Cryptography 1

https://www2.karlin.mff.cuni.cz/~kuncova/en/index.php
kuncova@karlin.mff.cuni.cz
Matrices can be used for encryption.

The first step is the substitution of letters by numbers. Instead of A we have 0 , instead of B we have $1, \ldots$, instead of Z we have 25 .

A	B	C	D	E	F	G	H	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

For example POLAR BEAR can be written as

15141101714017

However, this cipher (so called substitution cipher) can be easily decrypted, especially with a computer. So let us complicate the situation. The second step is to write the numbers into a matrix.

$$
\mathbf{B}=\left(\begin{array}{ccc}
15 & 14 & 11 \\
0 & 17 & 1 \\
4 & 0 & 17
\end{array}\right)
$$

Now the really encryption part is coming. We choose a nice matrix \mathbf{A}, for example

$$
\mathbf{A}=\left(\begin{array}{ccc}
6 & 2 & 3 \\
3 & 1 & 1 \\
10 & 3 & 4
\end{array}\right)
$$

(There are some conditions on the matrix \mathbf{A}, which we will discuss later.)
Then we apply the matrix multiplication:

$$
\mathbf{C}=\mathbf{A B}=\left(\begin{array}{ccc}
242 & 77 & 103 \\
61 & 20 & 21 \\
194 & 59 & 80
\end{array}\right)
$$

The resulting product \mathbf{C} is really hard to decrypt without the knowledge of the ciphering principle and without the matrix \mathbf{A}.

However, if you know the matrix \mathbf{A}, you can decrypt the message with the following steps.

1. Find the inverse matrix \mathbf{A}^{-1}.
2. Make the product $\mathbf{A}^{-1} \mathbf{C}=\mathbf{A}^{-1} \mathbf{A B}=\mathbf{B}$.
(Be careful, you have to make the product $\mathbf{A}^{-1} \mathbf{C}$, not $\mathbf{C A}^{-1}$!)
3. Change numbers back to letters.

You can check the steps on the polar bear.
Now it is Your turn. You have captured part of an encrypted message - every group has different part. You know, that the matrix \mathbf{A} was used. Find the original message and write it on the whiteboard.

Message for the group V:

$$
\mathbf{A B}=\left(\begin{array}{ccc}
160 & 36 & 138 \\
78 & 18 & 68 \\
260 & 54 & 223
\end{array}\right)
$$

Message for the group W:

$$
\mathbf{A B}=\left(\begin{array}{ccc}
74 & 74 & 132 \\
30 & 31 & 62 \\
108 & 110 & 211
\end{array}\right)
$$

Message for the group X:

$$
\mathbf{A B}=\left(\begin{array}{ccc}
159 & 222 & 98 \\
71 & 99 & 45 \\
248 & 339 & 154
\end{array}\right)
$$

Message for the group Y:

$$
\mathbf{A B}=\left(\begin{array}{ccc}
76 & 90 & 134 \\
37 & 43 & 63 \\
119 & 146 & 211
\end{array}\right)
$$

Message for the group Z:

$$
\mathbf{A B}=\left(\begin{array}{ccc}
160 & 173 & 161 \\
77 & 77 & 77 \\
255 & 268 & 257
\end{array}\right)
$$

