Mathematics I - Sequences

23/24

Why study sequences

Denní přehled počtu osob s nově prokázaným onemocněním COVID-19 dle hlášení krajských hygienických stanic a laboratoři (celkový počet včetně reinfekci)

Figure: https://onemocneni-aktualne.mzcr.cz/covid-19

Why study sequences

Figure: https://onemocneni-aktualne.mzcr.cz/covid-19
https://www.gapminder.org/tools

Why study sequences

Figure: https://www.chmi.cz/predpovedi/predpovedi-pocasi/ceska-republika/tydenni-predpoved

II. Limit of a sequence

Definition

Suppose that to each natural number $n \in \mathbb{N}$ we assign a real number a_{n}. Then we say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers.

II. Limit of a sequence

Definition

Suppose that to each natural number $n \in \mathbb{N}$ we assign a real number a_{n}. Then we say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers. The number a_{n} is called the nth member of this sequence.

II. Limit of a sequence

Definition

Suppose that to each natural number $n \in \mathbb{N}$ we assign a real number a_{n}. Then we say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers. The number a_{n} is called the nth member of this sequence.
A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is equal to a sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ if $a_{n}=b_{n}$ holds for every $n \in \mathbb{N}$.

II. Limit of a sequence

Definition

Suppose that to each natural number $n \in \mathbb{N}$ we assign a real number a_{n}. Then we say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers. The number a_{n} is called the nth member of this sequence.
A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is equal to a sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ if $a_{n}=b_{n}$ holds for every $n \in \mathbb{N}$.
By the set of all members of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ we understand the set

$$
\left\{x \in \mathbb{R} ; \exists n \in \mathbb{N}: a_{n}=x\right\}
$$

```
https:
//www.geogebra.org/calculator/q7vv3gjp
```


Exercise

Find the formula for a_{n}.

Figure:

https://www.cpp.edu/conceptests/question-library/mat116.shtml

Exercise

Find the formula for a_{n}.

$$
\begin{aligned}
& \text { A. } a_{n}=\left(-\frac{1}{2}\right)^{n}-\frac{3}{2} \\
& \text { B. } a_{n}=\frac{1}{2} n+5 \\
& \text { C. } a_{n}=\frac{1}{2} n-2 \\
& \text { D. } a_{n}=-\frac{1}{2} n+\frac{5}{2} \\
& \text { E. } a_{n}=\frac{1}{2} n-\frac{5}{2}
\end{aligned}
$$

Figure:

https://www.cpp.edu/conceptests/question-library/mat116.shtml

E

Exercise

Find the first 4 terms of the sequences

$$
a_{n}=\frac{(-1)^{n}}{n} \quad \mathrm{~B} a_{n}=\frac{n+1}{n}
$$

Exercise

Find the first 4 terms of the sequences

$$
\begin{array}{ll}
\text { A } a_{n}=\frac{(-1)^{n}}{n} & \text { B } a_{n}=\frac{n+1}{n} \\
-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4} & 2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}
\end{array}
$$

Exercise

Find the first 4 terms of the sequences

$$
\begin{array}{lr}
\text { A } a_{n}=\frac{(-1)^{n}}{n} & \text { B } a_{n}= \\
-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4} & 2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}
\end{array}
$$

Exercise

Find the formula for the following sequences

$$
\text { A } 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \quad \text { B }-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5} \ldots
$$

Exercise

Find the first 4 terms of the sequences

$$
\begin{array}{lr}
\text { A } a_{n}=\frac{(-1)^{n}}{n} & \text { B } a_{n}= \\
-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4} & 2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}
\end{array}
$$

Exercise

Find the formula for the following sequences

$$
\begin{array}{ll}
\mathrm{A} & 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \\
\frac{1}{2^{n-1}} & \mathrm{~B}-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5} \ldots \\
& \frac{(-1)^{n}}{n}
\end{array}
$$

Definition

We say that a sequence $\left\{a_{n}\right\}$ is

- bounded from above if the set of all members of this sequence is bounded from above,

Definition

We say that a sequence $\left\{a_{n}\right\}$ is

- bounded from above if the set of all members of this sequence is bounded from above,
- bounded from below if the set of all members of this sequence is bounded from below,

Definition

We say that a sequence $\left\{a_{n}\right\}$ is

- bounded from above if the set of all members of this sequence is bounded from above,
- bounded from below if the set of all members of this sequence is bounded from below,
- bounded if the set of all members of this sequence is bounded.

Exercise

Which of these sequences are bounded?

A blue

B red
C yellow

Exercise

Which of these sequences are bounded?

A blue

B red
C yellow
B, C

Definition

We say that a sequence $\left\{a_{n}\right\}$ is

- increasing if $a_{n}<a_{n+1}$ for every $n \in \mathbb{N}$,
- decreasing if $a_{n}>a_{n+1}$ for every $n \in \mathbb{N}$,
- non-decreasing if $a_{n} \leq a_{n+1}$ for every $n \in \mathbb{N}$,
- non-increasing if $a_{n} \geq a_{n+1}$ for every $n \in \mathbb{N}$.

A sequence $\left\{a_{n}\right\}$ is monotone if it satisfies one of the conditions above.

Definition

We say that a sequence $\left\{a_{n}\right\}$ is

- increasing if $a_{n}<a_{n+1}$ for every $n \in \mathbb{N}$,
- decreasing if $a_{n}>a_{n+1}$ for every $n \in \mathbb{N}$,
- non-decreasing if $a_{n} \leq a_{n+1}$ for every $n \in \mathbb{N}$,
- non-increasing if $a_{n} \geq a_{n+1}$ for every $n \in \mathbb{N}$.

A sequence $\left\{a_{n}\right\}$ is monotone if it satisfies one of the conditions above. A sequence $\left\{a_{n}\right\}$ is strictly monotone if it is increasing or decreasing.

Definition

We say that a sequence $\left\{a_{n}\right\}$ is

- increasing if $a_{n}<a_{n+1}$ for every $n \in \mathbb{N}$,
- decreasing if $a_{n}>a_{n+1}$ for every $n \in \mathbb{N}$,
- non-decreasing if $a_{n} \leq a_{n+1}$ for every $n \in \mathbb{N}$,
- non-increasing if $a_{n} \geq a_{n+1}$ for every $n \in \mathbb{N}$.

A sequence $\left\{a_{n}\right\}$ is monotone if it satisfies one of the conditions above. A sequence $\left\{a_{n}\right\}$ is strictly monotone if it is increasing or decreasing.

Definition

We say that a sequence $\left\{a_{n}\right\}$ is

- increasing if $a_{n}<a_{n+1}$ for every $n \in \mathbb{N}$,
- decreasing if $a_{n}>a_{n+1}$ for every $n \in \mathbb{N}$,
- non-decreasing if $a_{n} \leq a_{n+1}$ for every $n \in \mathbb{N}$,
- non-increasing if $a_{n} \geq a_{n+1}$ for every $n \in \mathbb{N}$.

A sequence $\left\{a_{n}\right\}$ is monotone if it satisfies one of the conditions above. A sequence $\left\{a_{n}\right\}$ is strictly monotone if it is increasing or decreasing.

Exercise

Find non-decreasing sequences.
A $a_{n}=-4$
B $a_{n}=(-2)^{n}$
С $a_{n}=\frac{(-1)^{n}}{3^{n}}$
D $a_{n}=\log n$
E $a_{n}=e^{-n}$

Definition

We say that a sequence $\left\{a_{n}\right\}$ is

- increasing if $a_{n}<a_{n+1}$ for every $n \in \mathbb{N}$,
- decreasing if $a_{n}>a_{n+1}$ for every $n \in \mathbb{N}$,
- non-decreasing if $a_{n} \leq a_{n+1}$ for every $n \in \mathbb{N}$,
- non-increasing if $a_{n} \geq a_{n+1}$ for every $n \in \mathbb{N}$.

A sequence $\left\{a_{n}\right\}$ is monotone if it satisfies one of the conditions above. A sequence $\left\{a_{n}\right\}$ is strictly monotone if it is increasing or decreasing.

Exercise

Find non-decreasing sequences.
A $a_{n}=-4$
B $a_{n}=(-2)^{n}$
С $a_{n}=\frac{(-1)^{n}}{3^{n}}$
D $a_{n}=\log n$
E $a_{n}=e^{-n}$

A, D

Exercise

Use the definition and check, if the sequence is monotone:

$$
\begin{array}{ll}
\text { 1. } a_{n}=\frac{n}{n+1} & \text { 2. } a_{n}=\frac{n}{4+n^{2}}
\end{array}
$$

Exercise

Use the definition and check, if the sequence is monotone:

$$
\text { 1. } \begin{aligned}
a_{n}=\frac{n}{n+1} & \quad \text { 2. } a_{n}=\frac{n}{4+n^{2}} \\
? a_{n} & \leq a_{n+1} \\
\frac{n}{n+1} & \leq \frac{n+1}{n+2} \\
n(n+2) & \leq(n+1)(n+1) \\
n^{2}+2 n & \leq n^{2}+2 n+1 \\
0 & \leq 1
\end{aligned}
$$

https:
//www.geogebra.org/calculator/w4twpbu2

Exercise

Use the definition and check, if the sequence is monotone:

$$
\text { 1. } a_{n}=\frac{n}{n+1}
$$

$$
\text { 2. } a_{n}=\frac{n}{4+n^{2}}
$$

Exercise

Use the definition and check, if the sequence is monotone:

$$
\text { 1. } \begin{aligned}
a_{n}=\frac{n}{n+1} & \quad \text { 2. } a_{n}=\frac{n}{4+n^{2}} \\
? a_{n} & \geq a_{n+1} \\
\frac{n}{4+n^{2}} & \geq \frac{n+1}{4+(n+1)^{2}} \\
n\left(4+n^{2}+2 n+1\right) & \geq(n+1)\left(4+n^{2}\right) \\
4 n+n^{3}+2 n^{2}+n & \geq 4 n+n^{3}+4+n^{2} \\
n^{2}+n & \geq 4
\end{aligned}
$$

true for $n \geq 2$.
https:
//www.geogebra.org/calculator/w4twpbu2

Definition

Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers.

- By the sum of sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ we understand a sequence $\left\{a_{n}+b_{n}\right\}$.
- Analogously we define a difference and a product of sequences.
- Suppose all the members of the sequence $\left\{b_{n}\right\}$ are non-zero. Then by the quotient of sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ we understand a sequence $\left\{\frac{a_{n}}{b_{n}}\right\}$.
- If $\lambda \in \mathbb{R}$, then by the λ-multiple of the sequence $\left\{a_{n}\right\}$ we understand a sequence $\left\{\lambda a_{n}\right\}$.

Exercise

Let $a_{n}=1,2,3,4,5, \ldots, b_{n}=(-1)^{n}$. Find
A $a_{n}+b_{n}$
B a_{n} / b_{n}
C $3 a_{n}$

Exercise

Let $a_{n}=1,2,3,4,5, \ldots, b_{n}=(-1)^{n}$. Find
A $a_{n}+b_{n}$
B a_{n} / b_{n}
C $3 a_{n}$
$a_{n}=1,2,3,4,5 \ldots$
$b_{n}=-1,1,-1,1,-1 \ldots$
A: $0,3,2,5,4 \ldots$
B: $-1,2,-3,4,-5 \ldots$
C: $3,6,9,12,15 \ldots$

Limits

Limits

Limits

Limits

Definition

We say that a sequence $\left\{a_{n}\right\}$ has a limit which equals to a number $A \in \mathbb{R}$ if to every positive real number ε there exists a natural number n_{0} such that for every index $n \geq n_{0}$ we have $\left|a_{n}-A\right|<\varepsilon$, i.e.

$$
\forall \varepsilon \in \mathbb{R}, \varepsilon>0 \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}, n \geq n_{0}:\left|a_{n}-A\right|<\varepsilon
$$

Limits

Definition

We say that a sequence $\left\{a_{n}\right\}$ has a limit which equals to a number $A \in \mathbb{R}$ if to every positive real number ε there exists a natural number n_{0} such that for every index $n \geq n_{0}$ we have $\left|a_{n}-A\right|<\varepsilon$, i.e.

$$
\forall \varepsilon \in \mathbb{R}, \varepsilon>0 \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}, n \geq n_{0}:\left|a_{n}-A\right|<\varepsilon
$$

We say that a sequence $\left\{a_{n}\right\}$ is convergent if there exists $A \in \mathbb{R}$ which is a limit of $\left\{a_{n}\right\}$.
https://www.geogebra.org/m/GAcTpGCh

Theorem 1 (uniqueness of a limit)

Every sequence has at most one limit.
We use the notation $\lim _{n \rightarrow \infty} a_{n}=A$ or $\operatorname{simply} \lim a_{n}=A$.

Theorem 2

Every convergent sequence is bounded.

Exercise

Find a sequence, which is

1. bounded and covergent
2. bounded and divergent
3. unbounded and covergent
4. unbounded and divergent

Exercise

Find a sequence, which is

1. bounded and covergent
2. bounded and divergent
3. unbounded and covergent
4. unbounded and divergent
5. $\frac{1}{n}, a_{n}=42$
6. $a_{n}=(-1)^{n}, a_{n}=\sin n$
7. impossible
8. $a_{n}=n, a_{n}=(-1)^{n} n^{2}$

Definition

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. We say that a sequence $\left\{b_{k}\right\}_{k=1}^{\infty}$ is a subsequence of $\left\{a_{n}\right\}_{n=1}^{\infty}$ if there is an increasing sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of natural numbers such that $b_{k}=a_{n_{k}}$ for every $k \in \mathbb{N}$.
https:
//www.geogebra.org/calculator/z4bnwfzr

Definition

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. We say that a sequence $\left\{b_{k}\right\}_{k=1}^{\infty}$ is a subsequence of $\left\{a_{n}\right\}_{n=1}^{\infty}$ if there is an increasing sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of natural numbers such that $b_{k}=a_{n_{k}}$ for every $k \in \mathbb{N}$.
https:
//www.geogebra.org/calculator/z4bnwfzr

Exercise

Let $a_{n}=3,7,4,1 / 2, \pi,-1$. Find $b_{n}=a_{2 n}$:
A $6,14,8 \ldots$
C $7,1 / 2,-1 \ldots$
B 5, 9, $6 \ldots$
D $4,1 / 2, \pi \ldots$
By:https://www.cpp.edu/conceptests/ question-library/mat116.shtm

Theorem 3 (limit of a subsequence)

Let $\left\{b_{k}\right\}_{k=1}^{\infty}$ be a subsequence of $\left\{a_{n}\right\}_{n=1}^{\infty}$. If $\lim _{n \rightarrow \infty} a_{n}=A \in \mathbb{R}$, then also $\lim _{k \rightarrow \infty} b_{k}=A$.

Remark

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers, $A \in \mathbb{R}, K \in \mathbb{R}$, $K>0$. If

$$
\forall \varepsilon \in \mathbb{R}, \varepsilon>0 \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}, n \geq n_{0}:\left|a_{n}-A\right|<K \varepsilon,
$$

then $\lim a_{n}=A$.

Theorem 4 (arithmetics of limits)

Suppose that $\lim a_{n}=A \in \mathbb{R}$ and $\lim b_{n}=B \in \mathbb{R}$. Then
(i) $\lim \left(a_{n}+b_{n}\right)=A+B$,
(ii) $\lim \left(a_{n} \cdot b_{n}\right)=A \cdot B$,
(iii) if $B \neq 0$ and $b_{n} \neq 0$ for all $n \in \mathbb{N}$, then $\lim \left(a_{n} / b_{n}\right)=A / B$.

Theorem 5 (limits and ordering)

Let $\lim a_{n}=A \in \mathbb{R}$ and $\lim b_{n}=B \in \mathbb{R}$.
(i) Suppose that there is $n_{0} \in \mathbb{N}$ such that $a_{n} \geq b_{n}$ for every $n \geq n_{0}$. Then $A \geq B$.

Theorem 5 (limits and ordering)

Let $\lim a_{n}=A \in \mathbb{R}$ and $\lim b_{n}=B \in \mathbb{R}$.
(i) Suppose that there is $n_{0} \in \mathbb{N}$ such that $a_{n} \geq b_{n}$ for every $n \geq n_{0}$. Then $A \geq B$.
(ii) Suppose that $A<B$. Then there is $n_{0} \in \mathbb{N}$ such that $a_{n}<b_{n}$ for every $n \geq n_{0}$.

Theorem 6 (limits and ordering)

Let $\lim a_{n}=A \in \mathbb{R}$ and $\lim b_{n}=B \in \mathbb{R}$.

1. Suppose that there is $n_{0} \in \mathbb{N}$ such that $a_{n} \geq b_{n}$ for every $n \geq n_{0}$. Then $A \geq B$.
2. Suppose that $A<B$. Then there is $n_{0} \in \mathbb{N}$ such that $a_{n}<b_{n}$ for every $n \geq n_{0}$.

Exercise (True or false)

Let $\lim a_{n}=A \in \mathbb{R}$ and $\lim b_{n}=B \in \mathbb{R}$.
If $a_{n}<b_{n}$, then $A<B$.

Theorem 6 (limits and ordering)

Let $\lim a_{n}=A \in \mathbb{R}$ and $\lim b_{n}=B \in \mathbb{R}$.

1. Suppose that there is $n_{0} \in \mathbb{N}$ such that $a_{n} \geq b_{n}$ for every $n \geq n_{0}$. Then $A \geq B$.
2. Suppose that $A<B$. Then there is $n_{0} \in \mathbb{N}$ such that $a_{n}<b_{n}$ for every $n \geq n_{0}$.

Exercise (True or false)

Let $\lim a_{n}=A \in \mathbb{R}$ and $\lim b_{n}=B \in \mathbb{R}$. If $a_{n}<b_{n}$, then $A<B$. False. Consider $a_{n}=\frac{1}{n}, b_{n}=-\frac{1}{n}$.

Theorem 7 (two policemen/sandwich theorem)

Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be convergent sequences and let $\left\{c_{n}\right\}$ be a sequence such that
(i) $\exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}, n \geq n_{0}: a_{n} \leq c_{n} \leq b_{n}$,
(ii) $\lim a_{n}=\lim b_{n}$.

Then $\lim c_{n}$ exists and $\lim c_{n}=\lim a_{n}$.

Theorem 8 (two policemen/sandwich theorem)

Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be convergent sequences and let $\left\{c_{n}\right\}$ be a sequence such that
(i) $\exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}, n \geq n_{0}: a_{n} \leq c_{n} \leq b_{n}$,
(ii) $\lim a_{n}=\lim b_{n}$.

Then $\lim c_{n}$ exists and $\lim c_{n}=\lim a_{n}$.

Exercise

Find the sandwich for the sequence $a_{n}=\frac{\cos n}{n}$.

Theorem 8 (two policemen/sandwich theorem)

Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be convergent sequences and let $\left\{c_{n}\right\}$ be a sequence such that
(i) $\exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}, n \geq n_{0}: a_{n} \leq c_{n} \leq b_{n}$,
(ii) $\lim a_{n}=\lim b_{n}$.

Then $\lim c_{n}$ exists and $\lim c_{n}=\lim a_{n}$.

Exercise

Find the sandwich for the sequence $a_{n}=\frac{\cos n}{n}$.

Corollary 9

Suppose that $\lim a_{n}=0$ and the sequence $\left\{b_{n}\right\}$ is bounded. Then $\lim a_{n} b_{n}=0$.

Infinite Limits

https:
//www.geogebra.org/calculator/cpuzsnnh

Infinite Limits

https:
//www.geogebra.org/calculator/cpuzsnnh

Definition

We say that a sequence $\left\{a_{n}\right\}$ has a limit $+\infty$ (plus infinity) if

$$
\forall L \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}, n \geq n_{0}: a_{n}>L
$$

Infinite Limits

https:
//www.geogebra.org/calculator/cpuzsnnh

Definition

We say that a sequence $\left\{a_{n}\right\}$ has a limit $+\infty$ (plus infinity) if

$$
\forall L \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}, n \geq n_{0}: a_{n}>L
$$

We say that a sequence $\left\{a_{n}\right\}$ has a limit $-\infty$ (minus infinity) if

$$
\forall K \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}, n \geq n_{0}: a_{n}<K
$$

Infinite Limits

https:
//www.geogebra.org/calculator/cpuzsnnh

Definition

We say that a sequence $\left\{a_{n}\right\}$ has a limit $+\infty$ (plus infinity) if

$$
\forall L \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}, n \geq n_{0}: a_{n}>L
$$

We say that a sequence $\left\{a_{n}\right\}$ has a limit $-\infty$ (minus infinity) if

$$
\forall K \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}, n \geq n_{0}: a_{n}<K
$$

Theorem 1 on the uniqueness of a limit holds also for the limits $+\infty$ and $-\infty$. If $\lim a_{n}=+\infty$, then we say that the sequence $\left\{a_{n}\right\}$ diverges to $+\infty$, similarly for $-\infty$.

Infinite Limits

https:
//www.geogebra.org/calculator/cpuzsnnh

Definition

We say that a sequence $\left\{a_{n}\right\}$ has a limit $+\infty$ (plus infinity) if

$$
\forall L \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}, n \geq n_{0}: a_{n}>L
$$

We say that a sequence $\left\{a_{n}\right\}$ has a limit $-\infty$ (minus infinity) if

$$
\forall K \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}, n \geq n_{0}: a_{n}<K
$$

Theorem 1 on the uniqueness of a limit holds also for the limits $+\infty$ and $-\infty$. If $\lim a_{n}=+\infty$, then we say that the sequence $\left\{a_{n}\right\}$ diverges to $+\infty$, similarly for $-\infty$. If $\lim a_{n} \in \mathbb{R}$, then we say that the limit is finite, if $\lim a_{n}=+\infty$ or $\lim a_{n}=-\infty$, then we say that the limit is infinite.

Theorem 2 does not hold for infinite limits. But:

Theorem 2,

- Suppose that $\lim a_{n}=+\infty$. Then the sequence $\left\{a_{n}\right\}$ is not bounded from above, but is bounded from below.
- Suppose that $\lim a_{n}=-\infty$. Then the sequence $\left\{a_{n}\right\}$ is not bounded from below, but is bounded from above.

Theorem 2 does not hold for infinite limits. But:

Theorem 2'

- Suppose that $\lim a_{n}=+\infty$. Then the sequence $\left\{a_{n}\right\}$ is not bounded from above, but is bounded from below.
- Suppose that $\lim a_{n}=-\infty$. Then the sequence $\left\{a_{n}\right\}$ is not bounded from below, but is bounded from above.

Exercise

Give an example of $a_{n} \rightarrow \infty$ and find its lower bound.

Theorem 2 does not hold for infinite limits. But:

Theorem 2'

- Suppose that $\lim a_{n}=+\infty$. Then the sequence $\left\{a_{n}\right\}$ is not bounded from above, but is bounded from below.
- Suppose that $\lim a_{n}=-\infty$. Then the sequence $\left\{a_{n}\right\}$ is not bounded from below, but is bounded from above.

Exercise

Give an example of $a_{n} \rightarrow \infty$ and find its lower bound. $a_{n}=\log n, b=0$.

Theorem 2 does not hold for infinite limits. But:

Theorem 2'

- Suppose that $\lim a_{n}=+\infty$. Then the sequence $\left\{a_{n}\right\}$ is not bounded from above, but is bounded from below.
- Suppose that $\lim a_{n}=-\infty$. Then the sequence $\left\{a_{n}\right\}$ is not bounded from below, but is bounded from above.

Exercise

Give an example of $a_{n} \rightarrow \infty$ and find its lower bound. $a_{n}=\log n, b=0$.

Theorem 3 (limit of a subsequence) holds also for infinite limits.

Definition

We define the extended real line by setting
$\mathbb{R}^{*}=\mathbb{R} \cup\{+\infty,-\infty\}$ with the following extension of operations and ordering from \mathbb{R} :

- $a<+\infty$ and $-\infty<a$ for $a \in \mathbb{R},-\infty<+\infty$,
- $a+(+\infty)=(+\infty)+a=+\infty$ for $a \in \mathbb{R}^{*} \backslash\{-\infty\}$,
- $a+(-\infty)=(-\infty)+a=-\infty$ for $a \in \mathbb{R}^{*} \backslash\{+\infty\}$,
- $a \cdot(\pm \infty)=(\pm \infty) \cdot a= \pm \infty$ for $a \in \mathbb{R}^{*}, a>0$,
- $a \cdot(\pm \infty)=(\pm \infty) \cdot a=\mp \infty$ for $a \in \mathbb{R}^{*}, a<0$,
- $\frac{a}{ \pm \infty}=0$ pro $a \in \mathbb{R}$.

Definition

We define the extended real line by setting
$\mathbb{R}^{*}=\mathbb{R} \cup\{+\infty,-\infty\}$ with the following extension of operations and ordering from \mathbb{R} :

- $a<+\infty$ and $-\infty<a$ for $a \in \mathbb{R},-\infty<+\infty$,
- $a+(+\infty)=(+\infty)+a=+\infty$ for $a \in \mathbb{R}^{*} \backslash\{-\infty\}$,
- $a+(-\infty)=(-\infty)+a=-\infty$ for $a \in \mathbb{R}^{*} \backslash\{+\infty\}$,
- $a \cdot(\pm \infty)=(\pm \infty) \cdot a= \pm \infty$ for $a \in \mathbb{R}^{*}, a>0$,
- $a \cdot(\pm \infty)=(\pm \infty) \cdot a=\mp \infty$ for $a \in \mathbb{R}^{*}, a<0$,
- $\frac{a}{ \pm \infty}=0$ pro $a \in \mathbb{R}$.

Exercise

1. $2+\infty$
2. $-\infty+3$
3. $\pi \infty$
4. $-4(-\infty)$
5. -7∞
6. $\frac{\infty}{-3}$
7. $\frac{5}{\infty}$

The following operations are not defined:

- $(-\infty)+(+\infty),(+\infty)+(-\infty),(+\infty)-(+\infty)$, $(-\infty)-(-\infty)$,
- $(+\infty) \cdot 0,0 \cdot(+\infty),(-\infty) \cdot 0,0 \cdot(-\infty)$,
- $\frac{+\infty}{+\infty}, \frac{+\infty}{-\infty}, \frac{-\infty}{-\infty}, \frac{-\infty}{+\infty}, \frac{a}{0}$ for $a \in \mathbb{R}^{*}$.

Theorem 4' (arithmetics of limits)

Suppose that $\lim a_{n}=A \in \mathbb{R}^{*}$ and $\lim b_{n}=B \in \mathbb{R}^{*}$. Then
(i) $\lim \left(a_{n} \pm b_{n}\right)=A \pm B$ if the right-hand side is defined,

Remark

Consider cases

$$
\begin{aligned}
& \text { 1. } a_{n}=(-1)^{n}, b_{n}=(-1)^{n+1} \\
& \text { 2. } a_{n}=n, b_{n}=\frac{1}{n} \\
& \text { 3. } a_{n}=n, b_{n}=\frac{1}{n^{2}} \\
& \text { 4. } a_{n}=n^{2}, b_{n}=\frac{1}{n}
\end{aligned}
$$

Theorem 4' (arithmetics of limits)

Suppose that $\lim a_{n}=A \in \mathbb{R}^{*}$ and $\lim b_{n}=B \in \mathbb{R}^{*}$. Then
(i) $\lim \left(a_{n} \pm b_{n}\right)=A \pm B$ if the right-hand side is defined,
(ii) $\lim \left(a_{n} \cdot b_{n}\right)=A \cdot B$ if the right-hand side is defined,

Remark

Consider cases

1. $a_{n}=(-1)^{n}, b_{n}=(-1)^{n+1}$
2. $a_{n}=n, b_{n}=\frac{1}{n}$
3. $a_{n}=n, b_{n}=\frac{1}{n^{2}}$
4. $a_{n}=n^{2}, b_{n}=\frac{1}{n}$

Theorem 4' (arithmetics of limits)

Suppose that $\lim a_{n}=A \in \mathbb{R}^{*}$ and $\lim b_{n}=B \in \mathbb{R}^{*}$. Then
(i) $\lim \left(a_{n} \pm b_{n}\right)=A \pm B$ if the right-hand side is defined,
(ii) $\lim \left(a_{n} \cdot b_{n}\right)=A \cdot B$ if the right-hand side is defined,
(iii) $\lim a_{n} / b_{n}=A / B$ if the right-hand side is defined.

Remark

Consider cases

1. $a_{n}=(-1)^{n}, b_{n}=(-1)^{n+1}$
2. $a_{n}=n, b_{n}=\frac{1}{n}$
3. $a_{n}=n, b_{n}=\frac{1}{n^{2}}$
4. $a_{n}=n^{2}, b_{n}=\frac{1}{n}$

Theorem 10

Suppose that $\lim a_{n}=A \in \mathbb{R}^{*}, A>0, \lim b_{n}=0$ and there is $n_{0} \in \mathbb{N}$ such that we have $b_{n}>0$ for every $n \in \mathbb{N}, n \geq n_{0}$. Then $\lim a_{n} / b_{n}=+\infty$.
https:
//www.geogebra.org/calculator/cpuzsnnh

Theorem 6 (limits and ordering) and Theorem 8 (sandwich theorem) hold also for infinite limits. Even the following modification holds:

Theorem 8' (one policeman)

Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences.

- If $\lim a_{n}=+\infty$ and there is $n_{0} \in \mathbb{N}$ such that $b_{n} \geq a_{n}$ for every $n \in \mathbb{N}, n \geq n_{0}$, then $\lim b_{n}=+\infty$.
- If $\lim a_{n}=-\infty$ and there is $n_{0} \in \mathbb{N}$ such that $b_{n} \leq a_{n}$ for every $n \in \mathbb{N}, n \geq n_{0}$, then $\lim b_{n}=-\infty$.

Lemma 11

Let $M \subset \mathbb{R}$ be non-empty and $G \in \mathbb{R}^{*}$. Then the following statements are equivalent:
(1) $G=\sup M$.
(2) The number G is an upper bound of M and there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of members of M such that $\lim x_{n}=G$.

Exercise

Find a sequence $\left\{x_{n}\right\}$ for a set $M=[2,5)$.

Lemma 11

Let $M \subset \mathbb{R}$ be non-empty and $G \in \mathbb{R}^{*}$. Then the following statements are equivalent:
(1) $G=\sup M$.
(2) The number G is an upper bound of M and there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of members of M such that $\lim x_{n}=G$.

Exercise

Find a sequence $\left\{x_{n}\right\}$ for a set $M=[2,5)$.
$x_{n}=4,4.5,4 \frac{2}{3}, 4.75 \ldots, x_{n}=5-\frac{1}{n}$

Theorem 12 (limit of a monotone sequence)

Every monotone sequence has a limit. If $\left\{a_{n}\right\}$ is non-decreasing, then $\lim a_{n}=\sup \left\{a_{n} ; n \in \mathbb{N}\right\}$. If $\left\{a_{n}\right\}$ is non-increasing, then $\lim a_{n}=\inf \left\{a_{n} ; n \in \mathbb{N}\right\}$.

Theorem 13 (Bolzano-Weierstraß)

Every bounded sequence contains a convergent subsequence.
https://www.geogebra.org/m/gnpqch7u

Exercise

Find a convergent subsequence:

$$
\begin{aligned}
& \text { A } a_{n}=(-1)^{n} \\
& \text { В } a_{n}=\{0,2,0,0,2,0,0,0,2,0,0,0,0,2, \ldots\}
\end{aligned}
$$

Theorem 13 (Bolzano-Weierstraß)

Every bounded sequence contains a convergent subsequence.
https://www.geogebra.org/m/gnpqch7u

Exercise

Find a convergent subsequence:
A $a_{n}=(-1)^{n}$
B $a_{n}=\{0,2,0,0,2,0,0,0,2,0,0,0,0,2, \ldots\}$

1. $1,1,1, \ldots$
2. $0,0,0, \ldots$
