Mathematics I - Functions 1

23/24

Definition

Let A and B be sets. A mapping f from A to B is a rule which assigns to each member x of the set A a unique member y of the set B. This element y is denoted by the symbol $f(x)$.

Definition

Let A and B be sets. A mapping f from A to B is a rule which assigns to each member x of the set A a unique member y of the set B. This element y is denoted by the symbol $f(x)$. The element y is called an image of x and the element x is called a pre-image of y.

[^0]
Definition

Let A and B be sets. A mapping f from A to B is a rule which assigns to each member x of the set A a unique member y of the set B. This element y is denoted by the symbol $f(x)$. The element y is called an image of x and the element x is called a pre-image of y.

- By $f: A \rightarrow B$ we denote the fact that f is a mapping from A to B.

Definition

Let A and B be sets. A mapping f from A to B is a rule which assigns to each member x of the set A a unique member y of the set B. This element y is denoted by the symbol $f(x)$. The element y is called an image of x and the element x is called a pre-image of y.

- By $f: A \rightarrow B$ we denote the fact that f is a mapping from A to B.
- By $f: x \mapsto f(x)$ we denote the fact that the mapping f assigns $f(x)$ to an element x.

Definition

Let A and B be sets. A mapping f from A to B is a rule which assigns to each member x of the set A a unique member y of the set B. This element y is denoted by the symbol $f(x)$. The element y is called an image of x and the element x is called a pre-image of y.

- By $f: A \rightarrow B$ we denote the fact that f is a mapping from A to B.
- By $f: x \mapsto f(x)$ we denote the fact that the mapping f assigns $f(x)$ to an element x.
- The set A from the definition of the mapping f is called the domain of f and it is denoted by D_{f}.

Definition

Let A and B be sets. A mapping f from A to B is a rule which assigns to each member x of the set A a unique member y of the set B. This element y is denoted by the symbol $f(x)$. The element y is called an image of x and the element x is called a pre-image of y.

Example

- students in the classroom \mapsto their date of birth
- f assigns rectangles their area
- countries \rightarrow flag
- $x \mapsto \sqrt[4]{x}, f:[0, \infty) \rightarrow[0, \infty)$

Definition

Let $f: A \rightarrow B$ be a mapping.

- The subset $G_{f}=\{[x, y] \in A \times B ; x \in A, y=f(x)\}$ of the Cartesian product $A \times B$ is called the graph of the mapping f.

Definition

Let $f: A \rightarrow B$ be a mapping.

- The subset $G_{f}=\{[x, y] \in A \times B ; x \in A, y=f(x)\}$ of the Cartesian product $A \times B$ is called the graph of the mapping f.
- The set $f(A)$ is called the range of the mapping f, it is denoted by R_{f}.

Exercise

Find the domain and range for the following mappings:

Figure: Calculus: Single and Multivariable, 6th Edition, Hughes-Hallett, col.

Exercise

Find the domain and range for the following mappings:

Figure: Calculus: Single and Multivariable, 6th Edition, Hughes-Hallett, col.
20. $[0,4],[0,2]$
21. $[1,5],[1,6]$
22. $[-2,2],[-2,2]$
23. $[0,5],[0,4]$

Exercise

Which of the following functions has its domain the same as its range?
A x^{2}
B \sqrt{x}
C x^{3}
D $|x|$
E $2 x-3$
(Inspired by: Active Calculus \& Mathematical Modeling, Carroll College Mathematics Department)

Exercise

Which of the following functions has its domain the same as its range?
A x^{2}
B \sqrt{x}
C x^{3}
D $|x|$
E $2 x-3$
(Inspired by: Active Calculus \& Mathematical Modeling, Carroll College Mathematics Department)
B, C, E

Definition

Let $f: A \rightarrow B$ be a mapping.

- The image of the set $M \subset A$ under the mapping f is the set

$$
f(M)=\{y \in B ; \exists x \in M: f(x)=y\} \quad(=\{f(x) ; x \in M\})
$$

Definition

Let $f: A \rightarrow B$ be a mapping.

- The image of the set $M \subset A$ under the mapping f is the set

$$
f(M)=\{y \in B ; \exists x \in M: f(x)=y\} \quad(=\{f(x) ; x \in M\}) .
$$

- The pre-image of the set $W \subset B$ under the mapping f is the set

$$
f_{-1}(W)=\{x \in A ; f(x) \in W\}
$$

Exercise

Find the image:
A $[-6,-2]$
B $[-1,1)$
C $[0,2)$
D $[2, \infty)$

Exercise

Find the image:
A $[-6,-2]$
B $[-1,1)$
C $[0,2)$
D $[2, \infty)$

$\mathrm{A}[2,8], \mathrm{B}(-1,0] \cup\{3\}, \mathrm{C}(-1,3], \mathrm{D}(4,5]$.

Exercise

Find the preimage:
A $\{-1\}$
B $[2,3]$
C $[0,1]$
D $[0,1)$

Exercise

Find the preimage:
A $\{-1\}$
B $[2,3]$
C $[0,1]$
D $[0,1)$

$$
\begin{aligned}
& \text { A }\{-5,-1,1,5\}, B[-9,-8] \cup[8,9], \\
& C[-7,-6] \cup[-4,-2] \cup\{0\} \cup[2,4] \cup[6,7], \\
& D(-7,-6] \cup[-4,-3) \cup(-3,-2] \cup\{0\} \cup[2,3) \cup(3,4] \cup[6,7)
\end{aligned}
$$

Definition

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two mappings. The symbol $g \circ f$ denotes a mapping from A to C defined by

$$
(g \circ f)(x)=g(f(x)) .
$$

This mapping is called a compound mapping or a composition of the mapping f and the mapping g.

Exercise

Find $g(f(4))$.
A - 2
B -1
C 0
D 1
E 2

Exercise

Find $g(f(4))$.
A - 2
B -1
C 0
D 1
E 2

A

Exercise

Find $g(f(4))$.
A - 2
B -1
C 0
D 1
E 2

A
Find x, if $f(g(x))=2$.

Exercise

Find $g(f(4))$.
A -2
B -1
C 0
D 1
E 2

A
Find x, if $f(g(x))=2$.
B, D

Exercise

In the table we can find values of functions f and g.

x	-2	-1	0	1	2
$f(x)$	1	0	-2	2	-1
$g(x)$	-1	1	2	0	-2

Find $g(f(1))$.
A - 2
B -1
C 0
D 1
E 2

Exercise

In the table we can find values of functions f and g.

x	-2	-1	0	1	2
$f(x)$	1	0	-2	2	-1
$g(x)$	-1	1	2	0	-2

Find $g(f(1))$.
A - 2
B -1
C 0
D 1
E 2

A

Exercise

In the table we can find values of functions f and g.

x	-2	-1	0	1	2
$f(x)$	1	0	-2	2	-1
$g(x)$	-1	1	2	0	-2

Find $g(f(1))$.
A - 2
B -1
C 0
D 1
E 2

A
Find $f(f(0))$.
A - 2
B -1
C 0
D 1
E 2

Exercise

In the table we can find values of functions f and g.

x	-2	-1	0	1	2
$f(x)$	1	0	-2	2	-1
$g(x)$	-1	1	2	0	-2

Find $g(f(1))$.
A - 2
B -1
C 0
D 1
E 2

A
Find $f(f(0))$.
A - 2
B -1
C 0
D 1
E 2

D

Exercise

In the table we can find values of functions f and g. If $f(g(x))=-2$, find x.

x	-2	-1	0	1	2
$f(x)$	1	0	-2	2	-1
$g(x)$	-1	1	2	0	-2

A - 2
B -1
C 0
D 1
E 2

Exercise

In the table we can find values of functions f and g. If $f(g(x))=-2$, find x.

x	-2	-1	0	1	2
$f(x)$	1	0	-2	2	-1
$g(x)$	-1	1	2	0	-2

A - 2
B -1
C 0
D 1
E 2

D

Definition

We say that a mapping $f: A \rightarrow B$

- maps the set A onto the set B if $f(A)=B$, i.e. if to each $y \in B$ there exist $x \in A$ such that $f(x)=y$;

Definition

We say that a mapping $f: A \rightarrow B$

- maps the set A onto the set B if $f(A)=B$, i.e. if to each $y \in B$ there exist $x \in A$ such that $f(x)=y$;
- is one-to-one (or injective) if images of different elements differ, i.e.

$$
\forall x_{1}, x_{2} \in A: x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

Definition

We say that a mapping $f: A \rightarrow B$

- maps the set A onto the set B if $f(A)=B$, i.e. if to each $y \in B$ there exist $x \in A$ such that $f(x)=y$;
- is one-to-one (or injective) if images of different elements differ, i.e.

$$
\forall x_{1}, x_{2} \in A: x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

- is a bijection of A onto B (or a bijective mapping), if it is at the same time one-to-one and maps A onto B.

Exercise

A e^{x}
B x^{3}
C $\sin x$
D $\tan x$
E $\frac{1}{x}$

Which functions are onto \mathbb{R} ?
Which functions are one-to-one?
Which functions are bijections?

Exercise

A e^{x}
B x^{3}
C $\sin x$
D $\tan x$
E $\frac{1}{x}$

Which functions are onto \mathbb{R} ?
Which functions are one-to-one?
Which functions are bijections?
B, D
A, B, E
B

Definition

Let A, B, C be sets, $C \subset A$ and $f: A \rightarrow B$. The mapping $\tilde{f}: C \rightarrow B$ given by the formula $\tilde{f}(x)=f(x)$ for each $x \in C$ is called the restriction of the mapping f to the set C. It is denoted by $\left.f\right|_{c}$.

Definition

Let $f: A \rightarrow B$ be bijective (i.e. one-to-one and onto). An inverse mapping $f^{-1}: B \rightarrow A$ is a mapping that to each $y \in B$ assigns a (uniquely determined) element $x \in A$ satisfying $f(x)=y$.

Definition

Let $f: A \rightarrow B$ be bijective (i.e. one-to-one and onto). An inverse mapping $f^{-1}: B \rightarrow A$ is a mapping that to each $y \in B$ assigns a (uniquely determined) element $x \in A$ satisfying $f(x)=y$.

Exercise

Find inverse mappings at \mathbb{R} :
A e^{x}
C $\sqrt[3]{x}$
B $2 x+1$
D x^{2}

Exercise

$$
2 x+1 \text { vs } \frac{x-1}{2}
$$

IV. Functions of one real variable

IV. Functions of one real variable

Definition

A function f of one real variable (or a function for short) is a mapping $f: M \rightarrow \mathbb{R}$, where M is a subset of real numbers.

Definition

A function $f: J \rightarrow \mathbb{R}$ is increasing on an interval J, if for each pair $x_{1}, x_{2} \in J, x_{1}<x_{2}$ the inequality $f\left(x_{1}\right)<f\left(x_{2}\right)$ holds. Analogously we define a function decreasing (non-decreasing, non-increasing) on an interval J.

Definition

A function $f: J \rightarrow \mathbb{R}$ is increasing on an interval J, if for each pair $x_{1}, x_{2} \in J, x_{1}<x_{2}$ the inequality $f\left(x_{1}\right)<f\left(x_{2}\right)$ holds. Analogously we define a function decreasing (non-decreasing, non-increasing) on an interval J.

Definition

A monotone function on an interval J is a function which is non-decreasing or non-increasing on J.

Definition

A function $f: J \rightarrow \mathbb{R}$ is increasing on an interval J, if for each pair $x_{1}, x_{2} \in J, x_{1}<x_{2}$ the inequality $f\left(x_{1}\right)<f\left(x_{2}\right)$ holds. Analogously we define a function decreasing (non-decreasing, non-increasing) on an interval J.

Definition

A monotone function on an interval J is a function which is non-decreasing or non-increasing on J. A strictly monotone function on an interval J is a function which is increasing or decreasing on J.

Exercise

Decide, which functions are monotone on its domain:

Exercise

Decide, which functions are monotone on its domain:

non-decreasing, nothing, decreasing, nothing

Definition

Let f be a function and $M \subset D_{f}$. We say that f is

- bounded from above on M if there is $K \in \mathbb{R}$ such that $f(x) \leq K$ for all $x \in M$,

Definition

Let f be a function and $M \subset D_{f}$. We say that f is

- bounded from above on M if there is $K \in \mathbb{R}$ such that $f(x) \leq K$ for all $x \in M$,
- bounded from below on M if there is $K \in \mathbb{R}$ such that $f(x) \geq K$ for all $x \in M$,

Definition

Let f be a function and $M \subset D_{f}$. We say that f is

- bounded from above on M if there is $K \in \mathbb{R}$ such that $f(x) \leq K$ for all $x \in M$,
- bounded from below on M if there is $K \in \mathbb{R}$ such that $f(x) \geq K$ for all $x \in M$,
- bounded on M if there is $K \in \mathbb{R}$ such that $|f(x)| \leq K$ for all $x \in M$,

Exercise

Decide, which functions are bounded from above, bounded from below, bounded:

Exercise

Decide, which functions are bounded from above, bounded from below, bounded:

red: bounded, blue: bounded from below, green: unbounded, vellow: bounded from above

Definition

Let f be a function and $M \subset D_{f}$. We say that f is

- odd if for each $x \in D_{f}$ we have $-x \in D_{f}$ and

$$
f(-x)=-f(x),
$$

Definition

Let f be a function and $M \subset D_{f}$. We say that f is

- odd if for each $x \in D_{f}$ we have $-x \in D_{f}$ and $f(-x)=-f(x)$,
- even if for each $x \in D_{f}$ we have $-x \in D_{f}$ and $f(-x)=f(x)$,

Definition

Let f be a function and $M \subset D_{f}$. We say that f is

- odd if for each $x \in D_{f}$ we have $-x \in D_{f}$ and $f(-x)=-f(x)$,
- even if for each $x \in D_{f}$ we have $-x \in D_{f}$ and $f(-x)=f(x)$,
- periodic with a period a, where $a \in \mathbb{R}, a>0$, if for each $x \in D_{f}$ we have $x+a \in D_{f}, x-a \in D_{f}$ and $f(x+a)=f(x-a)=f(x)$.

Exercise

Decide, which functions are even or odd:

Exercise

Decide, which functions are even or odd:

A odd, B even, D odd, E odd

Exercise

Decide, which functions are even or odd:
A $x^{3}+1$
C $|x-2|$
E $|1+\cos x|$
B $x\left(x^{2}+1\right)$
D $e^{x^{2}} \sin x$

Exercise

Decide, which functions are even or odd:
A $x^{3}+1$
C $|x-2|$
E $|1+\cos x|$
B $x\left(x^{2}+1\right)$
D $e^{x^{2}} \sin x$

B odd, D odd, E even

Exercise

Decide, which functions are periodic

Exercise

Decide, which functions are periodic

No, yes

Exercise

Sketch in the function so that it is periodic with the smallest possible period

Exercise

Sketch in the function so that it is periodic with the smallest possible period

[^0]: https://www.zoopraha.cz/zvirata-a-expozice/zvireci-osobnosti

