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V.1. R" as a linear and metric space

The set R", n € N, is the set of all ordered n-tuples of real
numbers, i.e.

R" = {[x1,. .., %) : x1,...,x, € R}
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Exercise (2D)
Sketch the following points and connect them.

(470)7 (07 3)7 (_47 0)7 (_65 2)7 (_57 0)> (_67 _2)7 (_47 O)a

(07 _2)’ (47 O),

and add one point:
(2,1).

https:
//www.geogebra.org/calculator/bbsahf43

Exercise (3D)
https://www.geogebra.org/classic/ydu8ait?7
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Exercise

Which picture(s) plots the point (2, 1, 1) correctly?

A. B. C.

(2,1,1)

z x

https://www.cpp.edu/conceptests/question-library/
mat214.shtml
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Exercise

Which picture(s) plots the point (2, 1, 1) correctly?

A. B. C.

(2,1,1)

z x

https://www.cpp.edu/conceptests/question-library/
mat214.shtml
A, C

Mathematics II - Functions of multiple variables 4/122


https://www.cpp.edu/conceptests/question-library/mat214.shtml
https://www.cpp.edu/conceptests/question-library/mat214.shtml

V.1. R" as a linear and metric space

Forx = [x,..., %] €ER",y =[y,...,y,] ER"and o € R we

set
X4y =[x +y,. . % + Y ax = [axy,. .., ax,].
Further, we denote 0 = [0, . . ., 0] — the origin. )
Find
A (1727374) + (_270737 _1)
B _2(1727374)
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V.1. R" as a linear and metric space

Forx = [x,..., %] €ER",y =[y,...,y,] ER"and o € R we

set
X4y =[x +y,. . % + Y ax = [axy,. .., ax,].
Further, we denote 0 = [0, . . ., 0] — the origin. )
Find
A (1727374) + (_270737 _1)
B _2(1727374)

A(—1,2,6,3),B (—2,—4,—6,-8)
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Definition

The Euclidean metric (distance) on R” is the function
p: R* x R" — [0, 400) defined by

The number p(x,y) is called the distance of the point x from the
point y.

(w2, 12)
Y2 —

(z1,91) 22— 7

https://rosalind.info/glossary/euclidean—-distance/ )
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Exercise

Find the distance of the points

X
-10 -8 -6 4 -2 \246810

(1,-2)
-4
-6
-8
~10
A
https://www.summitlearning.org/guest/
focusareas/862919

B (1,-2,3), (0,-3,—2)
C (=1,0,3,2), (1,-1,2,-3)

y
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Exercise

Find the distance of the points

X
-10 -8 -6 4 -2 \246810

(1,-2)
-4
-6
-8
~10
A
https://www.summitlearning.org/guest/
focusareas/862919

B (1,-2,3), (0,-3,—2)
C (=1,0,3,2), (1,-1,2,-3)

V52,27, v31 )



https://www.summitlearning.org/guest/focusareas/862919
https://www.summitlearning.org/guest/focusareas/862919

Exercise

A p((1,2),(1,2))
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A p((1,2),(1,2))
B p((1,2),(4,6)), p((4,6),(1,2))

6

0.5

1.5 0 05 1 15 2 25 3 35 4
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© p((1,2),(4,6)), p((1,2), (1, 1)) + p((1, 1), (4,6))

6

-050 05 1 15 2 25 3 35 4 .
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Exercise
D 2p((1,2),(4,6)), p((2,4), (8,12))

12 (]

11

10
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Exercise

E p((1,2), (4,6)), p((2,3), (5, 7))
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Theorem 1 (properties of the Euclidean metric)

The Euclidean metric p has the following properties:
(1) Vx,y e R": p(x,y) =0 x =y,
(i) Vx,y € R": p(x,y) = p(y,x), (symmetry)
(i) Vx,y,z € R": p(x,y) < p(x,2) + p(z,),
(triangle inequality)
(iv) Vx,y € R". VYA € R: p(Ax, \y) = |A|p(x,y), (homogeneity)

(v) Vx,y,z € R": p(x +2,y +2) = p(x,y).
(translation invariance)
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Definition
Letx € R", r € R, r > 0. The set B(x, r) defined by

B(x,r) ={y € R"; p(x,y) <r}

is called an open ball with radius r centred at x or the
neighbourhood of x.

Center
Lo,
SN

Center Radius

3D ball 2D ball 1D ball

http://www.sciencedall.org/article/topology/
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https://commons.
wikimedia.org/wiki/File:
4dSphere. jpg

https://en.wikipedia.
org/wiki/N—-sphere
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S
~
o[ 1 2 3 4 #Dim
https:
//www.tinyepiphany.com/
2011/12/

visualizing-4-dimensions.

html

https://cs.wikipedia.
org/wiki/%$C4%8Ctvrt%C3%
BD_rozm%C4%9Br
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Let M C R". We say that x € R" is an interior point of M, if
there exists » > 0 such that B(x,r) C M.

The set of all interior points of M is called the interior of M and
is denoted by Int M.

The set M C R" is open in R", if each point of M is an interior
point of M, i.e. if M = Int M.
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Exercise

Find the interior
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Exercise

Solution
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Theorem 2 (properties of open sets)

(1) The empty set and R" are open in R".
(i1) Let G, CR", o« € A # (), be open in R". Then | J ., Ga is
open in R".
(iil) Let G; CR", i=1,...,m, be open in R". Then (._, G; is
open in R".
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Remark

(i1) A union of an arbitrary system of open sets is an open set.
(iii) An intersection of a finitely many open sets is an open set.
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Find the interior

I A{[x,y] e R?: x> +y* < 4}
2. {lx,y] eR*: 1 <x <4,y >3}
3. [xy] €eR?:x* 4+ 3y > 1,x+y > 2}
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Exercise

Find the interior

LA,y € R?: x> +y* < 4}

2. {lx,y] eR*: 1 <x <4,y >3}

3 Ay eR*: x> +3y* > 1,x+y>2}
1o A{[x,y] € R?: x2 +y? < 4}

2.y eR*: 1 <x <4,y >3}
3,y eR*: X2 +3y* > 1,x+y>2}
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Let M C R" and x € R". We say that x is a boundary point of M
if for each r > 0

B(x,r)NM # @ and B(x,r)N(R"\ M) # 0.

The boundary of M is the set of all boundary points of M
(notation bd M).
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The closure of M is the set M U bd M (notation M).

A set M C R” is said to be closed in R” if it contains all its
boundary points, i.e. if bd M C M, or in other words if M = M.

Mathematics II - Functions of multiple variables 23/122



Definition
The closure of M is the set M U bd M (notation M).

A set M C R” is said to be closed in R” if it contains all its
boundary points, i.e. if bd M C M, or in other words if M = M.

Exercise
Decide, if the set is closed or open, find the interior, the
boundary, the closure.

M={[xy]eR*:1<x<23<y<5}h
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Definition
The closure of M is the set M U bd M (notation M).

A set M C R” is said to be closed in R” if it contains all its
boundary points, i.e. if bd M C M, or in other words if M = M.

Exercise

Decide, if the set is closed or open, find the interior, the
boundary, the closure.

M={[xy]eR*:1<x<23<y<5}h

Exercise

Find the boundary
I Ax,y] € R?: x> +y* < 4}
2. {x,y] eR*: 1 <x <4,y >3}
3.y €eR*:x* 4+ 3y > 1,x+y > 2}

.
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Letx’ € R” for eachj € N and x € R". We say that a sequence
{x/}2, converges to x, if

lim p(x,x’') = 0.

Jj—o0

The vector x is called the limit of the sequence {x'}%,.
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Letx’ € R” for eachj € N and x € R". We say that a sequence
{x/}2, converges to x, if

lim p(x,x’) = 0.

Jj—o0
The vector x is called the limit of the sequence {x'}%,.
The sequence {y’ 2, of points in R" is called convergent if
there exists y € R” such that {y’}>°, converges to y.
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Definition
Letx’ € R” for eachj € N and x € R". We say that a sequence
{x/}2, converges to x, if

lim p(x,x’) = 0.

Jj—o0
The vector x is called the limit of the sequence {x'}%,.
The sequence {y’ 2, of points in R" is called convergent if
there exists y € R” such that {y’}>°, converges to y.
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Theorem 3 (convergence is coordinatewise)

Letx' € R" for eachj € N and let x € R". The sequence {x'}°,
converges to x if and only if for each i € {1, ... ,n} the
sequence of real numbers {x;}7°, converges to the real number
X;.

.

Remark

Theorem 3 says that the convergence in the space R”" is the
same as the “coordinatewise” convergence. It follows that a
sequence {x'}2° has at most one limit. If it exists, then we
denote it by lim; . ¥’. Sometimes we also write simply ¥ — x
instead of lim; ., ¥ = x.
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Exercise

p—
(\9]

lim (1 i = ,—z,e_j)
j—oo J J

lim ((—1),arctan(;’))

J—00
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Exercise

1 2 .
lim (1 i = ,—2,6_])
j—oo J J

lim ((—1),arctan(;’))

J—00

(1,3,0), A
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Theorem 4 (characterisation of closed sets) |

Let M C R". Then the following statements are equivalent:
(1) M is closed in R".
(i) R"\ M is open in R".
(i11) Anyx € R" which is a limit of a sequence from M belongs
to M.
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Theorem 4 (characterisation of closed sets) |

Let M C R". Then the following statements are equivalent:
(1) M is closed in R".
(i) R"\ M is open in R".
(i11) Anyx € R" which is a limit of a sequence from M belongs
to M.

y

Exercise

Decide, if the sets are closed or open (or nothing)

I. (0,1)inR 4. (=00,2]inR
2. (0,00)in R 5. x2+y*<4inR?
3. (-3,2]inR 6. x> +y*>2inR?

y
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Theorem 4 (characterisation of closed sets) |

Let M C R". Then the following statements are equivalent:
(1) M is closed in R".
(i) R"\ M is open in R".
(i11) Anyx € R" which is a limit of a sequence from M belongs
to M. )

Exercise

Decide, if the sets are closed or open (or nothing)

1. (0,1)inR 4. (—00,2]inR

2. (0,00)in R 5. % 4y*<4inR?

3. (-3,2]inR 6. x2+y*>2inR?

. open 3. nothing 5. open

2. open 4. closed 6. closed )
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Theorem 5 (properties of closed sets)
(1) The empty set and the whole space R" are closed in R".

(il) Let Fy CR", o € A #0), be closed in R". Then (., Fa is

(111) Let F; C R, i =
closed in R".

closed in R".
1,...,m, be closed in R". Then \ J/ | F; is

4

28/122
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(i1) An intersection of an arbitrary system of closed sets is
closed.
(ii1) A union of finitely many closed sets is closed.
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We say that the set M C R" is bounded if there exists » > 0
such that M C B(o, r). A sequence of points in R”" is bounded if
the set of its members is bounded.
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We say that the set M C R" is bounded if there exists » > 0
such that M C B(o, r). A sequence of points in R” is bounded if
the set of its members is bounded.

Theorem 6
A set M C R" is bounded if and only if its closure M is bounded.

= &
/ & \
| ' -
< ® -
& & L& o -y 3 218
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Exercise

Find bounded sets
A xe[-1,3,0<y<100
BxX+y+722<5
Cx—y<6
D |x+yl <6
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Find bounded sets
A xe[-1,3,0<y<100
BxX+y+722<5
Cx—y<6
D |x+yl <6

A,B,D
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We say that a set M C R" is compact if for each sequence of
elements of M there exists a convergent subsequence with a
limit in M.
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We say that a set M C R" is compact if for each sequence of
elements of M there exists a convergent subsequence with a
limit in M.

Theorem 7 (characterisation of compact subsets of R")

The set M C R" is compact if and only if M is bounded and
closed.
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We say that a set M C R" is compact if for each sequence of
elements of M there exists a convergent subsequence with a
limit in M.

Theorem 7 (characterisation of compact subsets of R")

The set M C R" is compact if and only if M is bounded and
closed.

Exercise

Find compact sets
A (0,1)
B [1,2] x [-1, =3]
Cl<x*+(@—-3)0+<4
D xyz<1
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We say that a set M C R" is compact if for each sequence of
elements of M there exists a convergent subsequence with a
limit in M.

Theorem 7 (characterisation of compact subsets of R")

The set M C R" is compact if and only if M is bounded and
closed.

Exercise

Find compact sets
A (0,1)
B [1,2] x [-1, =3]
Cl<x*+(y—-32+z2<4
D xyz<1

B




Map game



We define a function of two variables as a mapping f : M — R,
where M C R,

fey)=x+y, [y eR

f(x,y) = arccosy - arcsinx, Dy =[-1,1] x [-1,1]
f,y)=In(xy), Di={x>0Ay>0)V(x<O0Ay<O0)}
flxy) =x, [x,y] € R?

flx,y) =5, [x,y] € R?
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Example

flx,y) = )ﬁzyz f(x,y) =sinxcosy

Mathematics II - Functions of multiple variables 35/122



flxy) = /x> +? fxy) =v4-(x*+y?)
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Exercise

Find the graph for the / I‘,\
contourlines /1 ' l\
00—
\
111
Vi
A B. C

http://www.cpp.edu/~conceptests/question-library/
mat214.shtml

y
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Exercise

Find the graph for the / I‘,\
contourlines /1 ' l\
00—
\
111
Vi
A B. C

http://www.cpp.edu/~conceptests/question-library/
mat214.shtml
A

y
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Exercise

Find the contourlines for the
graph.

(a) A

(b) B ©C

Mathematics II - Functions of multiple variables
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Exercise

Find the contourlines for the
graph.

(a) A

(b) B ©C
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Exercise

Connect the contourlines and the functions

Figure: Hughes Hallett et al ¢ 2009, John Wiley & Sons
A —x? 452 C —x*—y°
B x* —y? D x% +y?

4
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Exercise |

Connect the contourlines and the functions

Figure: Hughes Hallett et al ¢ 2009, John Wiley & Sons

A —x? 452 C —x*—y°
B x* —y? D x% +y?
ID,IIB,IIC, IV A

4
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Definition .

We define a function of multiple variables as a mapping
f M — R, where M C R".

y

flx) = xeR

fx, )—ysmx [x,y] € R?
flx,y,2) =% +y%z, [x,y,7] € R®
flx,y,z )—exyarcsmz, D =R xR x[-1,1]
flx,y,2) = [x,y,2] €R3
flx,y,z,u )_xeyzhl” DfZ{[x,y,z,u]€R4:u>0}
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Length of the day
Length of your shadow.

©

Compound interest.
Storm radar.
Drivers license tests.

© 6 6 o o

Google ads.
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https://math.stackexchange.com/questions/703443/
best-way-to-plot-a-4-dimensional-meshgrid
https://www.mathworks.com/matlabcentral/answers/
224648-plotting-4d-with-3-vectors—and-l-matrix

Note: Mathematica animation

Mathematics II - Functions of multiple variables
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We say that a function f of n variables has a limit at a point
a € R"equalto A € R* if

VeeR,e>030 e R,0 >0Vx € B(a,d)\{a}: f(x) € B(A,¢).
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Geometric Interpretation of a Limit of a Function of Two Variables
zZ=L+¢

L+c ™

The limit as (x, y) approaches (a, b) is L If for all ¢ > () there exists a & > (J such that if (xy)
is in the domain of f and (x, y) is within & > (J of (a,b), then the subset of points from the

surface g i by the f ion fis ined L thetwoplanes z=L+candz=L-€.

http://mathonline.wikidot.com/
limits—-of-functions-of-two-variables
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(Remark

o Each function has at a given point at most one limit. We
write lim,_,, f(x) = A.

o The function f is continuous at @ if and only if
lim, . f(x) = f(a).

o For limits of functions of several variables one can prove

similar theorems as for limits of functions of one variable
(arithmetics, the sandwich theorem, ...).

Note: Mathematica animation
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Exercise

1. 1im(x7y)_>(27_1) & — 2xy + 3y2 —4x+3y—6

2. limey) 0, 1) oty

x2+xy
0,0) x+y

3. lim(xyy)%(
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Exercise

1. 1im(x7y)_>(27_1) & — 2xy + 3y2 —4x+3y—6

2. limey) 0, 1) oty

x2+xy
0,0) x+y

3. lim(xyy)%(

-6, 1/11,0
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In the table there are values of a function f(x, y). Does there
exist the limit

lim  f(x,y)?
(x,y)—(0,0)

.r.\y —1.0 —0.5 —-0.2 0 0.2 0.5 1.0
—1.0 0.00 0.60 0.92 1.00 0.92 0.60 0.00
—0.5 —0.60 0.00 0.72 1.00 0.72 0.00 —0.6
—0.2 —0.92 —0.72 0.00 1.00 0.00 —0.72 —0.92

0 —1.00 —1.00 —1.00 —1.00 —1.00 —1.00
0.2 —0.92 —0.72 0.00 1.00 0.00 —0.72 —0.92
0.5 —0.60 0.00 0.72 1.00 0.72 0.00 —0.6
1.0 0.00 0.60 0.92 1.00 0.92 0.60 0.00

https://www.cpp.edu/conceptests/question-library/
mat214.shtml
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In the table there are values of a function f(x, y). Does there
exist the limit

lim  f(x,y)?
(x,y)—(0,0)

.r.\y —1.0 —0.5 —-0.2 0 0.2 0.5 1.0
—1.0 0.00 0.60 0.92 1.00 0.92 0.60 0.00
—0.5 —0.60 0.00 0.72 1.00 0.72 0.00 —0.6
—0.2 —0.92 —0.72 0.00 1.00 0.00 —0.72 —0.92

0 —1.00 —1.00 —1.00 —1.00 —1.00 —1.00
0.2 —0.92 —0.72 0.00 1.00 0.00 —0.72 —0.92
0.5 —0.60 0.00 0.72 1.00 0.72 0.00 —0.6
1.0 0.00 0.60 0.92 1.00 0.92 0.60 0.00

https://www.cpp.edu/conceptests/question-library/
mat214.shtml

No limit. (Candidates are at leat 1 and -1.)
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V.2. Continuous functions of several variables

LetM C R, x e M,and f: M — R. We say that f is
continuous at x with respect to M, if we

VeeR,e>030 e R,0 >0Vy € B(x,0)NM: f(y) € B(f(x),¢)

We say that f is continuous at the point x if it is continuous at x
with respect to a neighbourhood of x, i.e.

VeeR,e>030 € R, 0 >0Vy € B(x,d): f(y) € B(f(x),¢).

4
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LetM C R"and f: M — R. We say that f is continuous on M if
it is continuous at each point x € M with respect to M.

The functions 7;: R" — R, m;(x) = x;, 1 <j < n, are
continuous on R". They are called coordinate projections.

Let M CR Y xeMf-M—-R g:M— R, andc € R Iff
and g are continuous at the point x with respect to M, then the
functions cf, f + g a fg are continuous at x with respect to M. If
the function g is nonzero at x, then also the function f/g is
continuous at x with respect to M.
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Theoremo |
Letr,s c NN M CR, LC R, andy € M. Let 1, ...,p, be

functions defined on M, which are continuous at y with respect
toM and [py(x),...,p.(x)] € Lforeachx € M. Letf: L — R

be continuous at the point [¢(y), . .., ¢, (y)] with respect to L.
Then the compound function F: M — R defined by

F(x)=f(¢i1(x),....0:(x)), x€M,

is continuous aty with respect to M.
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Exercise

Where is continuous f(x,y) = cos 2
A Everywhere except at the origin
B Everywhere except along the x-axis.
C Everywhere except along the y-axis.

D Everywhere except along the line y = x.
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Exercise

Where is continuous f(x,y) = cos 2
A Everywhere except at the origin
B Everywhere except along the x-axis.
C Everywhere except along the y-axis.

D Everywhere except along the line y = x.
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Exercise |

Where is continuous f(x,y) = cos 2

A Everywhere except at the origin

B Everywhere except along the x-axis.

C Everywhere except along the y-axis.

D Everywhere except along the line y = x.
B

y

Exercise

Where is continuous f(x,y) = sgnxy?

A Everywhere except along the axes.

B Everywhere except along the x-axis.

C Everywhere except at the origin.

D Everywhere except along the line y = x.

y
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Exercise |

Where is continuous f(x,y) = cos 2
A Everywhere except at the origin
B Everywhere except along the x-axis.
C Everywhere except along the y-axis.

D Everywhere except along the line y = x.
B

y

Exercise

Where is continuous f(x,y) = sgnxy?

A Everywhere except along the axes.

B Everywhere except along the x-axis.

C Everywhere except at the origin.

D Everywhere except along the line y = x.
A

y




Exercise I

Find continuous functions (at R?)
A In(x® +y*+1)
b 2
C el
x2
D sin(2x) + xcot(x® + 2y)
E sgn(x* + y*)
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[Exercise .}
Find continuous functions (at R?)

A ln(x2 +y? + 1)

B =

C el

x2

D sin(2x) + xcot(x® + 2y)

E sgn(x* +y*)
A, B
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Theorem 10

Let f be a continuous function on R" and ¢ € R. Then the
following holds:

(1) The set {x € R"; f(x) < c} is open in R".
(i) The set {x € R"; f(x) > c} is open in R".
(i11) The set {x € R"; f(x) < c} is closed in R".

) 2
)

(iv) The set {x € R"; f(x) > c} is closed in R".
(v) The set {x € R"; f(x) = c} is closed in R".

.

Example

flx,y) =x*+y7,

Mathematica

A
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Partial derivatives

“The tangentlire in the direotion of x

http:
//calcnet.cst.cmich.edu/
faculty/angelos/m533/
lectures/pderv.htm

https://www.wikihow.com/
Take-Partial-Derivatives

Animation.
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Let f be a function, a € R.
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Let f be a function, a € R.

Sete =1[0,...,0, 1 ,0,...,0]

) . )
Jjth coordinate

Let f be a function of n variables, j € {1,...,n},a € R". Then
the number

8xj t—0 t
- limf(al, N ,aj_l,aj -+ t, aj+1, Ce ,a,,) —f(al, N ,an)
- t—0 1t

is called the partial derivative (of first order) of function f
according to jth variable at the point a (if the limit exists).
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Exercise

Find Z, if f(x,y) = x> +3x% — 5x = Ty +y - 5

of o _

ox ox
of

B g—f:x3-|—3—21y2+1—5 D — =

: 2 G — 5 — TP

A = =3x*+6xy—5 C 382 =21y 4+ 1
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Exercise

Find Z, if f(x,y) = x> +3x% — 5x = Ty +y - 5

of o _

ox ox
of

B g—f:x3-|—3—21y2+1—5 D — =

: 2 G — 5 — TP

A = =3x*+6xy—5 C 382 =21y 4+ 1
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Exercise

Find g—’;, if f(x,y) = x* In(x?y)

N U2
dy y dy y
o 1 of 1

B 2L =2 D 2L =-_
dy vy dy x%y
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Exercise

Find g—’;, if f(x,y) = x* In(x?y)

g_% 8f_x2

dy y dy

of 1 of 1
B —=- D =2~ =— —

dy vy dy  x%y
C

According to: https://www.wiley.com/college/
hugheshallett/0470089148/conceptests/concept.pdf
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Exercise |

The values of a function r\y |0 1 2 3
f(x,y) are in the table. Which 0 13 5 79
statement is most accurate? é i g g 3
(In the left columnt there is x, 3010 2 4 6

in the first row there is y.)

i,
(17
'3

Y

QO W »
I Sl Blg
[\O RN \S TN ]

) =
)z
)~
[)%@ﬂ)z4

https://www.cpp.edu/conceptests/question-library/
mat214.shtml

Mathematics II - Functions of multiple variables 597122


https://www.cpp.edu/conceptests/question-library/mat214.shtml
https://www.cpp.edu/conceptests/question-library/mat214.shtml

Exercise |

The values of a function r\y |0 1 2 3
f(x,y) are in the table. Which 0 13 5 79
statement is most accurate? é i g g 3
(In the left columnt there is x, 3010 2 4 6

in the first row there is y.)

i,
(17
'3

Y

QO W »
I Sl Blg
[\O RN \S TN ]

)~
)z
) ~

8.}C ~
[)@@g)w4
https://www.cpp.edu/conceptests/question-library/

mat214.shtml
A, B
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Exercise

¥>0%>0
X

I <0,Z>0
X

¥>0%<0
X

I <0,Z<0
X

O o ®m »
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Exercise

¥>0%>0
X

I <0,Z>0
X

¥>0%<0
X

I <0,Z<0
X

O o w »

B
https://www.cpp.edu/conceptests/question-library/
mat214.shtml
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Exercise (True or false?) |
1. Letf(x,y,z) = x* + z + 3. Then the partial derivative g—§ is
not defined, because there is no y in the function.
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Exercise (True or false?) |

1. Letf(x,y,z) = x* + z + 3. Then the partial derivative g—§ is
not defined, because there is no y in the function.
False, g—§ =0.
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Exercise (True or false?) |

1. Letf(x,y,z) = x* + z + 3. Then the partial derivative f is
not defined, because there is no y in the function.
False, g =0.

2. Is there a function f(x, y) such that a—f 3y? and 8f = 3x%?
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Brercise (Trueorfalsed) ]
1. Letf(x,y,z) = x* + z + 3. Then the partial derivative §—§ is
not defined, because there is no y in the function.

False, g—’; =0.
2. Is there a function f(x, y) such that g—’; = 3y? and % = 3x%?

Yes. For example f(x,y) = x> + y°.
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Exercise (True or false?) |

1. Letf(x,y,z) = x* + z + 3. Then the partial derivative f is
not defined, because there is no y in the function.

False, g§ =0.

2. Is there a function f(x, y) such that g—’; = 3y? and % = 3x%?
Yes. For example f(x,y) = x> + y°.

Exercise

|

Find a function, which is not constant, but
af = 0 for every x.
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Exercise (True or false?) |

1. Letf(x,y,z) = x* + z + 3. Then the partial derivative f is

not defined, because there is no y in the function.
False, gf =0.
Y
2. Is there a function f(x, y) such that g—’; = 3y? and % = 3x%?

Yes. For example f(x,y) = x> + y°.

Exercise

3
\' |

Find a function, which is not constant, but

9
6{( = 0 for every x.

For example f(x,y) = y* + 4.
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Definition
Let G C R" be a non-empty open set. If a functionf: G — R
has all partial derivatives continuous at each point of the set G

(i.e. the function x +— g—)’;(x) is continuous on G for each

j€{1,...,n}), then we say that f is of the class C' on G. The

set of all of these functions is denoted by C'(G).
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 Definition

Let G C R" be a non-empty open set. If a functionf: G — R
has all partial derivatives continuous at each point of the set G
(i.e. the function x +— E%(x) is continuous on G for each

J

j€{1,...,n}), then we say that f is of the class C' on G. The
set of all of these functions is denoted by C'(G).

Remark

If G C R" is a non-empty open set and and f, g € C'(G), then
f+geCYG),f—geCYG),andfg € C'(G). If moreover
g(x) # 0 for eachx € G, thenf/g € C'(G).
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Exercise

Find functions, which are C'(IR?).

in(x—2y)
A e” C opmy?
B +/x2 +y? D In?
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Exercise

Find functions, which are C'(IR?).
A & C S
B /x> +y? D In?
A C
V.
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Example

fx,y) = /100 —x* — 2
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Example

flx,y) =% +y
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flx,y) =5/x2 + 2
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Definition

Suppose that the function f has a finite derivative at a point
a € R. The line

T.={lx) € R y=f(a) +f(a)(x —a)}.

is called the tangent to the graph of f at the point [a, f(a)].
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 Definiion

Suppose that the function f has a finite derivative at a point
a € R. The line

T.={lx) € R y=f(a) +f(a)(x —a)}.

is called the tangent to the graph of f at the point [a, f(a)].

Let G C R" be an open set, a € G, and f € C'(G). Then the
graph of the function

T:x v—>f(a) I %(a)(xl — al) T 59—)];((1)()62 — az)

of

+ 4 Bx, (@)(x, —a,), x€R"

is called the tangent hyperplane to the graph of the function f at
the point [a, f(a)].
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Exercise

Find the tangent plane of a function f(x, y) = xy at the point
(2,3).
Az—6=x(x—2)+yly—-23)
Bz—-6=y(x—2)+x(y—3)
Cz—6=2(x—2)+3(y—3)
Dz—6=3(x—-2)+2(>y—3)
v
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Exercise

Find the tangent plane of a function f(x, y) = xy at the point

(2,3).
Az—6=x(x—2)+yly—-23)
Bz—-6=y(x—2)+x(y—3)
Cz—6=2(x—2)+3(y—3)
Dz—6=3(x—-2)+2(>y—3)

D v
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Exercise

Find the tangent plane of a function f(x, y) = xy at the point

(2,3).
Az—6=x(x—2)+yly—-23)
Bz—-6=y(x—2)+x(y—3)
Cz—6=2(x—2)+3(y—3)
Dz—6=3(x—-2)+2(>y—3)

D v

Exercise |

Find the tangent plane of a function
f(x,y,z,u) = In(xy + z2 — u) at the pointa = (1,0,2, 3).

y
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Exercise |

Find the tangent plane of a function f(x, y) = xy at the point

(2,3).
Az—6=x(x—2)+yly—-23)
Bz—-6=y(x—2)+x(y—3)
Cz—6=2(x—2)+3(y—3)
Dz—6=3(x—-2)+2(>y—3)

D v

Exercise I

Find the tangent plane of a function
f(x,y,z,u) = In(xy + z2 — u) at the pointa = (1,0,2, 3).

v—=0=0x—1)+1(y—0)+4(z—2) — 1(u—3)

v=y+4z—u—->5

y

Mathematics II - Functions of multiple variables 68/122



Theorem 11 (tangent hyperplane)
Let G C R" be an open set, a € G, f € C'(G), and let T be a
function whose graph is the tangent hyperplane of the function

f at the point [a,f(a)]. Then

) - T
’l‘_m plx,a) 0 )
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Theorem 11 (tangent hyperplane)

Let G C R" be an open set, a € G, f € C'(G), and let T be a
function whose graph is the tangent hyperplane of the function

f at the point [a,f(a)]. Then

) - T
’l‘_m plx,a) 0 )

Theorem 12

Let G C R" be an open non-empty set and f € C'(G). Then f is

continuous on G.
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Theorem 11 (tangent hyperplane)

Let G C R" be an open set, a € G, f € C'(G), and let T be a
function whose graph is the tangent hyperplane of the function

f at the point [a,f(a)]. Then

) - T
’l‘_m plx,a) 0

4
Theorem 12

Let G C R" be an open non-empty set and f € C'(G). Then f is
continuous on G.

Existence of partial derivatives at a does not imply continuity at

a.
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|

Theorem 13 (derivative of a composite function; chain rule)

Letr,s € Nandlet G C R*, H C R" be open sets. Let

p1;--,pr € CG), f € C'(H) and [p1(x), ..., ,(x)] € H for
each x € G. Then the compound function F: G — R defined by

F(x) :f(sol(x)JSOZ(x)? 0.0 '790r(x)>7 x €G,

is of the class C' on G. Leta € G and b = [p,(a), . .., ¢, (a)).
Then for eachj € {1,...,s} we have

OF of = dpi
5@ = Z 5y, 0) e @
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Remark

Let f(x,y,z) be a differentiable function, let x = g;(u, v),
y = g (u,v), z= gs3(u,v), where g, g,, g3 are differentiable
functions. Then for h(u,v) = f(g1(u,v), g2(u,v), g3(u,v)) we

have
Oh 8f8x+6f8y+8faz
Ou  OxOu  Oydu Oz0u
Oh 8f8x+8f6y+@fﬁz
Oy Oxdv | Oydv  9z0v

de di,X .

¢  Jd@

http://mathinsight.org/media/image/image/
chain_rule_geometric_objects.png
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Exercise

Let h(u,v) = sinx cosy, where x = (1 — v)* and y = u> — V"

Find Oh/0Ou a Oh/0v.
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Exercise

Let h(u,v) = sinx cosy, where x = (1 — v)* and y = u> — V"

Find Oh/0Ou a Oh/0v.

? = cos(u—v)* cos(u> —v*)2(u—v) —sin(u—v)* sin(u* —*)2u
u

% = — cos(u—v)? cos(u*—v?*)2(u—v)+sin(u—v)? sin(u*—*)2v

y
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Let h(u,v) = xy, where x = ucosv and y = usin v. Then for
Oh/0v we have
Oh
A —=0
v
Oh
B — = u?cos(2
5y — ! cos(2v)
h
C g— = —uw’sin*vcosv + u’ sinvcos® v
v
D Something else.
4
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Exercise

Let h(u,v) = xy, where x = ucosv and y = usin v. Then for
Oh/0v we have
Oh
Ny
v
Oh
B — =u’cos(2
5y — ! cos(2v)
h
C g— = —uw’sin*vcosv + u’ sinvcos® v
v
D Something else.
B 4
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V.4. Implicit function theorem and Lagrange

multiplier theorem
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V.4. Implicit function theorem and Lagrange
multiplier theorem
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V.4. Implicit function theorem and Lagrange
multiplier theorem
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fly) =+ —1— w2
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Theorem 14 (implicit function)

Let G C R"™! be an open set, F: G — R, andx € R", y € R
such that [X,y]| € G. Suppose that

(i) F e CYG),
(i) F(x y) =0,
oF
(i) Z5 &) #0.
Then there exist a neighbourhood U C R" of the point X and a
neighbourhood V C R of the point y such that for eachx € U

there exists a unique y € V satisfying F(x,y) = 0. If we denote
this y by (x), then the resulting function o is in C'(U) and

forx e U,je{l,... n}.

y
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Theorem

Let G C R"™! be an open set, F: G — R, andx € R", y € R
such that [X,y]| € G. Suppose that

(i) F € CY(G),
.. OF _ _
(iii) a—y(x,y) #0.

Then there exists a neighbourhood . ..

Exercise

Consider these exercises. Which condition is NOT satisfied?

AxX*+y =4at(2,0)

B y—3siny=xat (m,m)

C sin(xy) +x* +y* =1 at
(0,3)

D |x| + e =1at(0,0)
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Theorem

Let G C R"™! be an open set, F: G — R, andx € R", y € R
such that [X,y]| € G. Suppose that

(i) F € CY(G),
.. OF _ _
(iii) a—y(x,y) #0.

Then there exists a neighbourhood . ..

Exercise

Consider these exercises. Which condition is NOT satisfied?

A R4y =4at(2,0) Aiii,
B y—jisiny=xat(m,m) Ballisok,
C sin(xy) +x* +y*=1at Cii,

0,3) Di

D |x| + e =1at(0,0)
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Let G C R" be an open set, a € G, and f € C'(G). The gradient
of f at the point a is the vector

A O of
o a—xZ(a) axn()

Exercise

Find the gradient of f(x, y, z) = y cos®(x*z) at the point [2, 1, 0]:

Vf(a) =

A (1/5,0,1/5) C (0,1,0)
B (0,1,1/5) D (1,0,1/2)
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Let G C R" be an open set, a € G, and f € C'(G). The gradient
of f at the point a is the vector

A O of
o a—xZ(a) axn()

Vf(a) =

Exercise
Find the gradient of f(x, y, z) = y cos®(x*z) at the point [2, 1, 0]:

A (1/5,0,1/5) C (0,1,0)
B (0,1,1/5) D (1,0,1/2)
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Remark

The gradient of f at a points in the direction of steepest growth
of f at a. At every point, the gradient is perpendicular to the

contour of f. )

The bicyclist is on a trip up the hill, which can be described as
f(x,y) =25 — 2x* — 4y>. When she is at the point [1, 1, 19], it
starts to rain, so she decides to go down the hill as steeply as
possible (so that she is down quickly). In what direction will
she start her decline?

A (—4x; —8y) C (—4;,-8)
B (4x;8y) D (4;8)

y
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Remark

The gradient of f at a points in the direction of steepest growth
of f at a. At every point, the gradient is perpendicular to the

contour of f. )

The bicyclist is on a trip up the hill, which can be described as
f(x,y) =25 — 2x* — 4y>. When she is at the point [1, 1, 19], it
starts to rain, so she decides to go down the hill as steeply as
possible (so that she is down quickly). In what direction will
she start her decline?

A (—4x; —8y) C (—4;,-8)
B (4x;8y) D (4;8)

D

y
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Let M C R",x € M, and let f be a function defined at least on
M (i.e. M C Dy). We say that f attains at the point x its

e maximum on M if f(y) < f(x) foreveryy € M,

@ local maximum with respect to M if there exists 6 > 0
such that f(y) < f(x) foreveryy € B(x,d) N M,

@ strict local maximum with respect to M if there exists
d > 0 such that f(y) < f(x) for every

y € (B(x,0) \ {x}) N M.

The notions of a minimum, a local minimum, and a strict local
minimum with respect to M are defined in analogous way.
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 Definiion ...
Let M C R",x € M, and let f be a function defined at least on
M (i.e. M C Dy). We say that f attains at the point x its

e maximum on M if f(y) < f(x) foreveryy € M,

@ local maximum with respect to M if there exists 6 > 0
such that f(y) < f(x) foreveryy € B(x,d) N M,

@ strict local maximum with respect to M if there exists
0 > O such that f(y) < f(x) for every
y € (B(x,0) \ {x}) N M.

The notions of a minimum, a local minimum, and a strict local
minimum with respect to M are defined in analogous way.

Definition

We say that a function f attains a local maximum at a point
x € R"if x is a local maximum with respect to some
neighbourhood of x.
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Theorem 15 (attaining extrema)

Let M C R" be a non-empty compact set andf: M — R a
function continuous on M. Then f attains its maximum and

minimum on M. )

Corollary

Let M C R" be a non-empty compact set andf: M — R a
continuous function on M. Then f is bounded on M.
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Theorem 16 (necessary condition of the existence of local
extremum) |

Let G C R" be an open set, a € G, and suppose that a function
f: G — R has a local extremum (i.e. a local maximum or a
local minimum) at the point a. Then for each j € {1,... n} the
following holds:
)
The partial derivative o (a) either does not exist or it is equal
x.
fo zero. ! )
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Let G C R" be an open set,a € G, f € C'(G), and Vf(a) = o.
Then the point a is called a stationary (or critical) point of the
function f.
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Example

flx,y)=e*™
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fx,y)=x+2y—4
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flx,y) =/x2+y?
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Exercise
|. Consider the points A, B, C, D, E. Find the critical points.
2. Which of these points are probably points of

2.1 local maximum,
2.2 local minimum,
2.3 saddle point?

.

O

/_\ 1~ m

Figure: Calculus, 6th Edition; Hughes—Hallett, Gleason, McCallum et
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Exercise
|. Consider the points A, B, C, D, E. Find the critical points.
2. Which of these points are probably points of

2.1 local maximum - B
2.2 local minimum - E, G
2.3 saddle point - C, D, F

.

O

/_\ 1~ m

Figure: Calculus, 6th Edition; Hughes—Hallett, Gleason, McCallum et
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Definiion
Let G C R"beanopenset,f: G— R,i,j€ {l,...,n}, and
suppose that g—)’;(x) exists finite for each x € G. Then the partial
derivative of the second order of the function f according to ith
and jth variable at a pointa € G is defined by

o (%)
8xi8xj (a) N 67xj (a)

o
If i = j then we use the notation 3 sz‘( ).

A

Similarly we define higher order partial derivatives.

Exercise

Find the second partial derivatives of the function
flx,y) = x> +xy+ .
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P
Find 8x_gy’ if f(x,y) =¥
A e?
B ye¥
C x*e™

D e?(xy+1)
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Find 2L if f(x,y) = ¢”
A e?
B ye¥
C x*e™
D e?(xy+1)
D
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Exercise

Find 2L if f(x,y) = ¢”
A e?
B ye¥
C x*e™

D e?(xy+1)

Exercise

Find 2L if f(x,y) = e”
A e?
B ye¥
C x%e”

D e¥(xy+1)

|v
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P
Find 8x_gy’ if f(x,y) =¥
A e?
B ye¥
C x*e™

D e?(xy+1)

Exercise

. 82f . Xy
Find 557, if f(x, y) = ¢*
A e?
B ye¥
C x%e”
D e®(xy+1)
D

|v




In general it is not true that i (a) = o -(a).

0x;0x;
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In general it is not true that 5= gx (a) = 8?2; (a).
LjOX|

Theorem 17 (interchanging of partial derivatives)
Leti,j€{l,...,n}and suppose that a function f has both
partial derlvatlves 36 gx and ax a on a neighbourhood of a
point a € R" and that these functzons are continuous at a. Then

Of o) = Of
8x,-8xj B 8xj8x,-

|

(@).
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Exercise

You follow the red route. Where is the highest point of your
trip?

wmq

Zlasi202as
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(Exercise
Where is the minimum and maximum of the function
f(x,y) =y along the curve?

https://www.cpp.edu/conceptests/
question—-library/mat214.shtml

y
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(Exercise
Where is the minimum and maximum of the function
f(x,y) =y along the curve?

https://www.cpp.edu/conceptests/
question—-library/mat214.shtml min: A, max B

y
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Theorem 18 (Lagrange multiplier theorem)

Let G C R? be an open set, f, g € C'(G),
M = {[x,y] € G; g(x,y) =0} and let [x,y] € M be a point of
local extremum of f with respect to M. Then at least one of the
following conditions holds:

(1) Vg(x,y) =o,

(1) there exists A € R satisfying

(‘3f~~ g
V(5.5 + 2% 53 =0
T E5) A 5) =0 |

The number A is called the Lagrange multiplier. I
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V.5. Concave and quasiconcave functions
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a=1-a+0-b=a+0-(b—a)
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b=0-a+1-b=a+1-(b—a)
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(b —a)

N =
N =
N =
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(b —a)

=
AW
W
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tra+(1—t)-b=a+(1—1)-(b—a)

\
\
\
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Definition
Let M C R". We say that M is convex if

Vx,ye MVt e [0,1]: tx + (1 —t)y € M.

Exercise

Find convex sets

0 0

\///E

.
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Definition
Let M C R". We say that M is convex if

Vx,ye MVt e [0,1]: tx + (1 —t)y € M.

Exercise

Find convex sets

0 0

\///E

A, B

.
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Exercise

Find convex sets

A

' |
L/
L

¢
o
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Exercise

Find convex sets
A
C
' | ‘
/
E
D

A,B,C,D
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Concave and convex functions

¥i ¥i

convax

upward

function y=i{x)

[ : I S N S : I
0 a x Xy X, b X 0 a x Xy ¥, b x

https://math24.net/convex—-functions.html
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Concave and convex functions

Definition

Let M C R” be a convex set and f a function defined on M. We
say that f is
@ concave on M if

Va,b € MVt € [0,1]: f(ta+ (1—1)b) > tf(a)+ (1 —1)f (D),

o strictly concave on M if

Va,b € M,a #bVt € (0,1):
flta+ (1 —1)b) > tf(a) + (1 — 1)f (b).

v

By changing the inequalities to the opposite we obtain a
definition of a convex and a strictly convex function.

-

Mathematics II - Functions of multiple variables 1057122




Mathematics II - Functions of multiple variables 106/122



(Remark

A function f is convex (strictly convex) if and only if the
function —f is concave (strictly concave).

All the theorems in this section are formulated for concave and
strictly concave functions. They have obvious analogies that
hold for convex and strictly convex functions.
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o If a function f is strictly concave on M, then it is concave
on M.

o Let f be a concave function on M. Then f is strictly
concave on M if and only if the graph of f “does not
contain a segment”, i.e.

—(3a,b € M,a #b, vVt € [0,1]:
flta+ (1 —0)b) = if(a) + (1 - 1)f (b))

.

2 VY ; i
‘ ORI
| o
U .
IRO0000AT Y |

Mathematics II - Functions of multiple variables 1087122



Theorem 19

Let f be a function concave on an open convex set G C R".
Then f is continuous on G.
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¥ ¥a

COMVex Convex
downward ; upward
function H function

0 a ¥ b % 0 a ¥ b

Figure: https://math24.net/convex-functions.html
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Theorem 20 (characterisation of concave functions of the class

Ch
Let G C R" be a convex open set and f € C'(G). Then the
function f is concave on G if and only if

Vx,y € G: f(y) <flx Zax )k
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Theorem 20 (characterisation of concave functions of the class

)

Let G C R" be a convex open set and f € C'(G). Then the
function f is concave on G if and only if

Vx,y € G: f(y) <flx Zax )k

Let G C R" be a convex open set, f € C'(G), and leta € G be a
critical point of f (i.e. Vf(a) = o). If f is concave on G, then a
is a maximum point of f on G. If f is strictly concave on G, then
a is a strict maximum point of f on G.
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Theorem 22 (level sets of concave functions)

Let f be a function concave on a convex set M C R". Then for
each a € R the set Q, = {x € M; f(x) > a} is convex.




Definition |

Let M C R” be a convex set and let f be a function defined on
M. We say that f is

@ quasiconcave on M if
Va,b € MVt € [0,1]: f(ta + (1 — t)b) > min{f(a),f(b)},

@ strictly quasiconcave on M if

Va,b € M,a #b, Vt € (0,1):
f(ta+ (1 —1)b) > min{f(a),f(b)}.

|

Remark

By changing the inequalities to the opposite and changing the
minimum to a maximum we obtain a definition of a
quasiconvex and a strictly quasiconvex function.

.
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Not quasiconcave
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(Remark

A function f is quasiconvex (strictly quasiconvex) if and only if
the function —f is quasiconcave (strictly quasiconcave).

All the theorems in this section are formulated for quasiconcave
and strictly quasiconcave functions. They have obvious
analogies that hold for quasiconvex and strictly quasiconvex
functions.
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Remark

A function f is quasiconvex (strictly quasiconvex) if and only if
the function —f is quasiconcave (strictly quasiconcave).

All the theorems in this section are formulated for quasiconcave
and strictly quasiconcave functions. They have obvious
analogies that hold for quasiconvex and strictly quasiconvex
functions.

A

Remark

o If a function f is strictly quasiconcave on M, then it is
quasiconcave on M.

o Let f be a quasiconcave function on M. Then f is strictly
quasiconcave on M if and only if the graph of f “does not
contain a horizontal segment”, i.e.

—~(3a,b e M,a#b, Vi € [0,1]: f(ta+ (1 —1)b) = f(a)).

4
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Let M C R” be a convex set and f a function defined on M.
o Iff is concave on M, then f is quasiconcave on M.

o If f is strictly concave on M, then f is strictly quasiconcave
onM.
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Let M C R” be a convex set and f a function defined on M.
o Iff is concave on M, then f is quasiconcave on M.

o If f is strictly concave on M, then f is strictly quasiconcave
onM.

Theorem 23 (characterization of quasiconcave functions using

level sets)

Let M C R" be a convex set and f a function defined on M.
Then f is quasiconcave on M if and only if for each o € R the
set Q, = {x € M; f(x) > a} is convex.
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Exercise
Find quasiconcave functions:




Exercise
Find quasiconcave functions:




Theorem 24 (a uniqueness of an extremum)

Let f be a strictly quasiconcave function on a convex set
M C R". Then there exists at most one point of maximum of f.
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Theorem 24 (a uniqueness of an extremum)

Let f be a strictly quasiconcave function on a convex set
M C R". Then there exists at most one point of maximum of f.

Corollary

Let M C R" be a convex, closed, bounded and nonempty set
and f a continuous and strictly quasiconcave function on M.
Then f attains its maximum at exactly one point.
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Theorem 25 (sufficient condition for concave and convex
functions in R?)

Let G C R? be convex and f € C*(G).

2
If%é ,82<Oandax§%c (aigy) > 0 hold on G, then f

is concave on G.
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Theorem 25 (sufficient condition for concave and convex
functions in R?)

Let G C R? be convex and f € C*(G).

2
I35 <058 <0 and 55 5% — (#5) = 0hold on G, then f
is concave on G.

2
0 0*f 02 o>
5% >0, %8>0 and 35 5% — (24) > 0hold on G, then f

=]

is convex on G.

Exercise

Decide if the following functions are convex or concave on R
A flxy) =2+
B f(x,y) = —x* —»*
C flx,y)=—x*+y

4
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Theorem 25 (sufficient condition for concave and convex
functions in R?)

Let G C R? be convex and f € C*(G).

%<0, % <0,and 25 24 — (87)220hddmu1ﬂwmf
is concave on G. 5

5% >0, %8>0 and 35 5% — (24) > 0hold on G, then f
is convex on G.

%
~

Exercise

Decide if the following functions are convex or concave on R
A flxy) =2+
B f(x,y) = —x* —»*
C flx,y)=—x*+y

A convex, B concave, C neither convex, nor concave

4
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Good luck 1n the exam period!
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