Mathematics II - Functions of multiple variables

21/22

V.1. \mathbb{R}^n as a linear and metric space

Definition

The set \mathbb{R}^n , $n \in \mathbb{N}$, is the set of all ordered n-tuples of real numbers, i.e.

$$\mathbb{R}^n = \{ [x_1, \ldots, x_n] : x_1, \ldots, x_n \in \mathbb{R} \}.$$

https://en.wikipedia.org/wiki/File:

Cartesian-coordinate-system.svg

Exercise (2D)

Sketch the following points and connect them.

$$(4,0), (0,3), (-4,0), (-6,2), (-5,0), (-6,-2), (-4,0),$$

$$(0,-2),(4,0),$$

and add one point:

https:

//www.geogebra.org/calculator/bbsahf43

Exercise (3D)

https://www.geogebra.org/classic/ydu8a7t7

Which picture(s) plots the point (2, 1, 1) correctly?

https://www.cpp.edu/conceptests/question-library/
mat214.shtml

Which picture(s) plots the point (2, 1, 1) correctly?

https://www.cpp.edu/conceptests/question-library/
mat214.shtml

A, C

V.1. \mathbb{R}^n as a linear and metric space

Definition

For $\mathbf{x} = [x_1, \dots, x_n] \in \mathbb{R}^n$, $\mathbf{y} = [y_1, \dots, y_n] \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ we set

$$\mathbf{x} + \mathbf{y} = [x_1 + y_1, \dots, x_n + y_n], \qquad \alpha \mathbf{x} = [\alpha x_1, \dots, \alpha x_n].$$

Further, we denote o = [0, ..., 0] – the origin.

Exercise

Find

$$A (1,2,3,4) + (-2,0,3,-1)$$

$$B -2(1,2,3,4)$$

V.1. \mathbb{R}^n as a linear and metric space

Definition

For $\mathbf{x} = [x_1, \dots, x_n] \in \mathbb{R}^n$, $\mathbf{y} = [y_1, \dots, y_n] \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ we set

$$\mathbf{x} + \mathbf{y} = [x_1 + y_1, \dots, x_n + y_n], \qquad \alpha \mathbf{x} = [\alpha x_1, \dots, \alpha x_n].$$

Further, we denote o = [0, ..., 0] – the origin.

Exercise

Find

$$A (1,2,3,4) + (-2,0,3,-1)$$

$$B -2(1,2,3,4)$$

$$A(-1,2,6,3), B(-2,-4,-6,-8)$$

The Euclidean metric (distance) on \mathbb{R}^n is the function $\rho \colon \mathbb{R}^n \times \mathbb{R}^n \to [0, +\infty)$ defined by

$$\rho(\boldsymbol{x},\boldsymbol{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

The number $\rho(x, y)$ is called the distance of the point x from the point y.

https://rosalind.info/glossary/euclidean-distance/

Find the distance of the points

Δ

https://www.summitlearning.org/guest/focusareas/862919

$$\mathbf{B}$$
 $(1,-2,3), (0,-3,-2)$

$$(-1,0,3,2),(1,-1,2,-3)$$

Find the distance of the points

A

https://www.summitlearning.org/guest/focusareas/862919

$$\mathbf{B}$$
 $(1,-2,3), (0,-3,-2)$

$$(-1,0,3,2),(1,-1,2,-3)$$

$$\sqrt{52}$$
, $\sqrt{27}$, $\sqrt{31}$

A $\rho((1,2),(1,2))$

A $\rho((1,2),(1,2))$

B $\rho((1,2),(4,6)), \rho((4,6),(1,2))$

$$\mathbf{C} \ \rho((1,2),(4,6)), \rho((1,2),(1,1)) + \rho((1,1),(4,6))$$

D $2\rho((1,2),(4,6)), \rho((2,4),(8,12))$

 $E \rho((1,2),(4,6)), \rho((2,3),(5,7))$

Theorem 1 (properties of the Euclidean metric)

The Euclidean metric ρ *has the following properties:*

- (i) $\forall x, y \in \mathbb{R}^n : \rho(x, y) = 0 \Leftrightarrow x = y$,
- (ii) $\forall x, y \in \mathbb{R}^n : \rho(x, y) = \rho(y, x),$ (symmetry)
- (iii) $\forall x, y, z \in \mathbb{R}^n : \rho(x, y) \leq \rho(x, z) + \rho(z, y),$ (triangle inequality)
- (iv) $\forall x, y \in \mathbb{R}^n, \forall \lambda \in \mathbb{R} : \rho(\lambda x, \lambda y) = |\lambda| \rho(x, y)$, (homogeneity)
- (v) $\forall x, y, z \in \mathbb{R}^n : \rho(x + z, y + z) = \rho(x, y).$ (translation invariance)

Let $\mathbf{x} \in \mathbb{R}^n$, $r \in \mathbb{R}$, r > 0. The set $B(\mathbf{x}, r)$ defined by

$$B(\mathbf{x},r) = \{ \mathbf{y} \in \mathbb{R}^n; \ \rho(\mathbf{x},\mathbf{y}) < r \}$$

is called an open ball with radius r centred at x or the neighbourhood of x.

http://www.science4all.org/article/topology/

https://en.wikipedia. org/wiki/N-sphere

https://commons.
wikimedia.org/wiki/File:
 4dSphere.jpg

https: //www.tinyepiphany.com/ 2011/12/ visualizing-4-dimensions. html

https://cs.wikipedia. org/wiki/%C4%8Ctvrt%C3% BD_rozm%C4%9Br

Let $M \subset \mathbb{R}^n$. We say that $x \in \mathbb{R}^n$ is an interior point of M, if there exists r > 0 such that $B(x, r) \subset M$.

The set of all interior points of M is called the interior of M and is denoted by Int M.

The set $M \subset \mathbb{R}^n$ is open in \mathbb{R}^n , if each point of M is an interior point of M, i.e. if $M = \operatorname{Int} M$.

Find the interior

Solution

Theorem 2 (properties of open sets)

- (i) The empty set and \mathbb{R}^n are open in \mathbb{R}^n .
- (ii) Let $G_{\alpha} \subset \mathbb{R}^n$, $\alpha \in A \neq \emptyset$, be open in \mathbb{R}^n . Then $\bigcup_{\alpha \in A} G_{\alpha}$ is open in \mathbb{R}^n .
- (iii) Let $G_i \subset \mathbb{R}^n$, i = 1, ..., m, be open in \mathbb{R}^n . Then $\bigcap_{i=1}^m G_i$ is open in \mathbb{R}^n .

Remark

- (ii) A union of an arbitrary system of open sets is an open set.
- (iii) An intersection of a finitely many open sets is an open set.

Find the interior

- 1. $\{[x,y] \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$
- 2. $\{[x,y] \in \mathbb{R}^2 : 1 \le x < 4, |y| \ge 3\}$
- 3. $\{[x,y] \in \mathbb{R}^2 : x^2 + 3y^2 \ge 1, x + y > 2\}$

Find the interior

- 1. $\{[x,y] \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$
- 2. $\{[x,y] \in \mathbb{R}^2 : 1 \le x < 4, |y| \ge 3\}$
- 3. $\{[x,y] \in \mathbb{R}^2 : x^2 + 3y^2 \ge 1, x + y > 2\}$
- 1. $\{[x,y] \in \mathbb{R}^2 : x^2 + y^2 < 4\}$
- 2. $\{[x, y] \in \mathbb{R}^2 : 1 < x < 4, |y| > 3\}$
- 3. $\{[x,y] \in \mathbb{R}^2 : x^2 + 3y^2 > 1, x + y > 2\}$

Let $M \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$. We say that x is a boundary point of M if for each r > 0

$$B(\mathbf{x},r) \cap M \neq \emptyset$$
 and $B(\mathbf{x},r) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$.

The boundary of M is the set of all boundary points of M (notation $\operatorname{bd} M$).

The closure of M is the set $M \cup \operatorname{bd} M$ (notation \overline{M}).

A set $M \subset \mathbb{R}^n$ is said to be closed in \mathbb{R}^n if it contains all its boundary points, i.e. if $\mathrm{bd}\,M \subset M$, or in other words if $\overline{M} = M$.

The closure of M is the set $M \cup \operatorname{bd} M$ (notation \overline{M}).

A set $M \subset \mathbb{R}^n$ is said to be closed in \mathbb{R}^n if it contains all its boundary points, i.e. if $\mathrm{bd}\,M \subset M$, or in other words if $\overline{M} = M$.

Exercise

Decide, if the set is closed or open, find the interior, the boundary, the closure.

$$M = \{ [x, y] \in \mathbb{R}^2 : 1 < x \le 2, 3 \le y \le 5 \}.$$

The closure of M is the set $M \cup \operatorname{bd} M$ (notation \overline{M}).

A set $M \subset \mathbb{R}^n$ is said to be closed in \mathbb{R}^n if it contains all its boundary points, i.e. if $\mathrm{bd}\,M \subset M$, or in other words if $\overline{M} = M$.

Exercise

Decide, if the set is closed or open, find the interior, the boundary, the closure.

$$M = \{ [x, y] \in \mathbb{R}^2 : 1 < x \le 2, 3 \le y \le 5 \}.$$

Exercise

Find the boundary

- 1. $\{[x,y] \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$
- 2. ${[x,y] \in \mathbb{R}^2 : 1 \le x < 4, |y| \ge 3}$
- 3. $\{[x,y] \in \mathbb{R}^2 : x^2 + 3y^2 > 1, x + y > 2\}$

Let $x^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and $x \in \mathbb{R}^n$. We say that a sequence $\{x^j\}_{j=1}^{\infty}$ converges to x, if

$$\lim_{j\to\infty}\rho(\boldsymbol{x},\boldsymbol{x}^j)=0.$$

The vector x is called the limit of the sequence $\{x^i\}_{j=1}^{\infty}$.

Let $x^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and $x \in \mathbb{R}^n$. We say that a sequence $\{x^j\}_{j=1}^{\infty}$ converges to x, if

$$\lim_{j\to\infty}\rho(\boldsymbol{x},\boldsymbol{x}^j)=0.$$

The vector x is called the limit of the sequence $\{x^j\}_{j=1}^{\infty}$. The sequence $\{y^j\}_{j=1}^{\infty}$ of points in \mathbb{R}^n is called convergent if there exists $y \in \mathbb{R}^n$ such that $\{y^j\}_{j=1}^{\infty}$ converges to y.

Let $x^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and $x \in \mathbb{R}^n$. We say that a sequence $\{x^j\}_{j=1}^{\infty}$ converges to x, if

$$\lim_{j\to\infty}\rho(\boldsymbol{x},\boldsymbol{x}^j)=0.$$

The vector x is called the limit of the sequence $\{x^j\}_{j=1}^{\infty}$. The sequence $\{y^j\}_{j=1}^{\infty}$ of points in \mathbb{R}^n is called convergent if there exists $y \in \mathbb{R}^n$ such that $\{y^j\}_{j=1}^{\infty}$ converges to y.

Exercise

$$\lim_{j\to\infty}\left(\frac{1}{j},\frac{2j+1}{j}\right)$$

Theorem 3 (convergence is coordinatewise)

Let $\mathbf{x}^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and let $\mathbf{x} \in \mathbb{R}^n$. The sequence $\{\mathbf{x}^j\}_{j=1}^{\infty}$ converges to \mathbf{x} if and only if for each $i \in \{1, ..., n\}$ the sequence of real numbers $\{x_i^j\}_{j=1}^{\infty}$ converges to the real number x_i .

Remark

Theorem 3 says that the convergence in the space \mathbb{R}^n is the same as the "coordinatewise" convergence. It follows that a sequence $\{x^j\}_{j=1}^{\infty}$ has at most one limit. If it exists, then we denote it by $\lim_{j\to\infty} x^j$. Sometimes we also write simply $x^j\to x$ instead of $\lim_{j\to\infty} x^j=x$.

$$\lim_{j \to \infty} \left(1 + \frac{1}{j}, 3 - \frac{2}{j^2}, e^{-j} \right)$$
$$\lim_{j \to \infty} \left((-1)^j, \arctan(j^3) \right)$$

 $(1,3,0), \exists$

$$\lim_{j \to \infty} \left(1 + \frac{1}{j}, 3 - \frac{2}{j^2}, e^{-j} \right)$$
$$\lim_{j \to \infty} \left((-1)^j, \arctan(j^3) \right)$$

Theorem 4 (characterisation of closed sets)

Let $M \subset \mathbb{R}^n$. Then the following statements are equivalent:

- (i) *M* is closed in \mathbb{R}^n .
- (ii) $\mathbb{R}^n \setminus M$ is open in \mathbb{R}^n .
- (iii) Any $x \in \mathbb{R}^n$ which is a limit of a sequence from M belongs to M.

Theorem 4 (characterisation of closed sets)

Let $M \subset \mathbb{R}^n$. Then the following statements are equivalent:

- (i) M is closed in \mathbb{R}^n .
- (ii) $\mathbb{R}^n \setminus M$ is open in \mathbb{R}^n .
- (iii) Any $x \in \mathbb{R}^n$ which is a limit of a sequence from M belongs to M.

Exercise

Decide, if the sets are closed or open (or nothing)

- 1. (0,1) in \mathbb{R}
- 2. $(0, \infty)$ in \mathbb{R}
- 3. (-3,2] in \mathbb{R}

- 4. $(-\infty, 2]$ in \mathbb{R}
- 5. $x^2 + y^2 < 4$ in \mathbb{R}^2
- 6. $x^2 + y^2 > 2$ in \mathbb{R}^2

Theorem 4 (characterisation of closed sets)

Let $M \subset \mathbb{R}^n$. Then the following statements are equivalent:

- (i) M is closed in \mathbb{R}^n .
- (ii) $\mathbb{R}^n \setminus M$ is open in \mathbb{R}^n .
- (iii) Any $x \in \mathbb{R}^n$ which is a limit of a sequence from M belongs to M.

Exercise

Decide, if the sets are closed or open (or nothing)

- 1. (0,1) in \mathbb{R}
- 2. $(0,\infty)$ in \mathbb{R}
- 3. (-3,2] in \mathbb{R}

- 4. $(-\infty, 2]$ in \mathbb{R}
- 5. $x^2 + y^2 < 4$ in \mathbb{R}^2
- 6. $x^2 + y^2 \ge 2$ in \mathbb{R}^2

1. open

3. nothing

5. open

2. open

4. closed

6. closed

Theorem 5 (properties of closed sets)

- (i) The empty set and the whole space \mathbb{R}^n are closed in \mathbb{R}^n .
- (ii) Let $F_{\alpha} \subset \mathbb{R}^n$, $\alpha \in A \neq \emptyset$, be closed in \mathbb{R}^n . Then $\bigcap_{\alpha \in A} F_{\alpha}$ is closed in \mathbb{R}^n .
- (iii) Let $F_i \subset \mathbb{R}^n$, i = 1, ..., m, be closed in \mathbb{R}^n . Then $\bigcup_{i=1}^m F_i$ is closed in \mathbb{R}^n .

Remark

- (ii) An intersection of an arbitrary system of closed sets is closed.
- (iii) A union of finitely many closed sets is closed.

We say that the set $M \subset \mathbb{R}^n$ is bounded if there exists r > 0 such that $M \subset B(o, r)$. A sequence of points in \mathbb{R}^n is bounded if the set of its members is bounded.

We say that the set $M \subset \mathbb{R}^n$ is bounded if there exists r > 0 such that $M \subset B(o, r)$. A sequence of points in \mathbb{R}^n is bounded if the set of its members is bounded.

Theorem 6

A set $M \subset \mathbb{R}^n$ is bounded if and only if its closure \overline{M} is bounded.

Find bounded sets

A
$$x \in [-1, 3], 0 < y \le 100$$

B
$$x^2 + y^2 + z^2 \le 5$$

$$C x - y < 6$$

D
$$|x + y| < 6$$

Find bounded sets

A
$$x \in [-1, 3], 0 < y \le 100$$

B
$$x^2 + y^2 + z^2 \le 5$$

$$C x - y < 6$$

D
$$|x + y| < 6$$

A, B, D

We say that a set $M \subset \mathbb{R}^n$ is compact if for each sequence of elements of M there exists a convergent subsequence with a limit in M.

We say that a set $M \subset \mathbb{R}^n$ is compact if for each sequence of elements of M there exists a convergent subsequence with a limit in M.

Theorem 7 (characterisation of compact subsets of \mathbb{R}^n)

The set $M \subset \mathbb{R}^n$ is compact if and only if M is bounded and closed.

We say that a set $M \subset \mathbb{R}^n$ is compact if for each sequence of elements of M there exists a convergent subsequence with a limit in M.

Theorem 7 (characterisation of compact subsets of \mathbb{R}^n)

The set $M \subset \mathbb{R}^n$ is compact if and only if M is bounded and closed.

Exercise

Find compact sets

- A(0,1)
- B $[1,2] \times [-1,-3]$
- C $1 < x^2 + (y-3)^2 + z^2 \le 4$
- $D xyz \leq 1$

We say that a set $M \subset \mathbb{R}^n$ is compact if for each sequence of elements of M there exists a convergent subsequence with a limit in M.

Theorem 7 (characterisation of compact subsets of \mathbb{R}^n)

The set $M \subset \mathbb{R}^n$ is compact if and only if M is bounded and closed.

Exercise

Find compact sets

- A(0,1)
- B $[1,2] \times [-1,-3]$
- C $1 < x^2 + (y-3)^2 + z^2 \le 4$
- D $xyz \le 1$

E

Map game

We define a function of two variables as a mapping $f: M \to \mathbb{R}$, where $M \subset \mathbb{R}^2$.

$$f(x,y) = x^{2} + y^{2}, [x,y] \in \mathbb{R}^{2}$$

$$f(x,y) = \arccos y \cdot \arcsin x, D_{f} = [-1,1] \times [-1,1]$$

$$f(x,y) = \ln(xy), D_{f} = \{(x > 0 \land y > 0) \lor (x < 0 \land y < 0)\}$$

$$f(x,y) = x^{3}, [x,y] \in \mathbb{R}^{2}$$

$$f(x,y) = 5, [x,y] \in \mathbb{R}^{2}$$

$$f(x,y) = \frac{x^2}{x^2 + y^2}$$

$$f(x,y) = \sin x \cos y$$

$$f(x,y) = \sqrt{x^2 + y^2}$$

$$f(x,y) = \sqrt{4 - (x^2 + y^2)}$$

Find the graph for the contourlines

http://www.cpp.edu/~conceptests/question-library/
mat214.shtml

Find the graph for the contourlines

http://www.cpp.edu/~conceptests/question-library/
mat214.shtml

A

Find the contourlines for the graph.

Find the contourlines for the graph.

Connect the contourlines and the functions

Figure: Hughes Hallett et al c 2009, John Wiley & Sons

A
$$-x^2 + y^2$$

B $x^2 - y^2$

$$C - x^2 - y^2$$

$$B x^2 - y^2$$

D
$$x^2 + y^2$$

Connect the contourlines and the functions

Figure: Hughes Hallett et al c 2009, John Wiley & Sons

$$A - x^2 + y^2$$

$$C -x^2 - y^2$$

B
$$x^2 - y^2$$

D
$$x^2 + y^2$$

ID, IIB, IIIC, IVA

We define a function of multiple variables as a mapping $f: M \to \mathbb{R}$, where $M \subset \mathbb{R}^n$.

$$f(x) = x^3,$$
 $x \in \mathbb{R}$
 $f(x, y) = y \sin x,$ $[x, y] \in \mathbb{R}^2$
 $f(x, y, z) = x^2 + y^2 z,$ $[x, y, z] \in \mathbb{R}^3$
 $f(x, y, z) = e^{xy} \arcsin z,$ $D_f = \mathbb{R} \times \mathbb{R} \times [-1, 1]$
 $f(x, y, z) = 5,$ $[x, y, z] \in \mathbb{R}^3$
 $f(x, y, z, u) = xe^{yz} \ln u,$ $D_f = \{[x, y, z, u] \in \mathbb{R}^4 : u > 0\}$

- Length of the day
- Length of your shadow.
- Compound interest.
- Storm radar.
- Drivers license tests.
- Google ads.

https://math.stackexchange.com/questions/703443/best-way-to-plot-a-4-dimensional-meshgrid https://www.mathworks.com/matlabcentral/answers/224648-plotting-4d-with-3-vectors-and-1-matrix

Note: Mathematica animation

We say that a function f of n variables has a limit at a point $a \in \mathbb{R}^n$ equal to $A \in \mathbb{R}^*$ if

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \,\exists \delta \in \mathbb{R}, \delta > 0 \,\forall \mathbf{x} \in B(\mathbf{a}, \delta) \setminus \{\mathbf{a}\} : f(\mathbf{x}) \in B(A, \varepsilon).$$

Geometric Interpretation of a Limit of a Function of Two Variables

The limit as (x,y) approaches (a,b) is L If for all $\varepsilon>0$ there exists a $\delta>0$ such that if (x,y) is in the domain of f and (x,y) is within $\delta>0$ of (a,b), then the subset of points from the surface generated by the function f is contained between the two planes $z=L+\varepsilon$ and $z=L-\varepsilon$.

http://mathonline.wikidot.com/
limits-of-functions-of-two-variables

Remark

- Each function has at a given point at most one limit. We write $\lim_{x\to a} f(x) = A$.
- The function f is continuous at a if and only if $\lim_{x\to a} f(x) = f(a)$.
- For limits of functions of several variables one can prove similar theorems as for limits of functions of one variable (arithmetics, the sandwich theorem, ...).

Note: Mathematica animation

- 1. $\lim_{(x,y)\to(2,-1)} x^2 2xy + 3y^2 4x + 3y 6$
- 2. $\lim_{(x,y)\to(2,-1)} \frac{2x+3y}{4x-3y}$
- 3. $\lim_{(x,y)\to(0,0)} \frac{x^2+xy}{x+y}$

In the table there are values of a function f(x, y). Does there exist the limit

$$\lim_{(x,y)\to(0,0)} f(x,y)?$$

$x \setminus y$	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.00	0.60	0.92	1.00	0.92	0.60	0.00
-0.5	-0.60	0.00	0.72	1.00	0.72	0.00	-0.6
-0.2	-0.92	-0.72	0.00	1.00	0.00	-0.72	-0.92
0	-1.00	-1.00	-1.00		-1.00	-1.00	-1.00
0.2	-0.92	-0.72	0.00	1.00	0.00	-0.72	-0.92
0.5	-0.60	0.00	0.72	1.00	0.72	0.00	-0.6
1.0	0.00	0.60	0.92	1.00	0.92	0.60	0.00

https://www.cpp.edu/conceptests/question-library/mat214.shtml

V.2. Continuous functions of several variables

Definition

Let $M \subset \mathbb{R}^n$, $x \in M$, and $f : M \to \mathbb{R}$. We say that f is continuous at x with respect to M, if we

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \,\exists \delta \in \mathbb{R}, \delta > 0 \,\forall \mathbf{y} \in B(\mathbf{x}, \delta) \cap M \colon f(\mathbf{y}) \in B(f(\mathbf{x}), \varepsilon).$$

We say that f is continuous at the point x if it is continuous at x with respect to a neighbourhood of x, i.e.

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall \mathbf{y} \in B(\mathbf{x}, \delta) : f(\mathbf{y}) \in B(f(\mathbf{x}), \varepsilon).$$

Let $M \subset \mathbb{R}^n$ and $f : M \to \mathbb{R}$. We say that f is continuous on M if it is continuous at each point $x \in M$ with respect to M.

Remark

The functions $\pi_j \colon \mathbb{R}^n \to \mathbb{R}$, $\pi_j(\mathbf{x}) = x_j$, $1 \le j \le n$, are continuous on \mathbb{R}^n . They are called coordinate projections.

Theorem 8

Let $M \subset \mathbb{R}^n$, $\mathbf{x} \in M$, $f: M \to \mathbb{R}$, $g: M \to \mathbb{R}$, and $c \in \mathbb{R}$. If f and g are continuous at the point \mathbf{x} with respect to M, then the functions cf, f+g a fg are continuous at \mathbf{x} with respect to M. If the function g is nonzero at \mathbf{x} , then also the function f/g is continuous at \mathbf{x} with respect to M.

Theorem 9

Let $r, s \in \mathbb{N}$, $M \subset \mathbb{R}^s$, $L \subset \mathbb{R}^r$, and $y \in M$. Let $\varphi_1, \ldots, \varphi_r$ be functions defined on M, which are continuous at y with respect to M and $[\varphi_1(x), \ldots, \varphi_r(x)] \in L$ for each $x \in M$. Let $f: L \to \mathbb{R}$ be continuous at the point $[\varphi_1(y), \ldots, \varphi_r(y)]$ with respect to L. Then the compound function $F: M \to \mathbb{R}$ defined by

$$F(\mathbf{x}) = f(\varphi_1(\mathbf{x}), \dots, \varphi_r(\mathbf{x})), \quad \mathbf{x} \in M,$$

is continuous at y with respect to M.

Where is continuous $f(x, y) = \cos \frac{x}{y}$?

- A Everywhere except at the origin
- B Everywhere except along the *x*-axis.
- C Everywhere except along the *y*-axis.
- D Everywhere except along the line y = x.

Where is continuous $f(x, y) = \cos \frac{x}{y}$?

- A Everywhere except at the origin
- B Everywhere except along the *x*-axis.
- C Everywhere except along the *y*-axis.
- D Everywhere except along the line y = x.

C

Where is continuous $f(x, y) = \cos \frac{x}{y}$?

- A Everywhere except at the origin
- B Everywhere except along the *x*-axis.
- C Everywhere except along the *y*-axis.
- D Everywhere except along the line y = x.

C

Exercise

Where is continuous $f(x, y) = \operatorname{sgn} xy$?

- A Everywhere except along the axes.
- B Everywhere except along the *x*-axis.
- C Everywhere except at the origin.
- D Everywhere except along the line y = x.

Where is continuous $f(x, y) = \cos \frac{x}{y}$?

- A Everywhere except at the origin
- B Everywhere except along the *x*-axis.
- C Everywhere except along the *y*-axis.
- D Everywhere except along the line y = x.

C

Exercise

Where is continuous $f(x, y) = \operatorname{sgn} xy$?

- A Everywhere except along the axes.
- B Everywhere except along the *x*-axis.
- C Everywhere except at the origin.
- D Everywhere except along the line y = x.

Α

Find continuous functions (at \mathbb{R}^2)

- A $\ln(x^2 + y^2 + 1)$
- $\frac{x-y}{e^{xy}}$
- $\frac{C}{x^2}$
- $D \sin(2x) + x \cot(x^3 + 2y)$
- $E \operatorname{sgn}(x^4 + y^4)$

Find continuous functions (at \mathbb{R}^2)

- A $\ln(x^2 + y^2 + 1)$
- $\frac{x-y}{e^{xy}}$
- $C \frac{\sqrt{y-1}}{x^2}$
- $D \sin(2x) + x\cot(x^3 + 2y)$
- $E \operatorname{sgn}(x^4 + y^4)$

A, B

Theorem 10

Let f be a continuous function on \mathbb{R}^n and $c \in \mathbb{R}$. Then the following holds:

- (i) The set $\{x \in \mathbb{R}^n; f(x) < c\}$ is open in \mathbb{R}^n .
- (ii) The set $\{x \in \mathbb{R}^n; f(x) > c\}$ is open in \mathbb{R}^n .
- (iii) The set $\{x \in \mathbb{R}^n; f(x) \le c\}$ is closed in \mathbb{R}^n .
- (iv) The set $\{x \in \mathbb{R}^n; f(x) \ge c\}$ is closed in \mathbb{R}^n .
- (v) The set $\{x \in \mathbb{R}^n; f(x) = c\}$ is closed in \mathbb{R}^n .

Example

$$f(x, y) = x^2 + y^2,$$

Mathematica

Partial derivatives

https://www.wikihow.com/ Take-Partial-Derivatives http:
//calcnet.cst.cmich.edu/
faculty/angelos/m533/
lectures/pderv.htm

Animation.

Let f be a function, $a \in \mathbb{R}$.

$$f'(a) = \lim_{t \to 0} \frac{f(a+t) - f(a)}{t}.$$

Let f be a function, $a \in \mathbb{R}$.

$$f'(a) = \lim_{t \to 0} \frac{f(a+t) - f(a)}{t}.$$

Set
$$\mathbf{e}^j = [0, \dots, 0, \underset{j \text{th coordinate}}{1}, 0, \dots, 0].$$

Definition

Let f be a function of n variables, $j \in \{1, ..., n\}$, $\boldsymbol{a} \in \mathbb{R}^n$. Then the number

$$\frac{\partial f}{\partial x_j}(\boldsymbol{a}) = \lim_{t \to 0} \frac{f(\boldsymbol{a} + t\boldsymbol{e}^j) - f(\boldsymbol{a})}{t}$$

$$= \lim_{t \to 0} \frac{f(a_1, \dots, a_{j-1}, a_j + t, a_{j+1}, \dots, a_n) - f(a_1, \dots, a_n)}{t}$$

is called the partial derivative (of first order) of function f according to jth variable at the point a (if the limit exists).

Find
$$\frac{\partial f}{\partial x}$$
, if $f(x, y) = x^3 + 3x^2y - 5x - 7y^3 + y - 5$

A
$$\frac{\partial f}{\partial x} = 3x^2 + 6xy - 5$$
 C $\frac{\partial f}{\partial x} = 3x^2 - 21y^2 + 1$

$$\frac{\mathbf{C}}{\partial x} = 3x^2 - 21y^2 + \frac{\partial y}{\partial x} = 3x^2 - 21y^2 + \frac{\partial y}{\partial x} = \frac{\partial y}{\partial x}$$

B
$$\frac{\partial f}{\partial x} = x^3 + 3 - 21y^2 + 1 - 5$$

B
$$\frac{\partial f}{\partial x} = x^3 + 3 - 21y^2 + 1 - 5$$
 D $\frac{\partial f}{\partial x} = 3x^2 + 6xy - 5 - 7y^3 + y$

Find
$$\frac{\partial f}{\partial x}$$
, if $f(x, y) = x^3 + 3x^2y - 5x - 7y^3 + y - 5$

A
$$\frac{\partial f}{\partial x} = 3x^2 + 6xy - 5$$

A
$$\frac{\partial f}{\partial x} = 3x^2 + 6xy - 5$$
 C $\frac{\partial f}{\partial x} = 3x^2 - 21y^2 + 1$

$$\frac{\partial f}{\partial x} = x^3 + 3 - 21y^2 + 1 - 5$$

Find
$$\frac{\partial f}{\partial y}$$
, if $f(x, y) = x^2 \ln(x^2 y)$

$$\mathbf{A} \ \frac{\partial f}{\partial y} = \frac{2x}{y}$$

$$\mathbf{B} \ \frac{\partial f}{\partial y} = \frac{1}{y}$$

$$\frac{\mathbf{C}}{\partial y} = \frac{x^2}{y}$$

Find
$$\frac{\partial f}{\partial y}$$
, if $f(x, y) = x^2 \ln(x^2 y)$

$$\mathbf{A} \ \frac{\partial f}{\partial y} = \frac{2x}{y}$$

$$\frac{\partial f}{\partial y} = \frac{1}{y}$$

$$\frac{\mathbf{C}}{\partial y} = \frac{x^2}{y}$$

$$\frac{\partial f}{\partial y} = \frac{1}{x^2 y}$$

(

According to: https://www.wiley.com/college/hugheshallett/0470089148/conceptests/concept.pdf

The values of a function f(x, y) are in the table. Which statement is most accurate? (In the left columnt there is x, in the first row there is y.)

$x \backslash y$	0	1	2	3
0	3	5	7	9
1	2	4	6	8
2	1	3	5	7
3	0	2	4	6

A
$$\frac{\partial f}{\partial x}(1,2) \approx -1$$

$$\frac{\mathbf{B}}{\partial y}(1,2) \approx 2$$

$$\frac{\mathsf{C}}{\partial x}(3,2) \approx 1$$

https://www.cpp.edu/conceptests/question-library/mat214.shtml

The values of a function f(x, y) are in the table. Which statement is most accurate? (In the left columnt there is x, in the first row there is y.)

$x \setminus y$	0	1	2	3
0	3	5	7	9
1	2	4	6	8
2	1	3	5	7
3	0	2	4	6

A
$$\frac{\partial f}{\partial x}(1,2) \approx -1$$

$$\mathbf{B} \ \frac{\partial f}{\partial y}(1,2) \approx 2$$

$$\frac{C}{\partial x}(3,2) \approx 1$$

$$\frac{D}{\partial y}(3,2) \approx 4$$

https://www.cpp.edu/conceptests/question-library/
mat214.shtml

A, B

- A $\frac{\partial f}{\partial x} > 0$, $\frac{\partial f}{\partial y} > 0$
- $\mathbf{B} \ \frac{\partial f}{\partial x} < 0, \frac{\partial f}{\partial y} > 0$
- $\frac{\mathsf{C}}{\partial x} > 0, \frac{\partial f}{\partial y} < 0$

- A $\frac{\partial f}{\partial x} > 0$, $\frac{\partial f}{\partial y} > 0$
- $\frac{\mathbf{B}}{\partial x} < 0, \frac{\partial f}{\partial y} > 0$
- $\frac{C}{\partial x} > 0, \frac{\partial f}{\partial y} < 0$
- $\frac{\mathbf{D}}{\partial x} < 0, \frac{\partial f}{\partial y} < 0$

В

https://www.cpp.edu/conceptests/question-library/
mat214.shtml

1. Let $f(x, y, z) = x^2 + z + 3$. Then the partial derivative $\frac{\partial f}{\partial y}$ is not defined, because there is no y in the function.

- 1. Let $f(x, y, z) = x^2 + z + 3$. Then the partial derivative $\frac{\partial f}{\partial y}$ is not defined, because there is no y in the function. False, $\frac{\partial f}{\partial y} = 0$.
- 2. Is there a function f(x, y) such that $\frac{\partial f}{\partial y} = 3y^2$ and $\frac{\partial f}{\partial x} = 3x^2$?

- 1. Let $f(x, y, z) = x^2 + z + 3$. Then the partial derivative $\frac{\partial f}{\partial y}$ is not defined, because there is no y in the function. False, $\frac{\partial f}{\partial y} = 0$.
- 2. Is there a function f(x, y) such that $\frac{\partial f}{\partial y} = 3y^2$ and $\frac{\partial f}{\partial x} = 3x^2$? Yes. For example $f(x, y) = x^3 + y^3$.

- 1. Let $f(x, y, z) = x^2 + z + 3$. Then the partial derivative $\frac{\partial f}{\partial y}$ is not defined, because there is no y in the function. False, $\frac{\partial f}{\partial y} = 0$.
- 2. Is there a function f(x, y) such that $\frac{\partial f}{\partial y} = 3y^2$ and $\frac{\partial f}{\partial x} = 3x^2$? Yes. For example $f(x, y) = x^3 + y^3$.

Exercise

Find a function, which is not constant, but $\frac{\partial f}{\partial x} = 0$ for every x.

- 1. Let $f(x, y, z) = x^2 + z + 3$. Then the partial derivative $\frac{\partial f}{\partial y}$ is not defined, because there is no y in the function. False, $\frac{\partial f}{\partial y} = 0$.
- 2. Is there a function f(x, y) such that $\frac{\partial f}{\partial y} = 3y^2$ and $\frac{\partial f}{\partial x} = 3x^2$? Yes. For example $f(x, y) = x^3 + y^3$.

Exercise

Find a function, which is not constant, but $\frac{\partial f}{\partial x} = 0$ for every x

 $\frac{\partial f}{\partial x} = 0$ for every x.

For example $f(x, y) = y^2 + 4$.

Let $G \subset \mathbb{R}^n$ be a non-empty open set. If a function $f: G \to \mathbb{R}$ has all partial derivatives continuous at each point of the set G (i.e. the function $\mathbf{x} \mapsto \frac{\partial f}{\partial x_j}(\mathbf{x})$ is continuous on G for each $j \in \{1, \dots, n\}$), then we say that f is of the class C^1 on G. The set of all of these functions is denoted by $C^1(G)$.

Let $G \subset \mathbb{R}^n$ be a non-empty open set. If a function $f: G \to \mathbb{R}$ has all partial derivatives continuous at each point of the set G (i.e. the function $\mathbf{x} \mapsto \frac{\partial f}{\partial x_j}(\mathbf{x})$ is continuous on G for each $j \in \{1, \dots, n\}$), then we say that f is of the class C^1 on G. The set of all of these functions is denoted by $C^1(G)$.

Remark

If $G \subset \mathbb{R}^n$ is a non-empty open set and and $f, g \in \mathcal{C}^1(G)$, then $f + g \in \mathcal{C}^1(G), f - g \in \mathcal{C}^1(G)$, and $fg \in \mathcal{C}^1(G)$. If moreover $g(x) \neq 0$ for each $x \in G$, then $f/g \in \mathcal{C}^1(G)$.

Find functions, which are $C^1(\mathbb{R}^2)$.

$$A e^{xy}$$

$$\frac{\sin(x-2y)}{2+x^2+y^2}$$

A
$$e^{xy}$$
B $\sqrt[3]{x^2 + y^2}$

$$\frac{D}{\ln \frac{y}{x}}$$

Find functions, which are $C^1(\mathbb{R}^2)$.

$$A e^{xy}$$

$$\frac{\sin(x-2y)}{2+x^2+y^2}$$

A
$$e^{xy}$$
B $\sqrt[3]{x^2 + y^2}$

$$\frac{D}{\ln \frac{y}{x}}$$

A, C

Example

$$f(x,y) = \sqrt{100 - x^2 - y^2}$$

Example

$$f(x,y) = x^2 + y^2$$

Example

$$f(x,y) = 5\sqrt{x^2 + y^2}$$

Suppose that the function f has a finite derivative at a point $a \in \mathbb{R}$. The line

$$T_a = \{ [x, y] \in \mathbb{R}^2; y = f(a) + f'(a)(x - a) \}.$$

is called the tangent to the graph of f at the point [a, f(a)].

Suppose that the function f has a finite derivative at a point $a \in \mathbb{R}$. The line

$$T_a = \{ [x, y] \in \mathbb{R}^2; \ y = f(a) + f'(a)(x - a) \}.$$

is called the tangent to the graph of f at the point [a, f(a)].

Definition

Let $G \subset \mathbb{R}^n$ be an open set, $\mathbf{a} \in G$, and $f \in C^1(G)$. Then the graph of the function

$$T: \mathbf{x} \mapsto f(\mathbf{a}) + \frac{\partial f}{\partial x_1}(\mathbf{a})(x_1 - a_1) + \frac{\partial f}{\partial x_2}(\mathbf{a})(x_2 - a_2) + \dots + \frac{\partial f}{\partial x_n}(\mathbf{a})(x_n - a_n), \quad \mathbf{x} \in \mathbb{R}^n,$$

is called the tangent hyperplane to the graph of the function f at the point [a, f(a)].

Find the tangent plane of a function f(x, y) = xy at the point (2,3).

A
$$z - 6 = x(x - 2) + y(y - 3)$$

B
$$z - 6 = y(x - 2) + x(y - 3)$$

$$c$$
 $z - 6 = 2(x - 2) + 3(y - 3)$

D
$$z - 6 = 3(x - 2) + 2(y - 3)$$

Find the tangent plane of a function f(x, y) = xy at the point (2,3).

A
$$z - 6 = x(x - 2) + y(y - 3)$$

B
$$z - 6 = y(x - 2) + x(y - 3)$$

$$C z - 6 = 2(x - 2) + 3(y - 3)$$

D
$$z - 6 = 3(x - 2) + 2(y - 3)$$

 \mathbf{C}

Find the tangent plane of a function f(x, y) = xy at the point (2,3).

A
$$z - 6 = x(x - 2) + y(y - 3)$$

B
$$z - 6 = y(x - 2) + x(y - 3)$$

$$c$$
 $z - 6 = 2(x - 2) + 3(y - 3)$

D
$$z - 6 = 3(x - 2) + 2(y - 3)$$

C

Exercise

Find the tangent plane of a function

$$f(x, y, z, u) = \ln(xy + z^2 - u)$$
 at the point $a = (1, 0, 2, 3)$.

Find the tangent plane of a function f(x, y) = xy at the point (2,3).

A
$$z - 6 = x(x - 2) + y(y - 3)$$

B
$$z - 6 = y(x - 2) + x(y - 3)$$

$$C z - 6 = 2(x - 2) + 3(y - 3)$$

D
$$z - 6 = 3(x - 2) + 2(y - 3)$$

C

Exercise

Find the tangent plane of a function

$$f(x, y, z, u) = \ln(xy + z^2 - u)$$
 at the point $a = (1, 0, 2, 3)$.

$$v - 0 = 0(x - 1) + 1(y - 0) + 4(z - 2) - 1(u - 3)$$

$$v = v + 4x - u - 5$$

Theorem 11 (tangent hyperplane)

Let $G \subset \mathbb{R}^n$ be an open set, $\mathbf{a} \in G$, $f \in C^1(G)$, and let T be a function whose graph is the tangent hyperplane of the function f at the point $[\mathbf{a}, f(\mathbf{a})]$. Then

$$\lim_{x\to a}\frac{f(x)-T(x)}{\rho(x,a)}=0.$$

Theorem 11 (tangent hyperplane)

Let $G \subset \mathbb{R}^n$ be an open set, $\mathbf{a} \in G$, $f \in C^1(G)$, and let T be a function whose graph is the tangent hyperplane of the function f at the point $[\mathbf{a}, f(\mathbf{a})]$. Then

$$\lim_{x\to a}\frac{f(x)-T(x)}{\rho(x,a)}=0.$$

Theorem 12

Let $G \subset \mathbb{R}^n$ be an open non-empty set and $f \in C^1(G)$. Then f is continuous on G.

Theorem 11 (tangent hyperplane)

Let $G \subset \mathbb{R}^n$ be an open set, $\mathbf{a} \in G$, $f \in C^1(G)$, and let T be a function whose graph is the tangent hyperplane of the function f at the point $[\mathbf{a}, f(\mathbf{a})]$. Then

$$\lim_{x\to a}\frac{f(x)-T(x)}{\rho(x,a)}=0.$$

Theorem 12

Let $G \subset \mathbb{R}^n$ be an open non-empty set and $f \in C^1(G)$. Then f is continuous on G.

Remark

Existence of partial derivatives at a does not imply continuity at a.

Theorem 13 (derivative of a composite function; chain rule)

Let $r, s \in \mathbb{N}$ and let $G \subset \mathbb{R}^s$, $H \subset \mathbb{R}^r$ be open sets. Let $\varphi_1, \ldots, \varphi_r \in C^1(G)$, $f \in C^1(H)$ and $[\varphi_1(\mathbf{x}), \ldots, \varphi_r(\mathbf{x})] \in H$ for each $\mathbf{x} \in G$. Then the compound function $F : G \to \mathbb{R}$ defined by

$$F(\mathbf{x}) = f(\varphi_1(\mathbf{x}), \varphi_2(\mathbf{x}), \dots, \varphi_r(\mathbf{x})), \quad \mathbf{x} \in G,$$

is of the class C^1 on G. Let $\mathbf{a} \in G$ and $\mathbf{b} = [\varphi_1(\mathbf{a}), \dots, \varphi_r(\mathbf{a})]$. Then for each $j \in \{1, \dots, s\}$ we have

$$\frac{\partial F}{\partial x_j}(\boldsymbol{a}) = \sum_{i=1}^r \frac{\partial f}{\partial y_i}(\boldsymbol{b}) \frac{\partial \varphi_i}{\partial x_j}(\boldsymbol{a}).$$

Remark

Let f(x, y, z) be a differentiable function, let $x = g_1(u, v)$, $y = g_2(u, v)$, $z = g_3(u, v)$, where g_1, g_2, g_3 are differentiable functions. Then for $h(u, v) = f(g_1(u, v), g_2(u, v), g_3(u, v))$ we have

$$\frac{\partial h}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u}$$
$$\frac{\partial h}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial v}$$

$$\frac{d}{d} = \frac{d}{d} \times \frac{d}{d}$$

http://mathinsight.org/media/image/image/
chain_rule_geometric_objects.png

Let $h(u, v) = \sin x \cos y$, where $x = (u - v)^2$ and $y = u^2 - v^2$. Find $\partial h/\partial u$ a $\partial h/\partial v$.

Exercise

Let h(u, v) = xy, where $x = u \cos v$ and $y = u \sin v$. Then for $\partial h/\partial v$ we have

$$\frac{\partial h}{\partial v} = 0$$

$$\frac{\partial h}{\partial v} = u^2 \cos(2v)$$

$$\frac{\partial h}{\partial v} = -u^3 \sin^2 v \cos v + u^3 \sin v \cos^2 v$$

D Something else.

Let f(x, y) satisfies the Chain rule theorem assumptions. Show, that a function $h(u, v, w) = \frac{uv}{w} \ln u + uf\left(\frac{v}{u}, \frac{w}{u}\right)$, where $x = \frac{v}{u}, y = \frac{w}{u}$ satisfies the following condition

$$u\frac{\partial h}{\partial u} + v\frac{\partial h}{\partial v} + w\frac{\partial h}{\partial w} = h + \frac{uv}{w}.$$

V.4. Implicit function theorem and Lagrange multiplier theorem

V.4. Implicit function theorem and Lagrange multiplier theorem

V.4. Implicit function theorem and Lagrange multiplier theorem

$$f(x,y) = x^2 + y^2 - 1 - y\sqrt[3]{x^2}$$

$$f(x,y) = x^2 + y^2 - 1 - y\sqrt[3]{x^2}$$

(\$ °) Q (\$

Theorem 14 (implicit function)

Let $G \subset \mathbb{R}^{n+1}$ be an open set, $F \colon G \to \mathbb{R}$, and $\tilde{\mathbf{x}} \in \mathbb{R}^n$, $\tilde{\mathbf{y}} \in \mathbb{R}$ such that $[\tilde{\mathbf{x}}, \tilde{\mathbf{y}}] \in G$. Suppose that

- (i) $F \in C^1(G)$,
- (ii) $F(\tilde{x}, \tilde{y}) = 0$,
- (iii) $\frac{\partial F}{\partial y}(\tilde{\boldsymbol{x}}, \tilde{y}) \neq 0.$

Then there exist a neighbourhood $U \subset \mathbb{R}^n$ of the point $\tilde{\mathbf{x}}$ and a neighbourhood $V \subset \mathbb{R}$ of the point $\tilde{\mathbf{y}}$ such that for each $\mathbf{x} \in U$ there exists a unique $y \in V$ satisfying $F(\mathbf{x}, y) = 0$. If we denote this y by $\varphi(\mathbf{x})$, then the resulting function φ is in $C^1(U)$ and

$$\frac{\partial \varphi}{\partial x_j}(\mathbf{x}) = -\frac{\frac{\partial F}{\partial x_j}(\mathbf{x}, \varphi(\mathbf{x}))}{\frac{\partial F}{\partial x_j}(\mathbf{x}, \varphi(\mathbf{x}))} \quad \text{for } \mathbf{x} \in U, j \in \{1, \dots, n\}.$$

Theorem

Let $G \subset \mathbb{R}^{n+1}$ be an open set, $F \colon G \to \mathbb{R}$, and $\tilde{\mathbf{x}} \in \mathbb{R}^n$, $\tilde{\mathbf{y}} \in \mathbb{R}$ such that $[\tilde{\mathbf{x}}, \tilde{\mathbf{y}}] \in G$. Suppose that

- (i) $F \in C^1(G)$,
- (ii) $F(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) = 0$,
- (iii) $\frac{\partial F}{\partial y}(\tilde{\boldsymbol{x}}, \tilde{y}) \neq 0.$

Then there exists a neighbourhood ...

Exercise

Which condition is NOT satisfied?

- A $x^2 + y^3 = 4$ at (2,0)
- B $y \frac{1}{2}\sin y = x$ at (π, π)
- $C \sin(xy) + x^2 + y^2 = 1$ at (0,3)
- $|x| + e^{x+y} = 1$ at (0,0)

Definition

Let $G \subset \mathbb{R}^n$ be an open set, $\mathbf{a} \in G$, and $f \in C^1(G)$. The gradient of f at the point \mathbf{a} is the vector

$$\nabla f(\boldsymbol{a}) = \left[\frac{\partial f}{\partial x_1}(\boldsymbol{a}), \frac{\partial f}{\partial x_2}(\boldsymbol{a}), \dots, \frac{\partial f}{\partial x_n}(\boldsymbol{a})\right].$$

Exercise

Find the gradient of $f(x, y, z) = y \cos^3(x^2 z)$ at the point [2, 1, 0]:

A (1/5, 0, 1/5)

(0,1,0)

 $\mathbf{B} \ (0,0,1/5)$

D(1,0,1/2)

Remark

The gradient of f at a points in the direction of steepest growth of f at a. At every point, the gradient is perpendicular to the contour of f.

Exercise

The bicyclist is on a trip up the hill, which can be described as $f(x, y) = 25 - 2x^2 - 4y^2$. When she is at the point [1, 1, 19], it starts to rain, so she decides to go down the hill as steeply as possible (so that she is down quickly). In what direction will she start her decline?

A
$$(-4x; -8y)$$

$$(-4; -8)$$

$$\mathbf{B} \ (4x; 8y)$$

