Mathematics I - Introduction

23/24

Why study Math?

Goal of the course

- Preparation for other courses - Statistics, Microeconomics, ...

Goal of the course

- Preparation for other courses - Statistics, Microeconomics, ...
- Training of logical thinking and mathematical exactness

Goal of the course

- Preparation for other courses - Statistics, Microeconomics, ...
- Training of logical thinking and mathematical exactness

Goal of the course

- Preparation for other courses - Statistics, Microeconomics, ...
- Training of logical thinking and mathematical exactness

At the end of the course students should be able to

- compute limits and derivatives and investigate functions

Goal of the course

- Preparation for other courses - Statistics, Microeconomics, ...
- Training of logical thinking and mathematical exactness

At the end of the course students should be able to

- compute limits and derivatives and investigate functions
- understand definitions (give positive and negative examples) and theorems (explain their meaning, neccessity of the assumptions, apply them in particular situations)

Goal of the course

- Preparation for other courses - Statistics, Microeconomics, ...
- Training of logical thinking and mathematical exactness

At the end of the course students should be able to

- compute limits and derivatives and investigate functions
- understand definitions (give positive and negative examples) and theorems (explain their meaning, neccessity of the assumptions, apply them in particular situations)
- perform mathematical proofs, give mathematically exact arguments, write mathematical formulae, use quantifiers

Content of Mathematics I

- Introduction
- Limit of a sequence
- Mappings
- Functions of one real variable
- Hájková et al: Mathematics 1
- Trench: Introduction to real analysis
- Ghorpade, Limaye: A course in calculus and real analysis
- Zorich: Mathematical analysis I
- Rudin: Principles of mathematical analysis

Sets - Notation

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

Sets - Notation

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

- $x \in A \ldots x$ is an element (or member) of the set A

Sets - Notation

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

- $x \in A \ldots x$ is an element (or member) of the set A
- $x \notin A \ldots x$ is not a member of the set A

Exercise (True or false)

A - set of all animals living in Australia.
A $a \in A$
B $b \in A$
C $c \in A$
D $d \in A$
E $e \in A$

Exercise (True or false)

A - set of all animals living in Australia.
A $a \in A$
B $b \in A$
C $c \in A$
D $d \in A$
E $e \in A$

True: A, B, C, E

Exercise (True or false)

A - set of all animals living in Australia.
A $a \notin A$
B $b \notin A$
C $c \notin A$
D $d \notin A$
E $e \notin A$

Exercise (True or false)

A - set of all animals living in Australia.
A $a \notin A$
B $b \notin A$
C $c \notin A$
D $d \notin A$
E $e \notin A$

True: D

- $\emptyset \ldots$ an empty set
- $A^{c} \ldots$ the complement of the set A
- $A \cup B \ldots$ the union of the sets A and B
- $A \cap B \ldots$ the intersection of the sets A and B
- disjoint sets ... A and B are disjoint if $A \cap B=\emptyset$
- $A \backslash B=\{x \in A ; x \notin B\} \ldots$ a difference of the sets A and B
- $\emptyset \ldots$ an empty set
- $A^{c} \ldots$ the complement of the set A
- $A \cup B \ldots$ the union of the sets A and B
- $A \cap B \ldots$ the intersection of the sets A and B
- disjoint sets ... A and B are disjoint if $A \cap B=\emptyset$
- $A \backslash B=\{x \in A ; x \notin B\} \ldots$ a difference of the sets A and B

Exercise

Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,3,5,7,9\}$ and $B=\{1,2,3,4,5\}$. Find

1. $A \cup B$
2. $A \cap B$
3. A^{c}
4. $\left(B^{c}\right)^{c}$
5. $A \backslash B$
6. $B \backslash A$

- $\emptyset \ldots$ an empty set
- $A^{c} \ldots$ the complement of the set A
- $A \cup B \ldots$ the union of the sets A and B
- $A \cap B \ldots$ the intersection of the sets A and B
- disjoint sets ... A and B are disjoint if $A \cap B=\emptyset$
- $A \backslash B=\{x \in A ; x \notin B\} \ldots$ a difference of the sets A and B

Exercise

Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,3,5,7,9\}$ and $B=\{1,2,3,4,5\}$. Find

1. $A \cup B$
2. $A \cap B$
3. A^{c}
4. $\left(B^{c}\right)^{c}$
5. $A \backslash B$
6. $B \backslash A$
7. $\{1,2,3,4,5,7,9\}$
8. B
9. $\{1,3,5\}$
10. $\{7,9\}$
11. $\{2,4,6,8\}$
12. $\{2,4\}$

- $B \subset A \ldots$ the set B is a subset of the set A (inclusion) Example: B is the set of all birds living in Australia: $B \subset A$.
- $B \subset A \ldots$ the set B is a subset of the set A (inclusion) Example: B is the set of all birds living in Australia: $B \subset A$.
- $A=B \ldots$ the sets A and B have the same elements; the following holds: $A \subset B$ and $B \subset A$
- $B \subset A \ldots$ the set B is a subset of the set A (inclusion) Example: B is the set of all birds living in Australia: $B \subset A$.
- $A=B \ldots$ the sets A and B have the same elements; the following holds: $A \subset B$ and $B \subset A$
- $A_{1} \times \cdots \times A_{m}=\left\{\left[a_{1}, \ldots, a_{m}\right] ; a_{1} \in A_{1}, \ldots, a_{m} \in A_{m}\right\}$
... the Cartesian product

Sets

$$
A_{1} \times \cdots \times A_{m}=\left\{\left[a_{1}, \ldots, a_{m}\right] ; a_{1} \in A_{1}, \ldots, a_{m} \in A_{m}\right\} \ldots \text { the }
$$

Cartesian product

Exercise

Let $A=\{1,2,3\}, B=\{2,4\}$. Find $A \times B, B \times B$ and sketch them.

Sets

$$
A_{1} \times \cdots \times A_{m}=\left\{\left[a_{1}, \ldots, a_{m}\right] ; a_{1} \in A_{1}, \ldots, a_{m} \in A_{m}\right\} \ldots \text { the }
$$

Cartesian product

Exercise

Let $A=\{1,2,3\}, B=\{2,4\}$. Find $A \times B, B \times B$ and sketch them.

Let I be a non-empty set of indices and suppose we have a system of sets A_{α}, where the indices α run over I.

- $\bigcup A_{\alpha} \ldots$ the set of all elements belonging to at least one of $\alpha \in I$ the sets A_{α}

Let I be a non-empty set of indices and suppose we have a system of sets A_{α}, where the indices α run over I.

- $\bigcup A_{\alpha} \ldots$ the set of all elements belonging to at least one of $\alpha \in I$ the sets A_{α}
- $\bigcap_{\alpha \in I} A_{\alpha} \ldots$ the set of all elements belonging to every A_{α}

Let I be a non-empty set of indices and suppose we have a system of sets A_{α}, where the indices α run over I.

- $\bigcup A_{\alpha} \ldots$ the set of all elements belonging to at least one of $\alpha \in I$ the sets A_{α}
- $\bigcap_{\alpha \in I} A_{\alpha} \ldots$ the set of all elements belonging to every A_{α}

Let I be a non-empty set of indices and suppose we have a system of sets A_{α}, where the indices α run over I.

- $\bigcup A_{\alpha} \ldots$ the set of all elements belonging to at least one of $\alpha \in I$ the sets A_{α}
- $\bigcap_{\alpha \in I} A_{\alpha} \ldots$ the set of all elements belonging to every A_{α}

Example.

$A_{1} \cup A_{2} \cup A_{3}$ is equivalent to $\bigcup_{i=1}^{3} A_{i}$, and also to $\underset{i \in\{1,2,3\}}{\bigcup} A_{i}$.

Let I be a non-empty set of indices and suppose we have a system of sets A_{α}, where the indices α run over I.

- $\bigcup_{\alpha \in I} A_{\alpha} \ldots$ the set of all elements belonging to at least one of $\alpha \in I$ the sets A_{α}
- $\bigcap_{\alpha \in I} A_{\alpha} \ldots$ the set of all elements belonging to every A_{α}

Example.

$A_{1} \cup A_{2} \cup A_{3}$ is equivalent to $\bigcup_{i=1}^{3} A_{i}$, and also to $\underset{i \in\{1,2,3\}}{\bigcup} A_{i}$.
Infinitely many sets: $A_{1} \cup A_{2} \cup A_{3} \cup \ldots$ is equivalent to $\bigcup_{i=1}^{\infty} A_{i}$, and also to $\bigcup_{i \in \mathbb{N}} A_{i}$.

Sets

Exercise

Let $A_{1}=\{0,1\}, A_{2}=\{0,2\}, A_{3}=\{0,3\}$. Find

$$
\text { 1. } \bigcup_{i=1}^{3} A_{i}
$$

Sets

Exercise

Let $A_{1}=\{0,1\}, A_{2}=\{0,2\}, A_{3}=\{0,3\}$. Find

$$
\text { 1. } \bigcup_{i=1}^{3} A_{i}
$$

$$
\text { 2. } \bigcap_{i \in\{1,2,3\}} A_{i}
$$

$$
\{0,1,2,3\},\{0\}
$$

Logic

A statement (or proposition) is

Logic

A statement (or proposition) is a sentence which can be declared to be either true or false.

Exercise

Find statements.
A Let it be!
B We all live in a yellow submarine.
C Is there anybody out there?
D We don't need no education.
E You can't always get what you want.

Logic

A statement (or proposition) is a sentence which can be declared to be either true or false.

Exercise

Find statements.
A Let it be!
B We all live in a yellow submarine.
C Is there anybody out there?
D We don't need no education.
E You can't always get what you want.
B, D, E

Statements

- \neg, also non ... negation
- \& (also \wedge) ... conjunction, logical "and"
- $\vee \ldots$ disjuction (alternative), logical "or"
- \Rightarrow... implication
- \Leftrightarrow...equivalence; "if and only if"

A	B	$\neg A$	$\neg B$	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
1	1	0	0	1	1	1	1
1	0	0	1	0	1	0	0
0	1	1	0	0	1	1	0
0	0	1	1	0	0	1	1

Statements

Exercise

A: Max likes chocolate icecream.
B : Max likes lemon icecream.
Find $\neg A$, $(A \& B),(A \vee B)$.

Statements

Exercise

A: Max likes chocolate icecream.
B : Max likes lemon icecream.
Find $\neg A$, $(A \& B),(A \vee B)$.

1. Max does not like chocolate icecream.
2. Max likes chocolate and lemon icecream.
3. Max likes chocolate or lemon icecream.

Statements

Exercise

A: Max likes chocolate icecream.
B : Max likes lemon icecream.
Find $\neg A$, $(A \& B),(A \vee B)$.

1. Max does not like chocolate icecream.
2. Max likes chocolate and lemon icecream.
3. Max likes chocolate or lemon icecream.

Exercise

A : It will be raining tomorrow.
B : We will play board games tomorrow.
Find $(A \Rightarrow B),(A \Leftrightarrow B)$.

Statements

Exercise

A: Max likes chocolate icecream.
B : Max likes lemon icecream.
Find $\neg A$, $(A \& B),(A \vee B)$.

1. Max does not like chocolate icecream.
2. Max likes chocolate and lemon icecream.
3. Max likes chocolate or lemon icecream.

Exercise

A : It will be raining tomorrow.
B : We will play board games tomorrow.
Find $(A \Rightarrow B),(A \Leftrightarrow B)$.

1. If it will be raining tomorrow, we will play board games.
2. We will play board games tomorrow if and only if it will be raining.

Time for the table of statements.

Precidate

Consider the following sentences

- 7 is a prime number;
- 4 is a prime number;
- x is a prime number;
- x is a prime number; $x \in \mathbb{N}$

Precidate

Consider the following sentences

- 7 is a prime number;
- 4 is a prime number;
- x is a prime number;
- x is a prime number; $x \in \mathbb{N}$
and also these sentences

1. 5 is bigger than 2 ;
2. 3 is bigger than 8 ;
3. 8 is bigger than 3 ;
4. x is bigger than y.
5. x is bigger than $y, x, y \in \mathbb{R}$.

Precidate

Consider the following sentences

- 7 is a prime number;
- 4 is a prime number;
- x is a prime number;
- x is a prime number; $x \in \mathbb{N}$
and also these sentences

1. 5 is bigger than 2 ;
2. 3 is bigger than 8 ;
3. 8 is bigger than 3 ;
4. x is bigger than y.
5. x is bigger than $y, x, y \in \mathbb{R}$.

A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables.

Precidate

Consider the following sentences

- 7 is a prime number;
- 4 is a prime number;
- x is a prime number;
- x is a prime number; $x \in \mathbb{N}$
and also these sentences

1. 5 is bigger than 2 ;
2. 3 is bigger than 8 ;
3. 8 is bigger than 3 ;
4. x is bigger than y.
5. x is bigger than $y, x, y \in \mathbb{R}$.

A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables.

A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables. General form:

$$
V(x), x \in M
$$

A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables. General form:

$$
\begin{gathered}
V(x), x \in M \\
V\left(x_{1}, \ldots, x_{n}\right), x_{1} \in M_{1}, \ldots, x_{n} \in M_{n}
\end{gathered}
$$

Example

$V(x): x$ is even
$M=\{1,2,3,4,5\}$
$V(3)$ false, $V(4)$ true.
$V\left(x_{1}, x_{2}\right): x_{1} \cdot x_{2}=1$
$M=\left\{2, \frac{1}{2}, 3,4\right\}$
$V\left(2, \frac{1}{2}\right)$ true, $V(2,3)$ false.

If $A(x), x \in M$ is a predicate, then the statement " $A(x)$ holds for every x from M." is shortened to

$$
\forall x \in M: A(x)
$$

If $A(x), x \in M$ is a predicate, then the statement " $A(x)$ holds for every x from M." is shortened to

$$
\forall x \in M: A(x) .
$$

The statement "There exists x in M such that $A(x)$ holds." is shortened to

$$
\exists x \in M: A(x) .
$$

If $A(x), x \in M$ is a predicate, then the statement " $A(x)$ holds for every x from M." is shortened to

$$
\forall x \in M: A(x)
$$

The statement "There exists x in M such that $A(x)$ holds." is shortened to

$$
\exists x \in M: A(x) .
$$

The statement "There is only one x in M such that $A(x)$ holds." is shortened to

$$
\exists!x \in M: A(x)
$$

If $A(x), x \in M$ is a predicate, then the statement " $A(x)$ holds for every x from M." is shortened to

$$
\forall x \in M: A(x) .
$$

The statement "There exists x in M such that $A(x)$ holds." is shortened to

$$
\exists x \in M: A(x) .
$$

The statement "There is only one x in M such that $A(x)$ holds." is shortened to

$$
\exists!x \in M: A(x) .
$$

Example

$\forall x \in \mathbb{R}:|x| \geq 0$
$\exists x \in \mathbb{Q}: x+3 \leq 12$
$\exists!x \in \mathbb{R}^{+}: x^{2}=36$

If $A(x), x \in M$ and $B(x), x \in M$ are predicates, then
$\forall x \in M, B(x): A(x) \quad$ means $\quad \forall x \in M:(B(x) \Rightarrow A(x))$,

If $A(x), x \in M$ and $B(x), x \in M$ are predicates, then
$\forall x \in M, B(x): A(x) \quad$ means $\quad \forall x \in M:(B(x) \Rightarrow A(x))$,
$\exists x \in M, B(x): A(x) \quad$ means $\quad \exists x \in M:(A(x) \& B(x))$.

Example

$$
\begin{gathered}
\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, x \geq-2: 1+n x \leq(1+x)^{n} \\
\exists x \in \mathbb{R}, x \geq 0: x \geq x^{2}
\end{gathered}
$$

https:
//www.geogebra.org/calculator/gajuueuy

Negations of the statements with quantifiers:
$\neg(\forall x \in M: A(x)) \quad$ is the same as $\quad \exists x \in M: \neg A(x)$,

Negations of the statements with quantifiers:
$\neg(\forall x \in M: A(x)) \quad$ is the same as $\quad \exists x \in M: \neg A(x)$,
$\neg(\exists x \in M: A(x)) \quad$ is the same as $\quad \forall x \in M: \neg A(x)$.

Example

Find negation

$$
\begin{gathered}
\exists x \in \mathbb{R}, x \geq 0: x \geq x^{2} \\
\forall x \in \mathbb{R}, x \geq-1: 1+3 x \leq(1+x)^{3} \\
\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x \geq 0, y \geq 0: \frac{x+y}{2} \geq \sqrt{x y}
\end{gathered}
$$

Example

Find negation

$$
\begin{gathered}
\exists x \in \mathbb{R}, x \geq 0: x \geq x^{2} \\
\forall x \in \mathbb{R}, x \geq-1: 1+3 x \leq(1+x)^{3} \\
\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x \geq 0, y \geq 0: \frac{x+y}{2} \geq \sqrt{x y}
\end{gathered}
$$

Example

Find negation

$$
\begin{gathered}
\forall x \in \mathbb{R}, x \geq 0: x<x^{2} \\
\exists x \in \mathbb{R}, x \geq-1: 1+3 x>(1+x)^{3} \\
\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x \geq 0, y \geq 0: \frac{x+y}{2}<\sqrt{x y}
\end{gathered}
$$

Methods of proofs

- direct proof
- indirect proof
- proof by contradiction
- mathematical induction

Methods of proofs

- direct proof
- indirect proof
- proof by contradiction
- mathematical induction

Exercise

Let $n \in \mathbb{N}$. If n^{2} is odd, then n is odd.

Methods of proofs

- direct proof
- indirect proof
- proof by contradiction
- mathematical induction

Exercise

Let $n \in \mathbb{N}$. If n^{2} is odd, then n is odd.

Exercise

For every $k \in \mathbb{N}$ we have

$$
\sum_{j=1}^{k}(2 j-1)=k^{2}
$$

- The set of natural numbers

$$
\mathbb{N}=\{1,2,3,4, \ldots\}
$$

- The set of natural numbers

$$
\mathbb{N}=\{1,2,3,4, \ldots\}
$$

- The set of integers

$$
\mathbb{Z}=\mathbb{N} \cup\{0\} \cup\{-n ; n \in \mathbb{N}\}=\{\ldots,-2,-1,0,1,2, \ldots\}
$$

- The set of natural numbers

$$
\mathbb{N}=\{1,2,3,4, \ldots\}
$$

- The set of integers
$\mathbb{Z}=\mathbb{N} \cup\{0\} \cup\{-n ; n \in \mathbb{N}\}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- The set of rational numbers

$$
\mathbb{Q}=\left\{\frac{p}{q} ; p \in \mathbb{Z}, q \in \mathbb{N}\right\}
$$

where $\frac{p_{1}}{q_{1}}=\frac{p_{2}}{q_{2}}$ if and only if $p_{1} \cdot q_{2}=p_{2} \cdot q_{1}$.

By the set of real numbers \mathbb{R} we will understand a set on which there are operations of addition and multiplication (denoted by + and \cdot), and a relation of ordering (denoted by \leq), such that it has the following three groups of properties.
I. The properties of addition and multiplication and their relationships.
II. The relationships of the ordering and the operations of addition and multiplication.
III. The infimum axiom.

The properties of addition and multiplication and their relationships:

The properties of addition and multiplication and their relationships:

- $\forall x, y \in \mathbb{R}: x+y=y+x$ (commutativity of addition),
- $\forall x, y, z \in \mathbb{R}: x+(y+z)=(x+y)+z$ (associativity),
- There is an element in \mathbb{R} (denoted by 0 and called a zero element), such that $x+0=x$ for every $x \in \mathbb{R}$,
- $\forall x \in \mathbb{R} \exists y \in \mathbb{R}: x+y=0(y$ is called the negative of x, such y is only one, denoted by $-x$),
- $\forall x, y \in \mathbb{R}: x \cdot y=y \cdot x$ (commutativity),
- $\forall x, y, z \in \mathbb{R}: x \cdot(y \cdot z)=(x \cdot y) \cdot z$ (associativity),
- There is a non-zero element in \mathbb{R} (called identity, denoted by 1), such that $1 \cdot x=x$ for every $x \in \mathbb{R}$,
- $\forall x \in \mathbb{R} \backslash\{0\} \exists y \in \mathbb{R}: x \cdot y=1$ (such y is only one, denoted by x^{-1} or $\frac{1}{x}$),
- $\forall x, y, z \in \mathbb{R}:(x+y) \cdot z=x \cdot z+y \cdot z$ (distributivity).

The relationships of the ordering and the operations of addition and multiplication:

The relationships of the ordering and the operations of addition and multiplication:

- $\forall x, y, z \in \mathbb{R}:(x \leq y \& y \leq z) \Rightarrow x \leq z$ (transitivity),
- $\forall x, y \in \mathbb{R}:(x \leq y \& y \leq x) \Rightarrow x=y$ (weak antisymmetry),
- $\forall x, y \in \mathbb{R}: x \leq y \vee y \leq x$,
- $\forall x, y, z \in \mathbb{R}: x \leq y \Rightarrow x+z \leq y+z$,
- $\forall x, y \in \mathbb{R}:(0 \leq x \& 0 \leq y) \Rightarrow 0 \leq x \cdot y$.

Definition

We say that the set $M \subset \mathbb{R}$ is bounded from below if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have $x \geq a$.

Definition

We say that the set $M \subset \mathbb{R}$ is bounded from below if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have $x \geq a$. Such a number a is called a lower bound of the set M.

Definition

We say that the set $M \subset \mathbb{R}$ is bounded from below if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have $x \geq a$. Such a number a is called a lower bound of the set M.
Analogously we define the notions of a set bounded from above and an upper bound.

Definition

We say that the set $M \subset \mathbb{R}$ is bounded from below if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have $x \geq a$. Such a number a is called a lower bound of the set M.
Analogously we define the notions of a set bounded from above and an upper bound. We say that a set $M \subset \mathbb{R}$ is bounded if it is bounded from above and below.

Exercise

Which sets are bounded from below? Bounded from above? Bounded?
A \mathbb{N}
B $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\}$
$\mathrm{C} \mathbb{R} \backslash \mathbb{Q} \cap(-3,2]$
D $\{x \in \mathbb{R}: x<\pi\}$
$\mathrm{E}(-\infty,-1) \cup\{0\} \cup[1, \infty)$

Definition

We say that the set $M \subset \mathbb{R}$ is bounded from below if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have $x \geq a$. Such a number a is called a lower bound of the set M.
Analogously we define the notions of a set bounded from above and an upper bound. We say that a set $M \subset \mathbb{R}$ is bounded if it is bounded from above and below.

Exercise

Which sets are bounded from below? Bounded from above? Bounded?
A \mathbb{N}
B $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\}$
$\mathrm{C} \mathbb{R} \backslash \mathbb{Q} \cap(-3,2]$
D $\{x \in \mathbb{R}: x<\pi\}$
$\mathrm{E}(-\infty,-1) \cup\{0\} \cup[1, \infty)$
below: A, B, C; above: B, C, D; bounded: B, C

Definition

Let $M \subset \mathbb{R}$. We say that a is a maximum of the set M (denoted by $\max M$) if a is an upper bound of M and $a \in M$. Analogously we define a minimum of M, denoted by $\min M$.

Definition

Let $M \subset \mathbb{R}$. We say that a is a maximum of the set M (denoted by $\max M$) if a is an upper bound of M and $a \in M$.
Analogously we define a minimum of M, denoted by $\min M$.

Exercise

Find minimum and maximum:

$$
\begin{aligned}
& \text { 1. }\{1,2,3,4\} \\
& \text { 2. }[-2,3] \\
& \text { 3. }(-2,3] \\
& \text { 4. }[-2,-1) \cup(0,25]
\end{aligned}
$$

5. $[0, \infty)$
6. $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$
7. \mathbb{N}
8. $(\mathbb{R} \backslash \mathbb{Q}) \cap[0, \pi]$

Definition

Let $M \subset \mathbb{R}$. We say that a is a maximum of the set M (denoted by $\max M$) if a is an upper bound of M and $a \in M$.
Analogously we define a minimum of M, denoted by $\min M$.

Exercise

Find minimum and maximum:

1. $\{1,2,3,4\}$	5. $[0, \infty)$		
2. $[-2,3]$	6. $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$		
3. $(-2,3]$	7. \mathbb{N}		
4. $[-2,-1) \cup(0,25]$	8. $(\mathbb{R} \backslash \mathbb{Q}) \cap[0, \pi]$		
1. $\min =1$,	3. $\nexists, 3$		
$\max =4$	4. $-2,25$		
6. $\nexists, 1$			
2. $-2,3$	5. $0, \nexists$		8. \nexists, π
:---	:---		

The infimum axiom:

Let M be a non-empty set bounded from below. Then there exists a unique number $g \in \mathbb{R}$ such that
(i) $\forall x \in M: x \geq g$,

The infimum axiom:

Let M be a non-empty set bounded from below. Then there exists a unique number $g \in \mathbb{R}$ such that
(i) $\forall x \in M: x \geq g$,
(ii) $\forall g^{\prime} \in \mathbb{R}, g^{\prime}>g \exists x \in M: x<g^{\prime}$.

The number g is denoted by $\inf M$ and is called the infimum of the set M.

1) The infimum of A is the greater lower bound of the
set A. All other lower bounds are smaller than inf(A).
2) Furthermore if b is greater than $\inf (A)$ then there exists an contained in the sel A such that $\mathrm{a}<\mathrm{b}$.

Figure:
https://mathspandorabox.wordpress.com/2016/03/11/the-difference-between-supremum-and-infimum-equivalent-and-equal-set \neq

Remark

- The infimum axiom says that every non-empty set bounded from below has infimum.

Remark

- The infimum axiom says that every non-empty set bounded from below has infimum.
- The infimum of the set M is its greatest lower bound.

Remark

- The infimum axiom says that every non-empty set bounded from below has infimum.
- The infimum of the set M is its greatest lower bound.
- The real numbers exist and are uniquely determined by the properties I-III.

The following hold:
(i) $\forall x \in \mathbb{R}: x \cdot 0=0 \cdot x=0$,
(ii) $\forall x \in \mathbb{R}:-x=(-1) \cdot x$,
(iii) $\forall x, y \in \mathbb{R}: x y=0 \Rightarrow(x=0 \vee y=0)$,
(iv) $\forall x \in \mathbb{R} \forall n \in \mathbb{N}: x^{-n}=\left(x^{-1}\right)^{n}$,
(v) $\forall x, y \in \mathbb{R}:(x>0 \wedge y>0) \Rightarrow x y>0$,
(vi) $\forall x \in \mathbb{R}, x \geq 0 \forall y \in \mathbb{R}, y \geq 0 \forall n \in \mathbb{N}: x<y \Leftrightarrow x^{n}<y^{n}$.

Let $a, b \in \mathbb{R}, a \leq b$. We denote:

- An open interval $(a, b)=\{x \in \mathbb{R} ; a<x<b\}$,
- A closed interval $[a, b]=\{x \in \mathbb{R} ; a \leq x \leq b\}$,
- A half-open interval $[a, b)=\{x \in \mathbb{R} ; a \leq x<b\}$,
- A half-open interval $(a, b]=\{x \in \mathbb{R} ; a<x \leq b\}$.

Let $a, b \in \mathbb{R}, a \leq b$. We denote:

- An open interval $(a, b)=\{x \in \mathbb{R} ; a<x<b\}$,
- A closed interval $[a, b]=\{x \in \mathbb{R} ; a \leq x \leq b\}$,
- A half-open interval $[a, b)=\{x \in \mathbb{R} ; a \leq x<b\}$,
- A half-open interval $(a, b]=\{x \in \mathbb{R} ; a<x \leq b\}$.

The point a is called the left endpoint of the interval, The point b is called the right endpoint of the interval. A point in the interval which is not an endpoint is called an inner point of the interval.

Let $a, b \in \mathbb{R}, a \leq b$. We denote:

- An open interval $(a, b)=\{x \in \mathbb{R} ; a<x<b\}$,
- A closed interval $[a, b]=\{x \in \mathbb{R} ; a \leq x \leq b\}$,
- A half-open interval $[a, b)=\{x \in \mathbb{R} ; a \leq x<b\}$,
- A half-open interval $(a, b]=\{x \in \mathbb{R} ; a<x \leq b\}$.

The point a is called the left endpoint of the interval, The point b is called the right endpoint of the interval. A point in the interval which is not an endpoint is called an inner point of the interval.
Unbounded intervals:

$$
(a,+\infty)=\{x \in \mathbb{R} ; a<x\}, \quad(-\infty, a)=\{x \in \mathbb{R} ; x<a\}
$$

analogically $(-\infty, a],[a,+\infty)$ and $(-\infty,+\infty)$.

Label the Venn diagram with $\mathbb{N}, \mathbb{Q}, \mathbb{Z}, \mathbb{R}, \mathbb{R} \backslash \mathbb{Q}$.

Label the Venn diagram with $\mathbb{N}, \mathbb{Q}, \mathbb{Z}, \mathbb{R}, \mathbb{R} \backslash \mathbb{Q}$.

We have $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$. If we transfer the addition and multiplication from \mathbb{R} to the above sets, we obtain the usual operations on these sets.
A real number that is not rational is called irrational. The set $\mathbb{R} \backslash \mathbb{Q}$ is called the set of irrational numbers.

Consequences of the infimum axiom

Definition

Let $M \subset \mathbb{R}$. A number $G \in \mathbb{R}$ satisfying
(i) $\forall x \in M: x \leq G$,
(ii) $\forall G^{\prime} \in \mathbb{R}, G^{\prime}<G \exists x \in M: x>G^{\prime}$,
is called a supremum of the set M.

Consequences of the infimum axiom

Definition

Let $M \subset \mathbb{R}$. A number $G \in \mathbb{R}$ satisfying
(i) $\forall x \in M: x \leq G$,
(ii) $\forall G^{\prime} \in \mathbb{R}, G^{\prime}<G \exists x \in M: x>G^{\prime}$,
is called a supremum of the set M.

Theorem 1 (Supremum theorem)

Let $M \subset \mathbb{R}$ be a non-empty set bounded from above. Then there exists a unique supremum of the set M.

The supremum of the set M is denoted by $\sup M$.

Consequences of the infimum axiom

Definition

Let $M \subset \mathbb{R}$. A number $G \in \mathbb{R}$ satisfying
(i) $\forall x \in M: x \leq G$,
(ii) $\forall G^{\prime} \in \mathbb{R}, G^{\prime}<G \exists x \in M: x>G^{\prime}$,
is called a supremum of the set M.

Theorem 1 (Supremum theorem)

Let $M \subset \mathbb{R}$ be a non-empty set bounded from above. Then there exists a unique supremum of the set M.

The supremum of the set M is denoted by $\sup M$. The following holds: $\sup M=-\inf (-M)$.

Exercise

Find infimum, minimum, maximum and supremum:

1. $\{1,2,3,4\}$
2. $\{-1,-2,-3,-4\}$
3. $[-2,3]$
4. $(-2,3)$
5. $(-2,3]$
6. $[-2,-1) \cup(0,25]$
7. $(-7,-0) \cup(1,2)$
8. $[0, \infty)$
9. $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$
10. \mathbb{N}

Exercise

Find infimum, minimum, maximum and supremum:

1. $\{1,2,3,4\}$
2. $1,1,4,4$
3. $\{-1,-2,-3,-4\}$
4. $-4,-4,-1,-1$
5. $[-2,3]$
6. $-2,-2,3,3$
7. $(-2,3)$
8. $-2, \nexists, \nexists, 3$
9. $(-2,3]$
10. $-2, \not, A, 3,3$
11. $[-2,-1) \cup(0,25]$
12. $-2,-2,25,25$
13. $(-7,-0) \cup(1,2)$
14. $-7, \nexists, \nexists, 2$
15. $[0, \infty)$
16. $0,0, \nexists, \infty$
17. $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$
18. $0, \nexists, 1,1$
19. \mathbb{N}
20. $1,1, \nexists, \infty$

Theorem 2 (Archimedean property)
 For every $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ satisfying $n>x$.

Theorem 2 (Archimedean property)

For every $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ satisfying $n>x$.

Theorem 3 (existence of an integer part)

For every $r \in \mathbb{R}$ there exists an integer part of r, i.e. a number $k \in \mathbb{Z}$ satisfying $k \leq r<k+1$. The integer part of r is determined uniquely and it is denoted by $[r]$.

Theorem 4 (nth root)

For every $x \in[0,+\infty)$ and every $n \in \mathbb{N}$ there exists a unique $y \in[0,+\infty)$ satisfying $y^{n}=x$.

Theorem 4 (nth root)

For every $x \in[0,+\infty)$ and every $n \in \mathbb{N}$ there exists a unique $y \in[0,+\infty)$ satisfying $y^{n}=x$.

Theorem 5 (density of \mathbb{Q} and $\mathbb{R} \backslash \mathbb{Q}$)

Let $a, b \in \mathbb{R}, a<b$. Then there exist $r \in \mathbb{Q}$ satisfying $a<r<b$ and $s \in \mathbb{R} \backslash \mathbb{Q}$ satisfying $a<s<b$.

