathbb{R}^{*}, \lim _{x \rightarrow c} g(x)=A, \lim _{y \rightarrow A} f(y)=B$ and at least one of the following conditions is satisfied:
(I) $\exists \eta \in \mathbb{R}, \eta>0 \forall x \in P(c, \eta): g(x) \neq A$,
(C) the function f is continuous at A.

Then

$$
\lim _{x \rightarrow c} f(g(x))=B
$$

Theorem 6 (limit of a composition)

Let $c, A, B \in \mathbb{R}^{*}, \lim _{x \rightarrow c} g(x)=A, \lim _{y \rightarrow A} f(y)=B$ and at least one of the following conditions is satisfied:
(I) $\exists \eta \in \mathbb{R}, \eta>0 \forall x \in P(c, \eta): g(x) \neq A$,
(C) the function f is continuous at A.

Then

$$
\lim _{x \rightarrow c} f(g(x))=B
$$

Corollary

Suppose that the function g is continuous at $c \in \mathbb{R}$ and the function f is continuous at $g(c)$. Then the function $f \circ g$ is continuous at c.

Exercise

$$
\begin{array}{lllll}
& & & \\
\lim _{x \rightarrow \infty} \ln \left(\frac{x-1}{x+2}\right) & & \\
\text { A } 0 & \text { В } 1 & \text { C } \ln 1 & \text { D }-\frac{1}{2} & \text { E } \infty \\
\hline
\end{array}
$$

Exercise

$$
\lim _{x \rightarrow \infty} \ln \left(\frac{x-1}{x+2}\right)
$$

A 0
B 1
C $\ln 1$
D $-\frac{1}{2}$
E ∞

Exercise

$$
\lim _{x \rightarrow-\infty} \cos \frac{1}{x}
$$

A 0
C π
E does not exist
B 1
D $-\infty$

Exercise

$$
\lim _{x \rightarrow \infty} \ln \left(\frac{x-1}{x+2}\right)
$$

A 0
B 1
C $\ln 1$
D $-\frac{1}{2}$
E ∞

Exercise

$$
\lim _{x \rightarrow-\infty} \cos \frac{1}{x}
$$

A 0
C π
E does not exist
B 1
D $-\infty$

Exercise

$$
\lim _{x \rightarrow 0} \arctan \frac{1}{x^{2}}
$$

A 0
B 1
C $\frac{\pi}{2}$
D $-\frac{\pi}{4}$
E ∞

Theorem 7 (Heine)

Let $c \in \mathbb{R}^{*}, A \in \mathbb{R}^{*}$ and the function f satisfies $\lim _{x \rightarrow c} f(x)=A$. If the sequence $\left\{x_{n}\right\}$ satisfies $x_{n} \in D_{f}, x_{n} \neq c$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} x_{n}=c$, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=A$.

Example

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \ln \left(\frac{n+1}{n-2}\right) \\
\lim _{n \rightarrow \infty} \cos \left(\sin \left(\frac{\pi}{2} \frac{1}{n^{2}}\right)\right)
\end{gathered}
$$

Theorem 8 (limit of a monotone function)

Let $a, b \in \mathbb{R}^{*}, a<b$. Suppose that f is a function monotone on an interval (a, b). Then the limits $\lim _{x \rightarrow a+} f(x)$ and $\lim _{x \rightarrow b-} f(x)$ exist. Moreover,

- iff is non-decreasing on (a, b), then

$$
\lim _{x \rightarrow a+} f(x)=\inf f((a, b)) \text { and }
$$

$$
\lim _{x \rightarrow b-} f(x)=\sup f((a, b))
$$

- iff is non-increasing on (a, b), then $\lim _{x \rightarrow a+} f(x)=\sup f((a, b))$ and $\lim _{x \rightarrow b-} f(x)=\inf f((a, b))$.

Figure: https://www.geogebra.org/calculator/bfutkyne

Definition

Let $J \subset \mathbb{R}$ be a non-degenerate interval (i.e. it contains infinitely many points). A function $f: J \rightarrow \mathbb{R}$ is continuous on the interval J if

- f is continuous at every inner point J,
- f is continuous from the right at the left endpoint of J if this point belongs to J,
- f is continuous from the left at the right endpoint of J if this point belongs to J.

Theorem 9 (continuity of the compound function on an interval)

Let I and J be intervals, $g: I \rightarrow J, f: J \rightarrow \mathbb{R}$, let g be continuous on I and let f be continuous on J. Then the function $f \circ g$ is continuous on I.

Theorem 10 (Bolzano, intermediate value theorem)

Let f be a function continuous on an interval $[a, b]$ and suppose that $f(a)<f(b)$. Then for each $C \in(f(a), f(b))$ there exists $\xi \in(a, b)$ satisfying $f(\xi)=C$.

Theorem 10 (Bolzano, intermediate value theorem)

Let f be a function continuous on an interval $[a, b]$ and suppose that $f(a)<f(b)$. Then for each $C \in(f(a), f(b))$ there exists $\xi \in(a, b)$ satisfying $f(\xi)=C$.

Figure: https://www.mathsisfun.com/algebra/
intermediate-value-theorem.html

Theorem 11 (Bolzano, intermediate value theorem)

Let f be a function continuous on an interval $[a, b]$ and suppose that $f(a)<f(b)$. Then for each $C \in(f(a), f(b))$ there exists $\xi \in(a, b)$ satisfying $f(\xi)=C$.

Exercise

Is there $x \in[0,2]$ such that

- $x^{5}-2 x-1=0$
- $x^{3}-4 x^{2}+4 x+1=0$
- $5 x^{3}-15 x^{2}+10 x+1=0$
https:
/ /www.geogebra.org/calculator/pqbtmk 54

Theorem 11 (Bolzano, intermediate value theorem)

Let f be a function continuous on an interval $[a, b]$ and suppose that $f(a)<f(b)$. Then for each $C \in(f(a), f(b))$ there exists $\xi \in(a, b)$ satisfying $f(\xi)=C$.

Exercise

Is there $x \in[0,2]$ such that

- $x^{5}-2 x-1=0$
- $x^{3}-4 x^{2}+4 x+1=0$
- $5 x^{3}-15 x^{2}+10 x+1=0$
https:
/ /www.geogebra.org/calculator/pqbtmk 54
Yes, Hard to say, Hard to say

Theorem 12 (an image of an interval under a continuous function)

Let J be an interval and let $f: J \rightarrow \mathbb{R}$ be a function continuous on J. Then $f(J)$ is an interval.

Exercise

Find the image of the interval $(-1,2]$ under the functions

- x^{2}
- $\operatorname{sgn} x$

Theorem 12 (an image of an interval under a continuous function)

Let J be an interval and let $f: J \rightarrow \mathbb{R}$ be a function continuous on J. Then $f(J)$ is an interval.

Exercise

Find the image of the interval $(-1,2]$ under the functions

- x^{2}
- $\operatorname{sgn} x$
$[0,4],\{-1,0,1\}$

Definition

Let $M \subset \mathbb{R}, x \in M$ and a function f is defined at least on M (i.e. $M \subset D_{f}$). We say that f attains its maximum (resp. minimum) on M at $x \in M$ if

$$
\forall y \in M: f(y) \leq f(x) \quad(\text { resp. } \forall y \in M: f(y) \geq f(x))
$$

The point x is called the point of maximum (resp. minimum) of the function f on M. The symbol $\max _{M} f\left(\right.$ resp. $\left.\min _{M} f\right)$ denotes the maximal (resp. minimal) value of f on M (if such a value exists). The points of maxima or minima are collectively called the points of extrema.

Definition

Let $M \subset \mathbb{R}, x \in M$ and a function f is defined at least on M (i.e. $\left.M \subset D_{f}\right)$. We say that the function f has at x

- a local maximum with respect to M if there exists $\delta>0$ such that $\forall y \in B(x, \delta) \cap M: f(y) \leq f(x)$,
- a local minimum with respect to M if there exists $\delta>0$ such that $\forall y \in B(x, \delta) \cap M: f(y) \geq f(x)$,
- a strict local maximum with respect to M if there exists $\delta>0$ such that $\forall y \in P(x, \delta) \cap M: f(y)<f(x)$,
- a strict local minimum with respect to M if there exists $\delta>0$ such that $\forall y \in P(x, \delta) \cap M: f(y)>f(x)$.
The points of local maxima or minima are collectively called the points of local extrema.

Exercise

Find local extrema:

Figure: https:
//math24.net/local-extrema-functions.html

Theorem 13 (extrema of continuous functions)

Let f be a function continuous on an interval $[a, b]$. Then f attains its maximum and minimum on $[a, b]$.

Theorem 13 (extrema of continuous functions)

Let f be a function continuous on an interval $[a, b]$. Then f attains its maximum and minimum on $[a, b]$.

Corollary 14 (boundedness of a continuous function)

Let f be a function continuous on an interval $[a, b]$. Then f is bounded on $[a, b]$.

Theorem 15 (continuity of an inverse function)

Let f be a continuous function that is increasing (resp. decreasing) on an interval J. Then the function f^{-1} is continuous and increasing (resp. decreasing) on the interval $f(J)$.

Corollary 16

Functions nth root, exponential, general power, arcsin, arccos, arctg, arccotg are continuous on their domains.

