Mathematics I - Functions 2

23/24

Limit of a function

Definition

Let $c \in \mathbb{R}$ and $\varepsilon > 0$. We define

• a neighbourhood of a point c with radius ε by $B(c, \varepsilon) = (c - \varepsilon, c + \varepsilon)$,

Limit of a function

Definition

Let $c \in \mathbb{R}$ and $\varepsilon > 0$. We define

• a neighbourhood of a point c with radius ε by $B(c, \varepsilon) = (c - \varepsilon, c + \varepsilon)$,

• a punctured neighbourhood of a point c with radius ε by $P(c, \varepsilon) = (c - \varepsilon, c + \varepsilon) \setminus \{c\}.$

We say that $A \in \mathbb{R}$ is a limit of a function f at a point $c \in \mathbb{R}$ if

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall x \in P(c, \delta) : f(x) \in B(A, \varepsilon).$$

The fact that f has a limit $A \in \mathbb{R}$ at $c \in \mathbb{R}$ is denoted by $\lim_{x \to c} f(x) = A$.

https://www.geogebra.org/m/tCnmrWg2

https://www.geogebra.org/m/wfdvtRTb

We say that $A \in \mathbb{R}$ is a limit of a function f at a point $c \in \mathbb{R}$ if

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall x \in P(c, \delta) : f(x) \in B(A, \varepsilon).$$

The fact that f has a limit $A \in \mathbb{R}$ at $c \in \mathbb{R}$ is denoted by $\lim_{x \to c} f(x) = A$.

https://www.geogebra.org/m/tCnmrWg2

https://www.geogebra.org/m/wfdvtRTb

Theorem 1 (uniqueness of a limit)

Let f be a function and $c \in \mathbb{R}$. Then f has a most one limit $A \in \mathbb{R}$ at c.

Find $\lim_{x\to 0} f(x)$

A -3

B 0

C 5

D 7

 $E \propto$

Find $\lim_{x\to 0} f(x)$

A -3

B 0

C 5

D 7

 $E \propto$

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Ι

Find $\lim_{x\to 2} f(x)$

A ∞ B 3

C 2

E does not exist

Find $\lim_{x\to 2} f(x)$

A ∞ B 3

C 2

E does not exist

Find $\lim_{x\to 4} f(x)$

A 4 B 8 **C** 0

E does not

exists

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Find $\lim_{x\to 4} f(x)$

A 4 B 8 **C** 0

E does not

exists

Let $\varepsilon > 0$. A neighbourhood and a punctured neighbourhood of $+\infty$ (resp. $-\infty$) is defined as follows:

$$P(+\infty,\varepsilon) = B(+\infty,\varepsilon) = (1/\varepsilon, +\infty),$$

$$P(-\infty,\varepsilon) = B(-\infty,\varepsilon) = (-\infty, -1/\varepsilon).$$

Example

$$\begin{split} P\left(+\infty,\frac{1}{10}\right) &= B\left(+\infty,\frac{1}{10}\right) = (10,+\infty)\,,\\ P\left(-\infty,\frac{1}{200}\right) &= B\left(-\infty,\frac{1}{200}\right) = (-\infty,-200)\,. \end{split}$$

Let $\varepsilon > 0$. A neighbourhood and a punctured neighbourhood of $+\infty$ (resp. $-\infty$) is defined as follows:

$$P(+\infty,\varepsilon) = B(+\infty,\varepsilon) = (1/\varepsilon, +\infty),$$

$$P(-\infty,\varepsilon) = B(-\infty,\varepsilon) = (-\infty, -1/\varepsilon).$$

Definition

We say that $A \in \mathbb{R}^*$ is a limit of a function f at $c \in \mathbb{R}^*$ if

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall x \in P(c, \delta) : f(x) \in B(A, \varepsilon).$$

Let $\varepsilon > 0$. A neighbourhood and a punctured neighbourhood of $+\infty$ (resp. $-\infty$) is defined as follows:

$$P(+\infty,\varepsilon) = B(+\infty,\varepsilon) = (1/\varepsilon, +\infty),$$

$$P(-\infty,\varepsilon) = B(-\infty,\varepsilon) = (-\infty, -1/\varepsilon).$$

Definition

We say that $A \in \mathbb{R}^*$ is a limit of a function f at $c \in \mathbb{R}^*$ if

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall x \in P(c, \delta) : f(x) \in B(A, \varepsilon).$$

Theorem 1 holds also for $c \in \mathbb{R}^*$, $A \in \mathbb{R}^*$, so we can again use the notation $\lim_{x\to c} f(x) = A$.

Let $c \in \mathbb{R}$ and $\varepsilon > 0$. We define

- a right neighbourhood of c by $B^+(c, \varepsilon) = [c, c + \varepsilon)$,
- a left neighbourhood of c by $B^-(c, \varepsilon) = (c \varepsilon, c]$,
- a right punctured neighbourhood of c by $P^+(c, \varepsilon) = (c, c + \varepsilon)$,
- a left punctured neighbourhood of c by $P^{-}(c, \varepsilon) = (c \varepsilon, c)$,
- a left neighbourhood and left punctured neighbourhood of $+\infty$ by $B^-(+\infty,\varepsilon)=P^-(+\infty,\varepsilon)=(1/\varepsilon,+\infty)$,
- a right neighbourhood and right punctured neighbourhood of $-\infty$ by $B^+(-\infty, \varepsilon) = P^+(-\infty, \varepsilon) = (-\infty, -1/\varepsilon)$.

Find

- A $B^+(1, 1/2)$
- B $P^{-}(-2, 1/4)$
- C $B^{-}(+\infty, 1/50)$
- D $P^{+}(-\infty, 1/42)$

Find

- A $B^+(1, 1/2)$
- B $P^{-}(-2, 1/4)$
- C $B^{-}(+\infty, 1/50)$
- D $P^{+}(-\infty, 1/42)$
- A [1, 1.5)
- B (-2.25, -2)
- C $(50, \infty)$
- D $(-\infty, -42)$

Let $A \in \mathbb{R}^*$, $c \in \mathbb{R} \cup \{-\infty\}$. We say that a function f has a limit from the right at c equal to $A \in \mathbb{R}^*$ (denoted by $\lim_{x \to c+} f(x) = A$) if

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall x \in P^+(c, \delta) : f(x) \in B(A, \varepsilon).$$

Analogously we define the notion of limit from the left at $c \in \mathbb{R} \cup \{+\infty\}$ and we use the notation $\lim_{x \to c^-} f(x)$.

Let $A \in \mathbb{R}^*$, $c \in \mathbb{R} \cup \{-\infty\}$. We say that a function f has a limit from the right at c equal to $A \in \mathbb{R}^*$ (denoted by $\lim_{x \to c+} f(x) = A$) if

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall x \in P^+(c, \delta) : f(x) \in B(A, \varepsilon).$$

Analogously we define the notion of limit from the left at $c \in \mathbb{R} \cup \{+\infty\}$ and we use the notation $\lim_{x \to c^-} f(x)$.

Remark

Let $c \in \mathbb{R}$, $A \in \mathbb{R}^*$. Then

$$\lim_{x \to c} f(x) = A \Leftrightarrow \left(\lim_{x \to c+} f(x) = A \& \lim_{x \to c-} f(x) = A \right).$$

Find $\lim_{x\to 2-} f(x)$. Find $\lim_{x\to 2+} f(x)$.

A 0

B 1

C 2

D 3

Е∄

Find $\lim_{x\to 2-} f(x)$. Find $\lim_{x\to 2+} f(x)$.

A 0

B 1

C 2

D 3

Е∄

We say that a function f is continuous at a point $c \in \mathbb{R}$ if

$$\lim_{x \to c} f(x) = f(c).$$

Let $c \in \mathbb{R}$. We say that a function f is continuous at c from the right (from the left, resp.) if $\lim_{x\to c+} f(x) = f(c)$ ($\lim_{x\to c-} f(x) = f(c)$, resp.).

Theorem 2

Let f has a finite limit at $c \in \mathbb{R}^*$. Then there exists $\delta > 0$ such that f is bounded on $P(c, \delta)$.

Theorem 3 (arithmetics of limits)

Let $c \in \mathbb{R}^*$, $\lim_{x\to c} f(x) = A \in \mathbb{R}^*$ and $\lim_{x\to c} g(x) = B \in \mathbb{R}^*$.

- (i) $\lim_{x\to c} (f(x) + g(x)) = A + B$ if the expression A + B is defined,
- (ii) $\lim_{x\to c} f(x)g(x) = AB$ if the expression AB is defined,
- (iii) $\lim_{x\to c} f(x)/g(x) = A/B$ if the expression A/B is defined.

Find $\lim_{x\to 1+} f(x) + 2g(x)$

A 13 B 9 C 8

E 3

Find $\lim_{x\to 1+} f(x) + 2g(x)$

A 13 B 9 C 8

D 6

E 3

Figure: Calculus: Single and Multivariable, Hughes-Hallet

D

Find $\lim_{x\to 1-} f(x)g(x)$

A 20 B 15

C 4

E does not exist

Find $\lim_{x\to 1-} f(x)g(x)$

A 20 B 15 C 4

E does not exist

Corollary

Suppose that the functions f and g are continuous at $c \in \mathbb{R}$. Then also the functions f+g and fg are continuous at c. If moreover $g(c) \neq 0$, then also the function f/g is continuous at c.

Corollary

Suppose that the functions f and g are continuous at $c \in \mathbb{R}$. Then also the functions f + g and fg are continuous at c. If moreover $g(c) \neq 0$, then also the function f/g is continuous at c.

Exercise

Which functions are continuous at \mathbb{R} ?

A
$$x^3 + \sin(4-x)$$
 C $\frac{2+x}{e^x}$
B $\frac{e^x}{2+x}$ D $\cos(e^{\sqrt[3]{x}})$

E $\ln(2 + x^2)$

Corollary

Suppose that the functions f and g are continuous at $c \in \mathbb{R}$. Then also the functions f+g and fg are continuous at c. If moreover $g(c) \neq 0$, then also the function f/g is continuous at c.

Exercise

Which functions are continuous at \mathbb{R} ?

A
$$x^{3} + \sin(4 - x)$$
 C $\frac{2+x}{e^{x}}$ E $\ln(2 + x^{2})$
B $\frac{e^{x}}{2+x}$ D $\cos(e^{\sqrt[3]{x}})$

A, C, D, E

Theorem 4

Let $c \in \mathbb{R}^*$, $\lim_{x \to c} g(x) = 0$, $\lim_{x \to c} f(x) = A \in \mathbb{R}^*$ and A > 0. If there exists $\eta > 0$ such that the function g is positive on $P(c, \eta)$, then $\lim_{x \to c} (f(x)/g(x)) = +\infty$.

Theorem 5 (limits and inequalities)

Suppose that $c \in \mathbb{R}^*$ and $\lim_{x\to c} f(x)$, $\lim_{x\to c} g(x)$ exist. (i) If $\lim_{x\to c} f(x) > \lim_{x\to c} g(x)$, then there exists $\delta > 0$ such that

$$\forall x \in P(c, \delta) : f(x) > g(x).$$

Theorem 5 (limits and inequalities)

Suppose that $c \in \mathbb{R}^*$ and $\lim_{x\to c} f(x)$, $\lim_{x\to c} g(x)$ exist. (i) If $\lim_{x\to c} f(x) > \lim_{x\to c} g(x)$, then there exists $\delta > 0$ such that

$$\forall x \in P(c, \delta) : f(x) > g(x).$$

(ii) If there exists $\delta > 0$ such that $\forall x \in P(c, \delta) : f(x) \leq g(x)$, then

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x).$$

Theorem 5 (limits and inequalities)

Suppose that $c \in \mathbb{R}^*$ and $\lim_{x\to c} f(x)$, $\lim_{x\to c} g(x)$ exist. (i) If $\lim_{x\to c} f(x) > \lim_{x\to c} g(x)$, then there exists $\delta > 0$ such that

$$\forall x \in P(c, \delta) : f(x) > g(x).$$

(ii) If there exists $\delta > 0$ such that $\forall x \in P(c, \delta) : f(x) \leq g(x)$, then

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x).$$

(iii) (two policemen/sandwich theorem) Suppose that there exists $\eta > 0$ such that

$$\forall x \in P(c, \eta) : f(x) \le h(x) \le g(x).$$

If moreover $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = A \in \mathbb{R}^*$, then the limit $\lim_{x\to c} h(x)$ also exists and equals A.

$$\frac{x^2}{3}\cos(8x+3)$$

https:

//www.geogebra.org/calculator/dvqdpqag

Corollary

Let $c \in \mathbb{R}^*$, $\lim_{x \to c} f(x) = 0$ and suppose there exists $\eta > 0$ such that g is bounded on $P(c, \eta)$. Then $\lim_{x \to c} (f(x)g(x)) = 0$.

Example

$$\lim_{x\to 0}(\sin x)(\operatorname{sgn} x)$$

Theorem 6 (limit of a composition)

Let $c, A, B \in \mathbb{R}^*$, $\lim_{x \to c} g(x) = A$, $\lim_{y \to A} f(y) = B$ and at least one of the following conditions is satisfied:

- (I) $\exists \eta \in \mathbb{R}, \eta > 0 \ \forall x \in P(c, \eta) \colon g(x) \neq A$,
- (C) the function f is continuous at A.

Then

$$\lim_{x\to c} f(g(x)) = B.$$

Theorem 6 (limit of a composition)

Let $c, A, B \in \mathbb{R}^*$, $\lim_{x \to c} g(x) = A$, $\lim_{y \to A} f(y) = B$ and at least one of the following conditions is satisfied:

- (I) $\exists \eta \in \mathbb{R}, \eta > 0 \ \forall x \in P(c, \eta) \colon g(x) \neq A$,
- (C) the function f is continuous at A.

Then

$$\lim_{x \to c} f(g(x)) = B.$$

Corollary

Suppose that the function g is continuous at $c \in \mathbb{R}$ and the function f is continuous at g(c). Then the function $f \circ g$ is continuous at c.

$$\lim_{x \to \infty} \ln \left(\frac{x - 1}{x + 2} \right)$$

A 0

B 1

C ln 1 D $-\frac{1}{2}$

 $E \propto$

$$\lim_{x \to \infty} \ln \left(\frac{x - 1}{x + 2} \right)$$

A 0

B 1

C ln 1

 $D - \frac{1}{2}$

 $E \propto$

Exercise

$$\lim_{x \to -\infty} \cos \frac{1}{x}$$

A 0

 \mathbf{C} π

E does not exist

В 1

 $D - \infty$

$$\lim_{x \to \infty} \ln \left(\frac{x - 1}{x + 2} \right)$$

A 0

B 1

C ln 1

 $D - \frac{1}{2}$

 $E \propto$

Exercise

$$\lim_{x \to -\infty} \cos \frac{1}{x}$$

A 0 B 1 \mathbf{C} π

E does not exist

 $D - \infty$

Exercise

$$\lim_{x \to 0} \arctan \frac{1}{x^2}$$

A 0

B 1

 $C \frac{\pi}{2}$

 $D - \frac{\pi}{4}$

 $E \propto$

Theorem 7 (Heine)

Let $c \in \mathbb{R}^*$, $A \in \mathbb{R}^*$ and the function f satisfies $\lim_{x \to c} f(x) = A$. If the sequence $\{x_n\}$ satisfies $x_n \in D_f$, $x_n \neq c$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = c$, then $\lim_{n \to \infty} f(x_n) = A$.

Example

$$\lim_{n\to\infty} \ln\left(\frac{n+1}{n-2}\right)$$

$$\lim_{n\to\infty}\cos\left(\sin\left(\frac{\pi}{2}\frac{1}{n^2}\right)\right)$$

Theorem 8 (limit of a monotone function)

Let $a, b \in \mathbb{R}^*$, a < b. Suppose that f is a function monotone on an interval (a, b). Then the limits $\lim_{x\to a+} f(x)$ and $\lim_{x\to b-} f(x)$ exist. Moreover,

- if f is non-decreasing on (a,b), then $\lim_{x\to a+} f(x) = \inf f((a,b))$ and $\lim_{x\to b-} f(x) = \sup f((a,b))$;
- if f is non-increasing on (a, b), then $\lim_{x\to a+} f(x) = \sup f((a, b))$ and $\lim_{x\to b-} f(x) = \inf f((a, b))$.

Definition

Let $J \subset \mathbb{R}$ be a non-degenerate interval (i.e. it contains infinitely many points). A function $f: J \to \mathbb{R}$ is continuous on the interval J if

- \bullet f is continuous at every inner point J,
- f is continuous from the right at the left endpoint of J if this point belongs to J,
- f is continuous from the left at the right endpoint of J if this point belongs to J.

Theorem 9 (continuity of the compound function on an interval)

Let I and J be intervals, $g: I \to J$, $f: J \to \mathbb{R}$, let g be continuous on I and let f be continuous on J. Then the function $f \circ g$ is continuous on I.

Theorem 10 (Bolzano, intermediate value theorem)

Let f be a function continuous on an interval [a,b] and suppose that f(a) < f(b). Then for each $C \in (f(a),f(b))$ there exists $\xi \in (a,b)$ satisfying $f(\xi) = C$.

Theorem 10 (Bolzano, intermediate value theorem)

Let f be a function continuous on an interval [a,b] and suppose that f(a) < f(b). Then for each $C \in (f(a),f(b))$ there exists $\xi \in (a,b)$ satisfying $f(\xi) = C$.

Figure: https://www.mathsisfun.com/algebra/
intermediate-value-theorem.html

Theorem 11 (Bolzano, intermediate value theorem)

Let f be a function continuous on an interval [a,b] and suppose that f(a) < f(b). Then for each $C \in (f(a),f(b))$ there exists $\xi \in (a,b)$ satisfying $f(\xi) = C$.

Exercise

Is there $x \in [0, 2]$ such that

•
$$x^5 - 2x - 1 = 0$$

$$x^3 - 4x^2 + 4x + 1 = 0$$

$$5x^3 - 15x^2 + 10x + 1 = 0$$

https:

//www.geogebra.org/calculator/pqbtmk54

Theorem 11 (Bolzano, intermediate value theorem)

Let f be a function continuous on an interval [a,b] and suppose that f(a) < f(b). Then for each $C \in (f(a),f(b))$ there exists $\xi \in (a,b)$ satisfying $f(\xi) = C$.

Exercise

Is there $x \in [0, 2]$ such that

•
$$x^5 - 2x - 1 = 0$$

$$x^3 - 4x^2 + 4x + 1 = 0$$

$$5x^3 - 15x^2 + 10x + 1 = 0$$

https:

//www.geogebra.org/calculator/pgbtmk54

Yes, Hard to say, Hard to say

Theorem 12 (an image of an interval under a continuous function)

Let J be an interval and let $f: J \to \mathbb{R}$ be a function continuous on J. Then f(J) is an interval.

Exercise

Find the image of the interval (-1,2] under the functions

- \bullet x^2
- $\operatorname{sgn} x$

Theorem 12 (an image of an interval under a continuous function)

Let J be an interval and let $f: J \to \mathbb{R}$ be a function continuous on J. Then f(J) is an interval.

Exercise

Find the image of the interval (-1,2] under the functions

- \bullet x^2
- \circ sgn x

$$[0,4], \{-1,0,1\}$$

Definition

Let $M \subset \mathbb{R}$, $x \in M$ and a function f is defined at least on M (i.e. $M \subset D_f$). We say that f attains its maximum (resp. minimum) on M at $x \in M$ if

$$\forall y \in M : f(y) \le f(x)$$
 (resp. $\forall y \in M : f(y) \ge f(x)$).

The point x is called the point of maximum (resp. minimum) of the function f on M. The symbol $\max_M f$ (resp. $\min_M f$) denotes the maximal (resp. minimal) value of f on M (if such a value exists). The points of maxima or minima are collectively called the points of extrema.

Definition

Let $M \subset \mathbb{R}$, $x \in M$ and a function f is defined at least on M (i.e. $M \subset D_f$). We say that the function f has at x

- a local maximum with respect to M if there exists $\delta > 0$ such that $\forall y \in B(x, \delta) \cap M$: $f(y) \leq f(x)$,
- a local minimum with respect to M if there exists $\delta > 0$ such that $\forall y \in B(x, \delta) \cap M : f(y) \ge f(x)$,
- a strict local maximum with respect to M if there exists $\delta > 0$ such that $\forall y \in P(x, \delta) \cap M : f(y) < f(x)$,
- a strict local minimum with respect to M if there exists $\delta > 0$ such that $\forall y \in P(x, \delta) \cap M$: f(y) > f(x).

The points of local maxima or minima are collectively called the points of local extrema.

Find local extrema:

Figure: https:

//math24.net/local-extrema-functions.html

Theorem 13 (extrema of continuous functions)

Let f be a function continuous on an interval [a,b]. Then f attains its maximum and minimum on [a,b].

Theorem 13 (extrema of continuous functions)

Let f be a function continuous on an interval [a,b]. Then f attains its maximum and minimum on [a,b].

Corollary 14 (boundedness of a continuous function)

Let f be a function continuous on an interval [a,b]. Then f is bounded on [a,b].

Theorem 15 (continuity of an inverse function)

Let f be a continuous function that is increasing (resp. decreasing) on an interval J. Then the function f^{-1} is continuous and increasing (resp. decreasing) on the interval f(J).

Corollary 16

Functions nth root, exponential, general power, arcsin, arccos, arctg, arccotg are continuous on their domains.

