Mathematics I - Introduction

23/24

Mathematics I - Introduction

1/40

https://www.hbo.com/chernobyl

<**日 > < 三 > < 三 >**

•

Why study Math?

æ

Goal of the course

• Preparation for **other courses** — Statistics, Microeconomics, ...

900

- Preparation for **other courses** Statistics, Microeconomics, ...
- Training of logical thinking and mathematical exactness

- Preparation for **other courses** Statistics, Microeconomics, ...
- Training of logical thinking and mathematical exactness

• Preparation for **other courses** — Statistics, Microeconomics, ...

• Training of **logical thinking** and mathematical exactness At the end of the course students should be able to

• compute limits and derivatives and investigate functions

• Preparation for **other courses** — Statistics, Microeconomics, ...

• Training of **logical thinking** and mathematical exactness At the end of the course students should be able to

- compute limits and derivatives and investigate functions
- understand definitions (give positive and negative examples) and theorems (explain their meaning, neccessity of the assumptions, apply them in particular situations)

• Preparation for **other courses** — Statistics, Microeconomics, ...

• Training of **logical thinking** and mathematical exactness At the end of the course students should be able to

- compute limits and derivatives and investigate functions
- understand definitions (give positive and negative examples) and theorems (explain their meaning, neccessity of the assumptions, apply them in particular situations)
- perform mathematical proofs, give mathematically exact arguments, write mathematical formulae, use quantifiers

- Introduction
- Limit of a sequence
- Mappings
- Functions of one real variable

• Hájková et al: Mathematics 1

- Trench: Introduction to real analysis
- Ghorpade, Limaye: A course in calculus and real analysis
- Zorich: Mathematical analysis I
- Rudin: Principles of mathematical analysis

▲□▶▲母▶▲≣▶▲≣▶ ≣ めんの

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

• $x \in A \dots x$ is an element (or member) of the set A

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

- $x \in A \dots x$ is an element (or member) of the set A
- $x \notin A \dots x$ is not a member of the set A

Exercise (True or false)

A - set of all animals living in Australia.

A $a \in A$ B $b \in A$ C $c \in A$ D $d \in A$ E $e \in A$

Sac

Exercise (True or false)

A - set of all animals living in Australia.

A $a \in A$ B $b \in A$ C $c \in A$ D $d \in A$ E $e \in A$

True: A, B, C, E

Sac

Exercise (True or false)

A - set of all animals living in Australia.

A $a \notin A$ B $b \notin A$ C $c \notin A$ D $d \notin A$ E $e \notin A$

2

500

・ 何 ト ・ ヨ ト ・ ヨ ト

Exercise (True or false)

A - set of all animals living in Australia.

A $a \notin A$ B $b \notin A$ C $c \notin A$ D $d \notin A$ E $e \notin A$

True: D

・ 何 ト ・ ヨ ト ・ ヨ ト

996

2

- \emptyset . . . an empty set
- A^c ... the complement of the set A
- $A \cup B \dots$ the union of the sets A and B
- $A \cap B$... the intersection of the sets A and B
- disjoint sets ... A and B are disjoint if $A \cap B = \emptyset$
- $A \setminus B = \{x \in A; x \notin B\} \dots$ a difference of the sets A and B

- \emptyset . . . an empty set
- A^c ... the complement of the set A
- $A \cup B \dots$ the union of the sets A and B
- $A \cap B$... the intersection of the sets A and B
- disjoint sets ... A and B are disjoint if $A \cap B = \emptyset$
- $A \setminus B = \{x \in A; x \notin B\} \dots$ a difference of the sets A and B

Exercise

- Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{1, 3, 5, 7, 9\}$ and $B = \{1, 2, 3, 4, 5\}$. Find
 - 1. $A \cup B$ 3. A^c 5. $A \setminus B$

 2. $A \cap B$ 4. $(B^c)^c$ 6. $B \setminus A$

- \emptyset . . . an empty set
- A^c ... the complement of the set A
- $A \cup B \dots$ the union of the sets A and B
- $A \cap B$... the intersection of the sets A and B
- disjoint sets ... A and B are disjoint if $A \cap B = \emptyset$
- $A \setminus B = \{x \in A; x \notin B\} \dots$ a difference of the sets A and B

Exercise

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
, $A = \{1, 3, 5, 7, 9\}$ and $B = \{1, 2, 3, 4, 5\}$. Find

- 1. $A \cup B$ 3. A^c 5. $A \setminus B$ 2. $A \cap B$ 4. $(B^c)^c$ 6. $B \setminus A$
- 1. $\{1, 2, 3, 4, 5, 7, 9\}$ 4. B2. $\{1, 3, 5\}$ 5. $\{7, 9\}$ 3. $\{2, 4, 6, 8\}$ 6. $\{2, 4\}$

B ⊂ A ... the set B is a subset of the set A (inclusion)
 Example: B is the set of all birds living in Australia: B ⊂ A.

- $B \subset A$... the set *B* is a subset of the set *A* (inclusion) Example: *B* is the set of all birds living in Australia: $B \subset A$.
- A = B... the sets A and B have the same elements; the following holds: $A \subset B$ and $B \subset A$

- $B \subset A$... the set *B* is a subset of the set *A* (inclusion) Example: *B* is the set of all birds living in Australia: $B \subset A$.
- A = B... the sets A and B have the same elements; the following holds: $A \subset B$ and $B \subset A$
- $A_1 \times \cdots \times A_m = \{[a_1, \dots, a_m]; a_1 \in A_1, \dots, a_m \in A_m\}$... the Cartesian product

 $A_1 \times \cdots \times A_m = \{[a_1, \dots, a_m]; a_1 \in A_1, \dots, a_m \in A_m\} \dots$ the Cartesian product

Exercise

Let $A = \{1, 2, 3\}$, $B = \{2, 4\}$. Find $A \times B$, $B \times B$ and sketch them.

Mathematics I - Introduction

 $A_1 \times \cdots \times A_m = \{[a_1, \ldots, a_m]; a_1 \in A_1, \ldots, a_m \in A_m\} \dots$ the Cartesian product

Exercise

Let $A = \{1, 2, 3\}$, $B = \{2, 4\}$. Find $A \times B$, $B \times B$ and sketch them.

Let *I* be a non-empty set of indices and suppose we have a system of sets A_{α} , where the indices α run over *I*.

∪ A_α ... the set of all elements belonging to at least one of the sets A_α

Let *I* be a non-empty set of indices and suppose we have a system of sets A_{α} , where the indices α run over *I*.

- U_{α∈I} A_α... the set of all elements belonging to at least one of the sets A_α
- $\bigcap_{\alpha \in I} A_{\alpha} \dots$ the set of all elements belonging to every A_{α}

Let *I* be a non-empty set of indices and suppose we have a system of sets A_{α} , where the indices α run over *I*.

- U_{α∈I} A_α... the set of all elements belonging to at least one of the sets A_α
- $\bigcap_{\alpha \in I} A_{\alpha} \dots$ the set of all elements belonging to every A_{α}

Let *I* be a non-empty set of indices and suppose we have a system of sets A_{α} , where the indices α run over *I*.

- U_{α∈I} A_α... the set of all elements belonging to at least one of the sets A_α
- $\bigcap_{\alpha \in I} A_{\alpha} \dots$ the set of all elements belonging to every A_{α}

Example.

$$A_1 \cup A_2 \cup A_3$$
 is equivalent to $\bigcup_{i=1}^3 A_i$, and also to $\bigcup_{i \in \{1,2,3\}} A_i$.

Let *I* be a non-empty set of indices and suppose we have a system of sets A_{α} , where the indices α run over *I*.

- U_{α∈I} A_α... the set of all elements belonging to at least one of the sets A_α
- $\bigcap_{\alpha \in I} A_{\alpha} \dots$ the set of all elements belonging to every A_{α}

Example.

$$A_1 \cup A_2 \cup A_3$$
 is equivalent to $\bigcup_{i=1}^3 A_i$, and also to $\bigcup_{i \in \{1,2,3\}} A_i$.
Infinitely many sets: $A_1 \cup A_2 \cup A_3 \cup \dots$ is equivalent to $\bigcup_{i=1}^{\infty} A_i$, and also to $\bigcup_{i \in \mathbb{N}} A_i$.

Exercise

Let $A_1 = \{0, 1\}, A_2 = \{0, 2\}, A_3 = \{0, 3\}$. Find

1.
$$\bigcup_{i=1}^{J} A_i$$
 2.
$$|A_i|_{i \in \{1,2,3\}} A_i$$

æ

Exercise

Let $A_1 = \{0, 1\}, A_2 = \{0, 2\}, A_3 = \{0, 3\}$. Find 1. $\bigcup_{i=1}^{3} A_i$ 2. $\bigcap_{i \in \{1, 2, 3\}} A_i$

 $\{0, 1, 2, 3\}, \{0\}$

Mathematics I - Introduction

< ≣ > 14/40

- ₹ ⊒ ►

臣

990

A statement (or proposition) is

A statement (or proposition) is a sentence which can be declared to be either true or false.

Exercise Find statements. A Let it be! B We all live in a yellow submarine. C Is there anybody out there?

- D We don't need no education.
- E You can't always get what you want.

A statement (or proposition) is a sentence which can be declared to be either true or false.

Exercise Find statements. A Let it be! B We all live in a yellow submarine. C Is there anybody out there? D We don't need no education.

E You can't always get what you want.

B, D, E

- ¬, also non . . . negation
- & (also \land)...conjunction, logical "and"
- $\lor \dots$ disjuction (alternative), logical "or"
- \Rightarrow ... implication
- \Leftrightarrow ... equivalence; "if and only if"

A	B	$\neg A$	$\neg B$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
1	1	0	0	1	1	1	1
1	0	0	1	0	1	0	0
0	1	1	0	0	1	1	0
0	0	1	1	0	0	1	1

Exercise

A: Max likes chocolate icecream. *B*: Max likes lemon icecream. Find $\neg A$, (A & B), $(A \lor B)$.

Exercise

- A: Max likes chocolate icecream.
- B: Max likes lemon icecream.
- Find $\neg A$, (A & B), $(A \lor B)$.
 - 1. Max does not like chocolate icecream.
 - 2. Max likes chocolate and lemon icecream.
 - 3. Max likes chocolate or lemon icecream.

Exercise

- A: Max likes chocolate icecream.
- B: Max likes lemon icecream.
- Find $\neg A$, (A & B), $(A \lor B)$.
 - 1. Max does not like chocolate icecream.
 - 2. Max likes chocolate and lemon icecream.
 - 3. Max likes chocolate or lemon icecream.

Exercise

A: It will be raining tomorrow. *B*: We will play board games tomorrow. Find $(A \Rightarrow B)$, $(A \Leftrightarrow B)$.

Exercise

- A: Max likes chocolate icecream.
- B: Max likes lemon icecream.
- Find $\neg A$, (A & B), $(A \lor B)$.
 - 1. Max does not like chocolate icecream.
 - 2. Max likes chocolate and lemon icecream.
 - 3. Max likes chocolate or lemon icecream.

Exercise

- A: It will be raining tomorrow.
- *B*: We will play board games tomorrow.
- Find $(A \Rightarrow B)$, $(A \Leftrightarrow B)$.
 - 1. If it will be raining tomorrow, we will play board games.
 - 2. We will play board games tomorrow if and only if it will be raining.

Time for the table of statements.

Consider the following sentences

- 7 is a prime number;
- 4 is a prime number;
- *x* is a prime number;
- *x* is a prime number; $x \in \mathbb{N}$

Consider the following sentences

- 7 is a prime number;
- 4 is a prime number;
- *x* is a prime number;

• *x* is a prime number; $x \in \mathbb{N}$

and also these sentences

- 1. 5 is bigger than 2;
- 2. 3 is bigger than 8;
- 3. 8 is bigger than 3;
- 4. *x* is bigger than *y*.
- 5. *x* is bigger than $y, x, y \in \mathbb{R}$.

Consider the following sentences

- 7 is a prime number;
- 4 is a prime number;
- *x* is a prime number;

• *x* is a prime number; $x \in \mathbb{N}$

and also these sentences

- 1. 5 is bigger than 2;
- 2. 3 is bigger than 8;
- 3. 8 is bigger than 3;
- 4. *x* is bigger than *y*.
- 5. *x* is bigger than $y, x, y \in \mathbb{R}$.

A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables.

Sac

Consider the following sentences

- 7 is a prime number;
- 4 is a prime number;
- *x* is a prime number;

• *x* is a prime number; $x \in \mathbb{N}$

and also these sentences

- 1. 5 is bigger than 2;
- 2. 3 is bigger than 8;
- 3. 8 is bigger than 3;
- 4. *x* is bigger than *y*.
- 5. *x* is bigger than $y, x, y \in \mathbb{R}$.

A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables.

Sac

A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables. General form:

 $V(x), x \in M$

A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables. General form:

 $V(x), x \in M$

$$V(x_1,\ldots,x_n), x_1 \in M_1,\ldots,x_n \in M_n$$

Example

V(x): x is even $M = \{1, 2, 3, 4, 5\}$ V(3) false, V(4) true. $V(x_1, x_2): x_1 \cdot x_2 = 1$ $M = \{2, \frac{1}{2}, 3, 4\}$ $V(2, \frac{1}{2}) \text{ true, } V(2, 3) \text{ false.}$

Sac

If A(x), $x \in M$ is a predicate, then the statement "A(x) holds for every *x* from *M*." is shortened to

 $\forall x \in M \colon A(x).$

If A(x), $x \in M$ is a predicate, then the statement "A(x) holds for every *x* from *M*." is shortened to

$$\forall x \in M \colon A(x).$$

The statement "There exists x in M such that A(x) holds." is shortened to

 $\exists x \in M : A(x).$

If A(x), $x \in M$ is a predicate, then the statement "A(x) holds for every *x* from *M*." is shortened to

$$\forall x \in M \colon A(x).$$

The statement "There exists x in M such that A(x) holds." is shortened to

$$\exists x \in M \colon A(x).$$

The statement "There is only one x in M such that A(x) holds." is shortened to

 $\exists !x \in M \colon A(x).$

If A(x), $x \in M$ is a predicate, then the statement "A(x) holds for every x from M." is shortened to

$$\forall x \in M \colon A(x).$$

The statement "There exists x in M such that A(x) holds." is shortened to

$$\exists x \in M \colon A(x).$$

The statement "There is only one x in M such that A(x) holds." is shortened to

$$\exists ! x \in M \colon A(x).$$

Mathematics I - Introduction

If A(x), $x \in M$ and B(x), $x \in M$ are predicates, then

 $\forall x \in M, B(x) : A(x) \text{ means } \forall x \in M : (B(x) \Rightarrow A(x)),$

22/40

If A(x), $x \in M$ and B(x), $x \in M$ are predicates, then

 $\forall x \in M, B(x) : A(x) \text{ means } \forall x \in M : (B(x) \Rightarrow A(x)),$

 $\exists x \in M, B(x) : A(x) \text{ means } \exists x \in M : (A(x) \& B(x)).$

Example $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, x \ge -2: 1 + nx \le (1 + x)^n$ $\exists x \in \mathbb{R}, x \ge 0: x \ge x^2$ https: //www.geogebra.org/calculator/gajuueuy

Negations of the statements with quantifiers:

 $\neg(\forall x \in M : A(x))$ is the same as $\exists x \in M : \neg A(x)$,

23/40

Negations of the statements with quantifiers:

$$\neg(\forall x \in M : A(x))$$
 is the same as $\exists x \in M : \neg A(x)$.

$$\neg(\exists x \in M : A(x))$$
 is the same as $\forall x \in M : \neg A(x)$.

Example

Find negation

$$\exists x \in \mathbb{R}, x \ge 0 : x \ge x^2$$

$$\forall x \in \mathbb{R}, x \ge -1 : 1 + 3x \le (1+x)^3$$

$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x \ge 0, y \ge 0 : \frac{x+y}{2} \ge \sqrt{xy}$$

Example

Find negation

$$\forall x \in \mathbb{R}, x \ge 0 : x < x^2$$
$$\exists x \in \mathbb{R}, x \ge -1 : 1 + 3x > (1 + x)^3$$
$$\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x \ge 0, y \ge 0 : \frac{x + y}{2} < \sqrt{xy}$$

< □ > < 同

ł

900

Methods of proofs

- direct proof
- indirect proof
- proof by contradiction
- mathematical induction

Methods of proofs

- direct proof
- indirect proof
- proof by contradiction
- mathematical induction

Exercise

Let $n \in \mathbb{N}$. If n^2 is odd, then n is odd.

Methods of proofs

- direct proof
- indirect proof
- proof by contradiction
- mathematical induction

Exercise

Let $n \in \mathbb{N}$. If n^2 is odd, then n is odd.

Exercise

For every $k \in \mathbb{N}$ we have

$$\sum_{j=1}^{k} (2j-1) = k^2$$

Numbers

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

< ≣ → 26/40

Numbers

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of integers

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n; n \in \mathbb{N}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

Numbers

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of integers

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n; n \in \mathbb{N}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

• The set of rational numbers

$$\mathbb{Q} = \left\{ \frac{p}{q}; \ p \in \mathbb{Z}, q \in \mathbb{N} \right\},$$

where $\frac{p_1}{q_1} = \frac{p_2}{q_2}$ if and only if $p_1 \cdot q_2 = p_2 \cdot q_1$.

Real numbers

By the set of real numbers \mathbb{R} we will understand a set on which there are operations of addition and multiplication (denoted by + and ·), and a relation of ordering (denoted by \leq), such that it has the following three groups of properties.

- I. The properties of addition and multiplication and their relationships.
- II. The relationships of the ordering and the operations of addition and multiplication.
- III. The infimum axiom.

The properties of addition and multiplication and their relationships:

æ

The properties of addition and multiplication and their relationships:

- $\forall x, y \in \mathbb{R} : x + y = y + x$ (commutativity of addition),
- $\forall x, y, z \in \mathbb{R}$: x + (y + z) = (x + y) + z (associativity),
- There is an element in ℝ (denoted by 0 and called a zero element), such that x + 0 = x for every x ∈ ℝ,
- ∀x ∈ ℝ ∃y ∈ ℝ: x + y = 0 (y is called the negative of x, such y is only one, denoted by -x),
- $\forall x, y \in \mathbb{R} : x \cdot y = y \cdot x$ (commutativity),
- $\forall x, y, z \in \mathbb{R} : x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (associativity),
- There is a non-zero element in ℝ (called identity, denoted by 1), such that 1 · x = x for every x ∈ ℝ,
- $\forall x \in \mathbb{R} \setminus \{0\} \exists y \in \mathbb{R} : x \cdot y = 1 \text{ (such } y \text{ is only one, } denoted by <math>x^{-1} \text{ or } \frac{1}{x}$),
- $\forall x, y, z \in \mathbb{R} : (x + y) \cdot z = x \cdot z + y \cdot z$ (distributivity).

The relationships of the ordering and the operations of addition and multiplication:

The relationships of the ordering and the operations of addition and multiplication:

- $\forall x, y, z \in \mathbb{R} : (x \le y \& y \le z) \Rightarrow x \le z$ (transitivity),
- $\forall x, y \in \mathbb{R} : (x \le y \& y \le x) \Rightarrow x = y$ (weak antisymmetry),
- $\forall x, y \in \mathbb{R} : x \leq y \lor y \leq x$,
- $\forall x, y, z \in \mathbb{R} : x \le y \Rightarrow x + z \le y + z$,
- $\forall x, y \in \mathbb{R} : (0 \le x \& 0 \le y) \Rightarrow 0 \le x \cdot y.$

Definition

We say that the set $M \subset \mathbb{R}$ is bounded from below if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have $x \ge a$.

30/40

Definition

We say that the set $M \subset \mathbb{R}$ is bounded from below if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have $x \ge a$. Such a number *a* is called a lower bound of the set *M*.

We say that the set $M \subset \mathbb{R}$ is bounded from below if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have $x \ge a$. Such a number *a* is called a lower bound of the set *M*. Analogously we define the notions of a set bounded from above and an upper bound.

We say that the set $M \subset \mathbb{R}$ is bounded from below if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have $x \ge a$. Such a number *a* is called a lower bound of the set *M*. Analogously we define the notions of a set bounded from above and an upper bound. We say that a set $M \subset \mathbb{R}$ is bounded if it is bounded from above and below.

Exercise

Which sets are bounded from below? Bounded from above? Bounded?

A N B $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\}$ C $\mathbb{R} \setminus \mathbb{Q} \cap (-3, 2]$

- $\mathsf{D} \{x \in \mathbb{R} : x < \pi\}$
- $E~(-\infty,-1)\cup\{0\}\cup[1,\infty)$

We say that the set $M \subset \mathbb{R}$ is bounded from below if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have $x \ge a$. Such a number *a* is called a lower bound of the set *M*. Analogously we define the notions of a set bounded from above and an upper bound. We say that a set $M \subset \mathbb{R}$ is bounded if it is bounded from above and below.

Exercise

Which sets are bounded from below? Bounded from above? Bounded?

 $\begin{array}{ll} A \ \mathbb{N} & \\ B \ \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\} \\ C \ \mathbb{R} \setminus \mathbb{Q} \cap (-3, 2] & \\ \end{array} \begin{array}{l} D \ \{x \in \mathbb{R} : x < \pi\} \\ E \ (-\infty, -1) \cup \{0\} \cup [1, \infty) \end{array}$

below: A, B, C; above: B, C, D; bounded: B, C

Let $M \subset \mathbb{R}$. We say that *a* is a maximum of the set *M* (denoted by $\max M$) if *a* is an upper bound of *M* and $a \in M$. Analogously we define a minimum of *M*, denoted by $\min M$.

31/40

Let $M \subset \mathbb{R}$. We say that *a* is a maximum of the set *M* (denoted by $\max M$) if *a* is an upper bound of *M* and $a \in M$. Analogously we define a minimum of *M*, denoted by $\min M$.

Exercise

Find minimum and maximum:

1.
$$\{1, 2, 3, 4\}$$

2. $[-2, 3]$
3. $(-2, 3]$
4. $[-2, -1) \cup (0, 25]$

5.
$$[0, \infty)$$

6. $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$
7. \mathbb{N}
8. $(\mathbb{R} \setminus \mathbb{Q}) \cap [0, \pi]$

Sac

Let $M \subset \mathbb{R}$. We say that *a* is a maximum of the set *M* (denoted by $\max M$) if a is an upper bound of M and $a \in M$. Analogously we define a minimum of M, denoted by $\min M$.

Exercise

Find minimum and maximum:

1. $\{1, 2, 3, 4\}$		5. $[0,\infty)$
2. $[-2,3]$		6. $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$
3. $(-2,3]$		7. N
4. $[-2, -1) \cup$	(0, 25]	8. $(\mathbb{R} \setminus \mathbb{Q}) \cap [0, \pi]$
1. $\min = 1$,	3. 冯, 3	6. ∄, 1
$\max = 4$	42, 25	7. 1, ∄
22, 3	5. 0, ∄	8 . <i>∄</i> , π

Sac

The infimum axiom:

Let *M* be a non-empty set bounded from below. Then there exists a unique number $g \in \mathbb{R}$ such that

(i) $\forall x \in M : x \ge g$,

The infimum axiom:

Let *M* be a non-empty set bounded from below. Then there exists a unique number $g \in \mathbb{R}$ such that

(i) $\forall x \in M : x \ge g$, (ii) $\forall g' \in \mathbb{R}, g' > g \exists x \in M : x < g'$.

The number g is denoted by $\inf M$ and is called the infimum of the set M.

1) The infimum of A is the greater lower bound of the set A. All other lower bounds are smaller than inf(A).

2) Furthermore if b is greater than inf(A) then there exists an a contained in the set A such that a < b.

Figure: https://mathspandorabox.wordpress.com/2016/03/11/the-differencebetween-supremum-and-infimum-equivalent-and-equal-set

Mathematics I - Introduction

32/40

Sac

Remark

• The infimum axiom says that every non-empty set bounded from below has infimum.

Remark

- The infimum axiom says that every non-empty set bounded from below has infimum.
- The infimum of the set *M* is its greatest lower bound.

Remark

- The infimum axiom says that every non-empty set bounded from below has infimum.
- The infimum of the set *M* is its greatest lower bound.
- The real numbers exist and are uniquely determined by the properties I–III.

The following hold: (i) $\forall x \in \mathbb{R} : x \cdot 0 = 0 \cdot x = 0$, (ii) $\forall x \in \mathbb{R} : -x = (-1) \cdot x$, (iii) $\forall x, y \in \mathbb{R} : xy = 0 \Rightarrow (x = 0 \lor y = 0)$, (iv) $\forall x \in \mathbb{R} \forall n \in \mathbb{N} : x^{-n} = (x^{-1})^n$, (v) $\forall x, y \in \mathbb{R} : (x > 0 \land y > 0) \Rightarrow xy > 0$, (vi) $\forall x \in \mathbb{R}, x \ge 0 \forall y \in \mathbb{R}, y \ge 0 \forall n \in \mathbb{N} : x < y \Leftrightarrow x^n < y^n$.

Let $a, b \in \mathbb{R}$, $a \leq b$. We denote:

- An open interval $(a, b) = \{x \in \mathbb{R}; a < x < b\},\$
- A closed interval $[a, b] = \{x \in \mathbb{R}; a \le x \le b\},\$
- A half-open interval $[a, b) = \{x \in \mathbb{R}; a \le x < b\},\$
- A half-open interval $(a, b] = \{x \in \mathbb{R}; a < x \le b\}.$

Let $a, b \in \mathbb{R}$, $a \leq b$. We denote:

- An open interval $(a, b) = \{x \in \mathbb{R}; a < x < b\},\$
- A closed interval $[a,b] = \{x \in \mathbb{R}; a \le x \le b\},\$
- A half-open interval $[a, b) = \{x \in \mathbb{R}; a \le x < b\},\$
- A half-open interval $(a, b] = \{x \in \mathbb{R}; a < x \le b\}.$

The point a is called the left endpoint of the interval, The point b is called the right endpoint of the interval. A point in the interval which is not an endpoint is called an inner point of the interval.

Let $a, b \in \mathbb{R}$, $a \leq b$. We denote:

- An open interval $(a, b) = \{x \in \mathbb{R}; a < x < b\},\$
- A closed interval $[a, b] = \{x \in \mathbb{R}; a \le x \le b\},\$
- A half-open interval $[a, b) = \{x \in \mathbb{R}; a \le x < b\},\$
- A half-open interval $(a, b] = \{x \in \mathbb{R}; a < x \le b\}.$

The point a is called the left endpoint of the interval, The point b is called the right endpoint of the interval. A point in the interval which is not an endpoint is called an inner point of the interval.

Unbounded intervals:

$$(a, +\infty) = \{x \in \mathbb{R}; \ a < x\}, \quad (-\infty, a) = \{x \in \mathbb{R}; \ x < a\},$$

analogically $(-\infty, a]$, $[a, +\infty)$ and $(-\infty, +\infty)$.

Label the Venn diagram with \mathbb{N} , \mathbb{Q} , \mathbb{Z} , \mathbb{R} , $\mathbb{R} \setminus \mathbb{Q}$.

< ≣ ► 36/40 590

Label the Venn diagram with \mathbb{N} , \mathbb{Q} , \mathbb{Z} , \mathbb{R} , $\mathbb{R} \setminus \mathbb{Q}$.

We have $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$. If we transfer the addition and multiplication from \mathbb{R} to the above sets, we obtain the usual operations on these sets.

A real number that is not rational is called irrational. The set $\mathbb{R} \setminus \mathbb{Q}$ is called the set of irrational numbers.

Consequences of the infimum axiom

Definition

Let $M \subset \mathbb{R}$. A number $G \in \mathbb{R}$ satisfying

(i) $\forall x \in M : x \leq G$,

(ii) $\forall G' \in \mathbb{R}, G' < G \exists x \in M : x > G',$

is called a supremum of the set M.

Consequences of the infimum axiom

Definition

Let $M \subset \mathbb{R}$. A number $G \in \mathbb{R}$ satisfying

(i) $\forall x \in M : x \leq G$,

(ii) $\forall G' \in \mathbb{R}, G' < G \exists x \in M \colon x > G',$

is called a supremum of the set M.

Theorem 1 (Supremum theorem)

Let $M \subset \mathbb{R}$ be a non-empty set bounded from above. Then there exists a unique supremum of the set M.

The supremum of the set M is denoted by $\sup M$.

Consequences of the infimum axiom

Definition

Let $M \subset \mathbb{R}$. A number $G \in \mathbb{R}$ satisfying

(i) $\forall x \in M : x \leq G$,

(ii) $\forall G' \in \mathbb{R}, G' < G \exists x \in M \colon x > G',$

is called a supremum of the set M.

Theorem 1 (Supremum theorem)

Let $M \subset \mathbb{R}$ be a non-empty set bounded from above. Then there exists a unique supremum of the set M.

The supremum of the set *M* is denoted by $\sup M$. The following holds: $\sup M = -\inf(-M)$.

Exercise

Find infimum, minimum, maximum and supremum:

1.
$$\{1, 2, 3, 4\}$$

2. $\{-1, -2, -3, -4\}$
3. $[-2, 3]$
4. $(-2, 3)$
5. $(-2, 3]$

6.
$$[-2, -1) \cup (0, 25]$$

7. $(-7, -0) \cup (1, 2)$
8. $[0, \infty)$
9. $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$
0. \mathbb{N}

Exercise

Find infimum, minimum, maximum and supremum:

- 1. $\{1, 2, 3, 4\}$ 2. $\{-1, -2, -3, -4\}$ 3. [-2,3]4. (-2,3)5. (-2,3]1. 1. 1. 4. 4 2. -4, -4, -1, -13. -2, -2, 3, 34. -2, 冯, 冯, 3 5. −2, ∄, 3, 3
- 6. $[-2, -1) \cup (0, 25]$ 7. $(-7, -0) \cup (1, 2)$ 8. $[0,\infty)$ 9. $\{1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \ldots\}$ **10** ℕ 6. -2, -2, 25, 257. −7, ∄, ∄, 2 **8**. 0, 0, *∄*, ∞ **9**. 0, *∄*, 1, 1 10. 1, 1, \mathbb{A}, ∞

э

Theorem 2 (Archimedean property)

For every $x \in \mathbb{R}$ *there exists* $n \in \mathbb{N}$ *satisfying* n > x.

Theorem 2 (Archimedean property)

For every $x \in \mathbb{R}$ *there exists* $n \in \mathbb{N}$ *satisfying* n > x.

Theorem 3 (existence of an integer part)

For every $r \in \mathbb{R}$ there exists an integer part of r, i.e. a number $k \in \mathbb{Z}$ satisfying $k \leq r < k + 1$. The integer part of r is determined uniquely and it is denoted by [r].

Theorem 4 (*n*th root)

For every $x \in [0, +\infty)$ and every $n \in \mathbb{N}$ there exists a unique $y \in [0, +\infty)$ satisfying $y^n = x$.

40/40

Sac

Theorem 4 (*n*th root)

For every $x \in [0, +\infty)$ and every $n \in \mathbb{N}$ there exists a unique $y \in [0, +\infty)$ satisfying $y^n = x$.

Theorem 5 (density of \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$)

Let $a, b \in \mathbb{R}$, a < b. Then there exist $r \in \mathbb{Q}$ satisfying a < r < band $s \in \mathbb{R} \setminus \mathbb{Q}$ satisfying a < s < b.