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Goal of the course

@ Preparation for other courses — Statistics,
Microeconomics, ...

Mathematics I - Introduction



Goal of the course

@ Preparation for other courses — Statistics,
Microeconomics, ...

@ Training of logical thinking and mathematical exactness

Mathematics I - Introduction



Goal of the course

@ Preparation for other courses — Statistics,
Microeconomics, ...

@ Training of logical thinking and mathematical exactness

Mathematics I - Introduction



Goal of the course

@ Preparation for other courses — Statistics,
Microeconomics, ...

@ Training of logical thinking and mathematical exactness
At the end of the course students should be able to

@ compute limits and derivatives and investigate functions

Mathematics I - Introduction



Goal of the course

@ Preparation for other courses — Statistics,
Microeconomics, ...

@ Training of logical thinking and mathematical exactness
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of the assumptions, apply them in particular situations)
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Goal of the course

@ Preparation for other courses — Statistics,
Microeconomics, ...

@ Training of logical thinking and mathematical exactness
At the end of the course students should be able to
@ compute limits and derivatives and investigate functions

@ understand definitions (give positive and negative
examples) and theorems (explain their meaning, neccessity
of the assumptions, apply them in particular situations)

e perform mathematical proofs, give mathematically exact
arguments, write mathematical formulae, use quantifiers
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Content of Mathematics |

@ Introduction
e Limit of a sequence
@ Mappings

@ Functions of one real variable
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Hajkova et al: Mathematics 1
Trench: Introduction to real analysis
Ghorpade, Limaye: A course in calculus and real analysis

Zorich: Mathematical analysis I

Rudin: Principles of mathematical analysis
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Sets - Notation

We take a set to be a collection of definite and distinguishable
objects into a coherent whole.
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Sets - Notation

We take a set to be a collection of definite and distinguishable
objects into a coherent whole.

@ x € A ...xis an element (or member) of the set A

@ x ¢ A...xis nota member of the set A
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Sets

Exercise (True or false)

A - set of all animals living in Australia.

AacA BbeA CcecA DdecA EecA
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Sets

Exercise (True or false)

A - set of all animals living in Australia.

AacA BbeA CcecA DdecA EecA

True: A, B, C, E
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Sets

Exercise (True or false)

A - set of all animals living in Australia.

AadA BbdA CcdA DdeA EedA

-

B
| g =
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Sets

Exercise (True or false)

A - set of all animals living in Australia.

AadA BbdA CcdA DdeA EedA

-

B
| g =

True: D
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@ ()...an empty set

@ A°...the complement of the set A

@ AU B...the union of the sets A and B

@ AN B ...the intersection of the sets A and B

o disjoint sets ... A and B are disjointif AN B = ()

@ A\ B={x € A; x ¢ B} ...adifference of the sets A and B
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@ () ...an empty set

@ A°...the complement of the set A

@ AU B...the union of the sets A and B

@ AN B ...the intersection of the sets A and B

o disjoint sets ... A and B are disjointif AN B = ()

@ A\ B={x € A; x ¢ B} ...adifference of the sets A and B

Exercise

Let U = {1,2,3,4,5,6,7,8,9}, A = {1,3,5,7,9} and
B =1{1,2,3,4,5}. Find

1. AUB 3. A° 5.A\B
2. ANB 4. (B 6. B\ A
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@ () ...an empty set

@ A°...the complement of the set A

@ AU B...the union of the sets A and B

@ AN B ...the intersection of the sets A and B

o disjoint sets ... A and B are disjointif AN B = ()

@ A\ B={x € A; x ¢ B} ...adifference of the sets A and B

Exercise

Let U = {1,2,3,4,5,6,7,8,9},A = {1,3,5,7,9} and
B=1{1,2,3,4,5}. Find

1. AUB 3. AC 5. A\ B

2. ANB 4. (BO) 6. B\ A

1. {1,2,3,4,5,7,9} 4. B

2. {1,3,5} 5. {7,9}

3. {2,4,6,8} 6. {2,4) -
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@ B C A...the set B is a subset of the set A (inclusion)
Example: B is the set of all birds living in Australia: B C A.
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@ B C A...the set B is a subset of the set A (inclusion)
Example: B is the set of all birds living in Australia: B C A.

@ A = B ...the sets A and B have the same elements; the
following holds: A C Band BC A
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@ B C A...the set B is a subset of the set A (inclusion)
Example: B is the set of all birds living in Australia: B C A.

@ A = B ...the sets A and B have the same elements; the
following holds: A C Band BC A

@ Ay x--- XA, ={lar,...,an); a1 €Ay, ... ,an € Ay}
... the Cartesian product
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Sets

Ay X - x Ay ={lay,...,an]; ai €Ay, ... a, €A,}...the
Cartesian product

LetA = {1,2,3},B={2,4}. Find A x B, B x B and sketch
them.

4
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Sets

Ay x - x Ay ={lar,...,an]; a1 €Ay,...,a, €A,}...the
Cartesian product

Exercise

LetA = {1,2,3},B={2,4}. Find A x B, B x B and sketch
them.
4 ° ° ° 4 . .
3 3
2 ° ° ° 2 ° °
1 1
0 1 2 3 4 0 1 2 3 4
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Let / be a non-empty set of indices and suppose we have a
system of sets A, where the indices a run over /.
e [J A, ...the set of all elements belonging to at least one of

aecl
the sets A,
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Let / be a non-empty set of indices and suppose we have a
system of sets A, where the indices a run over /.
e [J A, ...the set of all elements belonging to at least one of

aecl
the sets A,

@ () A, ...the set of all elements belonging to every A,
acl
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Let / be a non-empty set of indices and suppose we have a
system of sets A, where the indices a run over /.

e [J A, ...the set of all elements belonging to at least one of

a€l
the sets A,
@ () A, ...the set of all elements belonging to every A,
acl
Example.

3
A UA; UA; is equivalentto | JA;, and alsoto | J A;.
i=1 i€{12,3}
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Let / be a non-empty set of indices and suppose we have a
system of sets A, where the indices a run over /.

e [J A, ...the set of all elements belonging to at least one of

a€l
the sets A,
@ () A, ...the set of all elements belonging to every A,
acl
Example.

3
A UA; UA; is equivalentto | JA;, and alsoto | J A;.
i=1 i€{12,3}

Infinitely many sets: A} UA, UA; U ... is equivalent to | A,

i=1
and also to |J A;.
ieN
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Sets

Exercise

LetA; = {0, 1}, A, = {0,2}, A; = {0, 3}. Find

3
. UAi 2. ﬂ A;

i€{1,2,3}
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Sets

Exercise

LetA; = {0, 1}, A, = {0,2}, A; = {0, 3}. Find

3
. UAi 2. ﬂ A;

i€{1,2,3}

{0,1,2,3}, {0}
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A statement (or proposition) is
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Logic

A statement (or proposition) is a sentence which can be
declared to be either true or false.

Exercise

Find statements.
A Let it be!
B We all live in a yellow submarine.

C Is there anybody out there?
D We don’t need no education.

E You can’t always get what you want.
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Logic

A statement (or proposition) is a sentence which can be
declared to be either true or false.

Exercise

Find statements.

A Let it be!

B We all live in a yellow submarine.

C Is there anybody out there?

D We don’t need no education.

E You can’t always get what you want.
B,D,E
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Statements

@ —, also non ...negation

e & (also A)...conjunction, logical “and”

@ V ...disjuction (alternative), logical “or”

@ = ...implication

@ & ...equivalence; “if and only if”
A|B|-A|-B|AANB|AVB|A=B|A&<B
1{1] 0 0 1 1 1 1
110] 0 1 0 1 0 0
0|11 0 0 1 1 0
0]0] 1 1 0 0 1 1
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Statements

Exercise

A: Max likes chocolate icecream.
B: Max likes lemon icecream.
Find -A, (A & B), (AV B).
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Statements

Exercise

A: Max likes chocolate icecream.
B: Max likes lemon icecream.
Find -A, (A & B), (AV B).

1. Max does not like chocolate icecream.

2. Max likes chocolate and lemon icecream.

3. Max likes chocolate or lemon icecream.
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Statements

Exercise

A: Max likes chocolate icecream.
B: Max likes lemon icecream.
Find -A, (A & B), (AV B).

1. Max does not like chocolate icecream.

2. Max likes chocolate and lemon icecream.

3. Max likes chocolate or lemon icecream.

Exercise

A: It will be raining tomorrow.
B: We will play board games tomorrow.
Find (A = B), (A < B).
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Statements

Exercise

A: Max likes chocolate icecream.
B: Max likes lemon icecream.
Find -A, (A & B), (AV B).

1. Max does not like chocolate icecream.

2. Max likes chocolate and lemon icecream.

3. Max likes chocolate or lemon icecream.

Exercise

A: It will be raining tomorrow.
B: We will play board games tomorrow.
Find (A = B), (A < B).

1. If it will be raining tomorrow, we will play board games.

2. We will play board games tomorrow if and only if it will
be raining.
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Time for the table of statements.
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Consider the following sentences
@ 7 is a prime number;
@ 4 is a prime number;
@ x is a prime number;

@ xis a prime number; x € N
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Consider the following sentences
@ 7 is a prime number;
@ 4 is a prime number;
@ x is a prime number;
@ xis a prime number; x € N
and also these sentences
1. 5is bigger than 2;
3 is bigger than 8;
8 is bigger than 3;
X is bigger than y.

Sk LN

x is bigger than y, x,y € R.
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Consider the following sentences
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@ x is a prime number;
@ xis a prime number; x € N
and also these sentences
1. 5is bigger than 2;
3 is bigger than 8;
8 is bigger than 3;
X is bigger than y.

Sk LN

x is bigger than y, x,y € R.

A predicate (or propositional function) is an expression or
sentence involving variables which becomes a statement once
we substitute certain elements of a given set for the variables.
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Consider the following sentences
@ 7 is a prime number;
@ 4 is a prime number;
@ x is a prime number;
@ xis a prime number; x € N
and also these sentences
1. 5is bigger than 2;
3 is bigger than 8;
8 is bigger than 3;
X is bigger than y.

Sk LN

x is bigger than y, x,y € R.

A predicate (or propositional function) is an expression or
sentence involving variables which becomes a statement once
we substitute certain elements of a given set for the variables.
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A predicate (or propositional function) is an expression or
sentence involving variables which becomes a statement once
we substitute certain elements of a given set for the variables.
General form:

V(x),xeM
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A predicate (or propositional function) is an expression or
sentence involving variables which becomes a statement once
we substitute certain elements of a given set for the variables.
General form:

V(x),xeM

V(x1, ... %), x1 EMy,...,x, €M,

Example

V(x): x is even
M={1,2,3,4,5}
V(3) false, V(4) true.

V(X[,Xz)l X1 Xy = 1
M={21734}
V(2,3) true, V(2,3) false.

Mathematics I - Introduction 20/40



If A(x), x € M is a predicate, then the statement “A(x) holds for
every x from M.” is shortened to

Vx e M: A(x).
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If A(x), x € M is a predicate, then the statement “A(x) holds for
every x from M.” is shortened to

Vx e M: A(x).

The statement “There exists x in M such that A(x) holds.” is
shortened to
dx e M: A(x).
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If A(x), x € M is a predicate, then the statement “A(x) holds for
every x from M.” is shortened to

Vx e M: A(x).

The statement “There exists x in M such that A(x) holds.” is
shortened to
dx e M: A(x).

The statement “There is only one x in M such that A(x) holds.”
is shortened to
dlx € M: A(x).
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If A(x), x € M is a predicate, then the statement “A(x) holds for
every x from M.” is shortened to

Vx e M: A(x).

The statement “There exists x in M such that A(x) holds.” is
shortened to
dx e M: A(x).

The statement “There is only one x in M such that A(x) holds.”
is shortened to

dlx € M: A(x).

VxeR:|x| >0
IxeQ:x+3<L12
dlx e RT : x2 =36
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If A(x), x € M and B(x), x € M are predicates, then

Vx € M,B(x): A(x) means Vx & M: (B(x) = A(x)),
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https://www.geogebra.org/calculator/gajuueuy
https://www.geogebra.org/calculator/gajuueuy

If A(x), x € M and B(x), x € M are predicates, then

Vx € M,B(x): A(x) means Vx & M: (B(x) = A(x)),

dx € M,B(x): A(x) means dx € M: (A(x) & B(x)).

Example

VneNVxeRx>-2:1+nx < (1+x)
EIxER,x20:x2x2

https:
//www.geogebra.org/calculator/gajuueuy

Mathematics I - Introduction 22/40


https://www.geogebra.org/calculator/gajuueuy
https://www.geogebra.org/calculator/gajuueuy

Negations of the statements with quantifiers:

—(Vx € M: A(x)) isthesameas Ix € M: —-A(x),
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Negations of the statements with quantifiers:

—(Vx € M: A(x)) isthesameas Ix € M: —-A(x),

—(dx € M: A(x)) isthesameas Vx & M: -A(x).

Example

Find negation
HXER,XZOZXZ)Cz

Vx ER,x>—1:14+3x<(14x)°

Ve RVyeR x>0,y>0: ;yz\/x_y
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Example

Find negation
3x€R,x20:x2x2

VxER,x2—1:1+3x§(l+x)3

> /Xy

VxGR,VyER,sz,yZO:x+y

Example

Find negation
VxER,sz:x<x2

IxeR, x> —1:1+3x> (1+x)°

3x€R,3y€R,x20,y20:¥<m
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Methods of proofs

@ direct proof
@ indirect proof
@ proof by contradiction

@ mathematical induction
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Methods of proofs

@ direct proof
@ indirect proof
@ proof by contradiction

@ mathematical induction

Let n € N. If n? is odd, then 7 is odd.
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Methods of proofs

@ direct proof
@ indirect proof
@ proof by contradiction

@ mathematical induction

Let n € N. If n? is odd, then 7 is odd.

For every k € N we have
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@ The set of natural numbers

N=1{1,2,34,..}
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@ The set of natural numbers
N=1{1,2,3,4,...}
@ The set of integers

Z=Nu{0}U{-n, neN}={..,-2,-1,0,1,2,...}
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@ The set of natural numbers
N=1{1,2,3,4,...}
@ The set of integers
Z=Nu{0}U{-n, neN}={..,-2,-1,0,1,2,...}

@ The set of rational numbers
_ )P,
@—{;IaP€Z7CI€N}a

where % = Z—i if and only if py - g = p> - q1.
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By the set of real numbers R we will understand a set on which
there are operations of addition and multiplication (denoted by
+ and -), and a relation of ordering (denoted by <), such that it
has the following three groups of properties.

I. The properties of addition and multiplication and their
relationships.

IT. The relationships of the ordering and the operations of
addition and multiplication.

III. The infimum axiom.
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The properties of addition and multiplication and their
relationships:
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The properties of addition and multiplication and their
relationships:

e Vx,y € R: x +y=y+ x (commutativity of addition),
o Vx,y,z € R: x+ (y +z) = (x +y) + z (associativity),

@ There is an element in R (denoted by 0 and called a zero
element), such that x + 0 = x for every x € R,

o Vxe Rdy e R: x+ y =0 (yis called the negative of x,
such y is only one, denoted by —x),

e Vx,y € R: x-y=y-x (commutativity),

@ Vx,y,z€ R:x:(y-z) = (x-y) - z (associativity),

@ There is a non-zero element in R (called identity, denoted
by 1), such that 1 - x = x for every x € R,

o Vx e R\ {0} dy € R: x-y =1 (suchyis only one,
denoted by x~! or 1),
o Vx,y,z€ R: (x+y) -z=x-z+y-z (distributivity).
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The relationships of the ordering and the operations of
addition and multiplication:
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The relationships of the ordering and the operations of
addition and multiplication:

o Vx,y,zeR: (x <y & y <z) = x < z(transitivity),
e Vx,yeR: (x<y & y <x) = x=y(weak
antisymmetry),

o Vx,yeR:x<yVy<ux,
e Vx,y,zeR:x<y=x+z<y+z
e Vx,yceR: (0<x & 0<y)=0<x-y.
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We say that the set M C R is bounded from below if there
exists a number a € R such that for each x € M we have x > a.
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Definition
We say that the set M C R is bounded from below if there

exists a number a € R such that for each x € M we have x > a.
Such a number a is called a lower bound of the set M.
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Definition

We say that the set M C R is bounded from below if there
exists a number a € R such that for each x € M we have x > a.
Such a number a is called a lower bound of the set M.
Analogously we define the notions of a set bounded from above
and an upper bound.
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Definition

We say that the set M C R is bounded from below if there
exists a number a € R such that for each x € M we have x > a.
Such a number « is called a lower bound of the set M.
Analogously we define the notions of a set bounded from above
and an upper bound. We say that a set M C R is bounded if it is
bounded from above and below.

Exercise

Which sets are bounded from below? Bounded from above?
Bounded?

AN D {xeR:x<m}
B {17%7%7i’%7"'}
C R\Qn(-3,2] E (—o0,—1)U{0} U1, 00)
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Definition

We say that the set M C R is bounded from below if there
exists a number a € R such that for each x € M we have x > a.
Such a number « is called a lower bound of the set M.
Analogously we define the notions of a set bounded from above
and an upper bound. We say that a set M C R is bounded if it is
bounded from above and below.

Exercise

Which sets are bounded from below? Bounded from above?
Bounded?

AN D {xeR:x<m}
B {17%7%7i’%7"'}
C R\Qn(-3,2] E (—o0,—1)U{0} U1, 00)

below: A, B, C; above: B, C, D; bounded: B, C

Mathematics I - Introduction 30/40



Let M C R. We say that a is a maximum of the set M (denoted
by max M) if a is an upper bound of M and a € M.
Analogously we define a minimum of M, denoted by min M.
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Let M C R. We say that a is a maximum of the set M (denoted
by max M) if a is an upper bound of M and a € M.
Analogously we define a minimum of M, denoted by min M.

Exercise
Find minimum and maximum:

1. {1,2,3,4} 5. [0, 00)

2. [-2,3] 6. {1,353}
3. (=2,3] 7. N

4. [-2,—1)U(0,25] 8. (R\ Q)N Io,n]
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Let M C R. We say that a is a maximum of the set M (denoted
by max M) if a is an upper bound of M and a € M.
Analogously we define a minimum of M, denoted by min M.

Exercise

Find minimum and maximum:
1. {1,2,3,4} 5. [0,00)
2. [-2,3] 6. {1,%,%,%,...}
3. (—2,3] 7. N
4. [-2,—1)U (0,25] 8. (R\Q)NJo0,n]
. min=1, 3. A3 6. A1
max = 4 4, —2,25 7.1, A
2. —2,3 5.0, A 8. A
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The infimum axiom:
Let M be a non-empty set bounded from below. Then there
exists a unique number g € R such that

i) VxeM: x> g,
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The infimum axiom:
Let M be a non-empty set bounded from below. Then there
exists a unique number g € R such that
i) VxeM: x> g,
(i) Vg e R, g >gIxeM: x<g.
The number g is denoted by inf M and is called the infimum of

the set M.
L 2r Bounds for A
! ]
1 I
1) The is the greater lower bound of the
. All other are smaller than
2) Furthermore if b is greater than then there
exists an - contained in the such that - <o,
Figure:

https://mathspandorabox.wordpress.com/2016/03/11/the-difference-
between-supremum-and-infimum-equivalent-and-equal-set/
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@ The infimum axiom says that every non-empty set
bounded from below has infimum.
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Remark

@ The infimum axiom says that every non-empty set
bounded from below has infimum.

@ The infimum of the set M is its greatest lower bound.
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Remark

@ The infimum axiom says that every non-empty set
bounded from below has infimum.

@ The infimum of the set M is its greatest lower bound.

@ The real numbers exist and are uniquely determined by the
properties [-III.
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The following hold:

1) VxeR:x-0=0-x=0,

() Vx e R: —x=(—1)-x,

(i) Vx,ye R:xy=0= (x=0Vy=0),

(iv) Vx e RVrn e N: x" = (x7 1),

(V) Vx,y€eR: (x >0Ay>0)=xy >0,

(Vi) Vx e R x>0VyeR,y>0VneN: x <y x" <y,
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Leta,b € R, a < b. We denote:
@ Anopen interval (a,b) = {x € R; a < x < b},
@ A closed interval [a,b] = {x € R; a < x < b},
e A half-open interval [a,b) = {x € R; a < x < b},
@ A half-open interval (a,b] = {x € R; a < x < b}.
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Leta,b € R, a < b. We denote:

@ Anopen interval (a,b) = {x € R; a < x < b},

@ A closed interval [a,b] = {x € R; a < x < b},

e A half-open interval [a,b) = {x € R; a < x < b},

@ A half-open interval (a,b] = {x € R; a < x < b}.
The point a is called the left endpoint of the interval, The point
b is called the right endpoint of the interval. A point in the

interval which is not an endpoint is called an inner point of the
interval.

Mathematics I - Introduction



Leta,b € R, a < b. We denote:

@ Anopen interval (a,b) = {x € R; a < x < b},

@ A closed interval [a,b] = {x € R; a < x < b},

e A half-open interval [a,b) = {x € R; a < x < b},

@ A half-open interval (a,b] = {x € R; a < x < b}.
The point a is called the left endpoint of the interval, The point
b is called the right endpoint of the interval. A point in the
interval which is not an endpoint is called an inner point of the

interval.
Unbounded intervals:

(a,+0) ={x €R; a<x}, (—o00,a)={x€eR;x<a}l,

analogically (—o0, dl, [a, +00) and (—o0, +00).
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Label the Venn diagram with N, Q, Z, R, R \ Q.
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Label the Venn diagram with N, Q, Z, R, R \ Q.

We have N C Z C Q C R. If we transfer the addition and
multiplication from R to the above sets, we obtain the usual
operations on these sets.

A real number that is not rational is called irrational. The set
R\ Q is called the set of irrational numbers.
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Consequences of the infimum axiom

Let M C R. A number G € R satisfying
(1) VxeM: x <G,
(i) VG e R,G'<GIxeM: x> G,

is called a supremum of the set M.
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Consequences of the infimum axiom

Let M C R. A number G € R satisfying
(1) VxeM: x <G,
(i) VG e R,G'<GIxeM: x> G,

is called a supremum of the set M.

Theorem 1 (Supremum theorem)

Let M C R be a non-empty set bounded from above. Then there
exists a unique supremum of the set M.

The supremum of the set M is denoted by sup M.
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Consequences of the infimum axiom

Let M C R. A number G € R satisfying
(1) VxeM: x <G,
(i) VG e R,G'<GIxeM: x> G,

is called a supremum of the set M.

Theorem 1 (Supremum theorem)

Let M C R be a non-empty set bounded from above. Then there
exists a unique supremum of the set M.

The supremum of the set M is denoted by sup M.
The following holds: sup M = — inf(—M).
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Exercise

Find infimum, minimum, maximum and supremum:

1. {1,2,3,4} 6. [-2,—1) U (0,25]
2. {—1,-2,-3,—-4} 7. (=7,-0)U(1,2)
3. [-2,3] 8. [0, 00)

4. (=2,3) 9. {1,4,1 1}
5. (=2,3] 10. N
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Exercise

Find infimum, minimum, maximum and supremum:
1. {1,2,3,4} 6. [-2,—1)U (0,25]
2. {—-1,-2,-3, -4} 7. (=7,-0)U(1,2)
3. [-2,3] 8. [0, 00)
4. (=2,3) 9. {1,%,4,1,..}
5. (=2,3] 10. N
1. 1,1,4,4 6 , —2,25,25
2. —4,—4,—-1,—1 7. =7, A, A2
3. —2,-2,3,3 8. 0,0, A, 00
4. =2, A, A3 9.0, A, 1,1
5. -2, A3,3 10. 1,1, A, o0
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Theorem 2 (Archimedean property)

For every x € R there exists n € N satisfying n > x.
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Theorem 2 (Archimedean property)

For every x € R there exists n € N satisfying n > x.

Theorem 3 (existence of an integer part)

For every r € R there exists an integer part of r, i.e. a number
k € Z satisfying k < r < k + 1. The integer part of r is
determined uniquely and it is denoted by [r].
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Theorem 4 (nth root)

For every x € [0,4+00) and every n € N there exists a unique
y € [0, +00) satisfying y" = x.
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Theorem 4 (nth root)

For every x € [0,4+00) and every n € N there exists a unique
y € [0, +00) satisfying y" = x.

Theorem 5 (density of Q and R \ Q)

Leta,b € R, a < b. Then there exist r € Q satisfyinga <r < b
and s € R\ Q satisfying a < s < b.
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