Mathematics II - Functions of multiple variables

21/22

Mathematics II - Functions of multiple variables 1/122

V.1. \mathbb{R}^n as a linear and metric space

Definition

The set \mathbb{R}^n , $n \in \mathbb{N}$, is the set of all ordered *n*-tuples of real numbers, i.e.

$$\mathbb{R}^n = \{ [x_1, \ldots, x_n] : x_1, \ldots, x_n \in \mathbb{R} \}.$$

https://en.wikipedia.org/wiki/File: Cartesian-coordinate-system.svg

Exercise (2D)

Sketch the following points and connect them.

$$(4,0), (0,3), (-4,0), (-6,2), (-5,0), (-6,-2), (-4,0), (-6,-2), (-4,0), (-6,-2), (-4,0), (-6,-2), (-$$

$$(0, -2), (4, 0),$$

and add one point:

(2, 1).

https: //www.geogebra.org/calculator/bbsahf43

Exercise (3D)

https://www.geogebra.org/classic/ydu8a7t7

Which picture(s) plots the point (2, 1, 1) correctly?

https://www.cpp.edu/conceptests/question-library/
mat214.shtml

Which picture(s) plots the point (2, 1, 1) correctly?

A, C

(ロ) (同) (三) (三) (三) (○) (○)

V.1. \mathbb{R}^n as a linear and metric space

Definition

For
$$\mathbf{x} = [x_1, \dots, x_n] \in \mathbb{R}^n$$
, $\mathbf{y} = [y_1, \dots, y_n] \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ we set

$$\boldsymbol{x} + \boldsymbol{y} = [x_1 + y_1, \dots, x_n + y_n], \qquad \alpha \boldsymbol{x} = [\alpha x_1, \dots, \alpha x_n].$$

Further, we denote
$$\boldsymbol{o} = [0, \dots, 0]$$
 – the origin.

Exercise

Find

A
$$(1, 2, 3, 4) + (-2, 0, 3, -1)$$

B $-2(1, 2, 3, 4)$

V.1. \mathbb{R}^n as a linear and metric space

Definition

For
$$\mathbf{x} = [x_1, \dots, x_n] \in \mathbb{R}^n$$
, $\mathbf{y} = [y_1, \dots, y_n] \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ we set

$$\boldsymbol{x} + \boldsymbol{y} = [x_1 + y_1, \dots, x_n + y_n], \qquad \alpha \boldsymbol{x} = [\alpha x_1, \dots, \alpha x_n].$$

Further, we denote
$$\boldsymbol{o} = [0, \dots, 0]$$
 – the origin.

Exercise

Find A (1,2,3,4) + (-2,0,3,-1)B -2(1,2,3,4)

The Euclidean metric (distance) on \mathbb{R}^n is the function $\rho \colon \mathbb{R}^n \times \mathbb{R}^n \to [0, +\infty)$ defined by

$$\rho(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

The number $\rho(\mathbf{x}, \mathbf{y})$ is called the distance of the point \mathbf{x} from the point \mathbf{y} .

Find the distance of the points

https://www.summitlearning.org/guest/
focusareas/862919

B
$$(1, -2, 3), (0, -3, -2)$$

C $(-1, 0, 3, 2), (1, -1, 2, -3)$

Find the distance of the points

C
$$(-1, 0, 3, 2), (1, -1, 2, -3)$$

 $\sqrt{52}, \sqrt{27}, \sqrt{31}$

A $\rho((1,2),(1,2))$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣んで

Theorem 1 (properties of the Euclidean metric)

The Euclidean metric ρ *has the following properties:*

Let $\mathbf{x} \in \mathbb{R}^n$, $r \in \mathbb{R}$, r > 0. The set $B(\mathbf{x}, r)$ defined by

$$B(\boldsymbol{x},r) = \{ \boldsymbol{y} \in \mathbb{R}^n; \
ho(\boldsymbol{x}, \boldsymbol{y}) < r \}$$

is called an open ball with radius r centred at x or the neighbourhood of x.

http://www.science4all.org/article/topology/

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

https://commons. wikimedia.org/wiki/File: 4dSphere.jpg

https://en.wikipedia.
 org/wiki/N-sphere

https: //www.tinyepiphany.com/ 2011/12/ visualizing-4-dimensions. html

https://cs.wikipedia. org/wiki/%C4%8Ctvrt%C3% BD_rozm%C4%9Br

Let $M \subset \mathbb{R}^n$. We say that $x \in \mathbb{R}^n$ is an interior point of M, if there exists r > 0 such that $B(x, r) \subset M$.

The set of all interior points of M is called the interior of M and is denoted by Int M.

The set $M \subset \mathbb{R}^n$ is open in \mathbb{R}^n , if each point of M is an interior point of M, i.e. if M = Int M.

Find the interior

Solution

Theorem 2 (properties of open sets)

- (i) The empty set and \mathbb{R}^n are open in \mathbb{R}^n .
- (ii) Let $G_{\alpha} \subset \mathbb{R}^n$, $\alpha \in A \neq \emptyset$, be open in \mathbb{R}^n . Then $\bigcup_{\alpha \in A} G_{\alpha}$ is open in \mathbb{R}^n .
- (iii) Let $G_i \subset \mathbb{R}^n$, i = 1, ..., m, be open in \mathbb{R}^n . Then $\bigcap_{i=1}^m G_i$ is open in \mathbb{R}^n .

Remark

(ii) A union of an arbitrary system of open sets is an open set.(iii) An intersection of a finitely many open sets is an open set.

Find the interior

1.
$$\{[x, y] \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$$

2. $\{[x, y] \in \mathbb{R}^2 : 1 \le x < 4, |y| \ge 3\}$
3. $\{[x, y] \in \mathbb{R}^2 : x^2 + 3y^2 \ge 1, x + y > 2\}$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 の��

Find the interior

1.
$$\{[x, y] \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$$

2. $\{[x, y] \in \mathbb{R}^2 : 1 \le x < 4, |y| \ge 3\}$
3. $\{[x, y] \in \mathbb{R}^2 : x^2 + 3y^2 \ge 1, x + y > 2\}$
1. $\{[x, y] \in \mathbb{R}^2 : x^2 + y^2 < 4\}$
2. $\{[x, y] \in \mathbb{R}^2 : 1 < x < 4, |y| > 3\}$
3. $\{[x, y] \in \mathbb{R}^2 : x^2 + 3y^2 > 1, x + y > 2\}$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

Let $M \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$. We say that x is a boundary point of M if for each r > 0

 $B(\mathbf{x},r) \cap M \neq \emptyset$ and $B(\mathbf{x},r) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$.

The boundary of M is the set of all boundary points of M (notation bd M).

The closure of *M* is the set $M \cup \operatorname{bd} M$ (notation \overline{M}).

A set $M \subset \mathbb{R}^n$ is said to be closed in \mathbb{R}^n if it contains all its boundary points, i.e. if $\operatorname{bd} M \subset M$, or in other words if $\overline{M} = M$.

The closure of *M* is the set $M \cup \operatorname{bd} M$ (notation \overline{M}).

A set $M \subset \mathbb{R}^n$ is said to be closed in \mathbb{R}^n if it contains all its boundary points, i.e. if $\operatorname{bd} M \subset M$, or in other words if $\overline{M} = M$.

Exercise

Decide, if the set is closed or open, find the interior, the boundary, the closure.

$$M = \{ [x, y] \in \mathbb{R}^2 : 1 < x \le 2, 3 \le y \le 5 \}.$$

The closure of *M* is the set $M \cup \operatorname{bd} M$ (notation \overline{M}).

A set $M \subset \mathbb{R}^n$ is said to be closed in \mathbb{R}^n if it contains all its boundary points, i.e. if $\operatorname{bd} M \subset M$, or in other words if $\overline{M} = M$.

Exercise

Decide, if the set is closed or open, find the interior, the boundary, the closure.

$$M = \{ [x, y] \in \mathbb{R}^2 : 1 < x \le 2, 3 \le y \le 5 \}.$$

Exercise

Find the boundary

1.
$$\{[x, y] \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$$

2. $\{[x, y] \in \mathbb{R}^2 : 1 \le x < 4, |y| \ge 3\}$
3. $\{[x, y] \in \mathbb{R}^2 : x^2 + 3y^2 \ge 1, x + y \ge 2\}$

Let $x^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and $x \in \mathbb{R}^n$. We say that a sequence $\{x^j\}_{j=1}^{\infty}$ converges to x, if

$$\lim_{j\to\infty}\rho(\boldsymbol{x},\boldsymbol{x}^j)=0.$$

The vector \mathbf{x} is called the limit of the sequence $\{\mathbf{x}^j\}_{i=1}^{\infty}$.

Let $x^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and $x \in \mathbb{R}^n$. We say that a sequence $\{x^j\}_{j=1}^{\infty}$ converges to x, if

$$\lim_{j\to\infty}\rho(\boldsymbol{x},\boldsymbol{x}^j)=0.$$

The vector x is called the limit of the sequence $\{x^i\}_{j=1}^{\infty}$. The sequence $\{y^i\}_{j=1}^{\infty}$ of points in \mathbb{R}^n is called convergent if there exists $y \in \mathbb{R}^n$ such that $\{y^j\}_{j=1}^{\infty}$ converges to y.

Let $x^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and $x \in \mathbb{R}^n$. We say that a sequence $\{x^j\}_{j=1}^{\infty}$ converges to x, if

$$\lim_{j\to\infty}\rho(\boldsymbol{x},\boldsymbol{x}^j)=0.$$

The vector x is called the limit of the sequence $\{x^i\}_{j=1}^{\infty}$. The sequence $\{y^i\}_{j=1}^{\infty}$ of points in \mathbb{R}^n is called convergent if there exists $y \in \mathbb{R}^n$ such that $\{y^j\}_{j=1}^{\infty}$ converges to y.

Exercise

$$\lim_{j \to \infty} \left(\frac{1}{j}, \frac{2j+1}{j}\right)$$

Theorem 3 (convergence is coordinatewise)

Let $\mathbf{x}^{j} \in \mathbb{R}^{n}$ for each $j \in \mathbb{N}$ and let $\mathbf{x} \in \mathbb{R}^{n}$. The sequence $\{\mathbf{x}^{j}\}_{j=1}^{\infty}$ converges to \mathbf{x} if and only if for each $i \in \{1, ..., n\}$ the sequence of real numbers $\{x_{i}^{j}\}_{j=1}^{\infty}$ converges to the real number x_{i} .

Remark

Theorem 3 says that the convergence in the space \mathbb{R}^n is the same as the "coordinatewise" convergence. It follows that a sequence $\{x^j\}_{j=1}^{\infty}$ has at most one limit. If it exists, then we denote it by $\lim_{j\to\infty} x^j$. Sometimes we also write simply $x^j \to x$ instead of $\lim_{j\to\infty} x^j = x$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

$$\lim_{j \to \infty} \left(1 + \frac{1}{j}, 3 - \frac{2}{j^2}, e^{-j} \right)$$
$$\lim_{j \to \infty} \left((-1)^j, \arctan(j^3) \right)$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▶ ▲□▶

$$\lim_{j \to \infty} \left(1 + \frac{1}{j}, 3 - \frac{2}{j^2}, e^{-j} \right)$$
$$\lim_{j \to \infty} \left((-1)^j, \arctan(j^3) \right)$$

 $(1, 3, 0), \not\exists$
Theorem 4 (characterisation of closed sets)

Let $M \subset \mathbb{R}^n$. Then the following statements are equivalent:

- (i) *M* is closed in \mathbb{R}^n .
- (ii) $\mathbb{R}^n \setminus M$ is open in \mathbb{R}^n .
- (iii) Any $\mathbf{x} \in \mathbb{R}^n$ which is a limit of a sequence from M belongs to M.

Theorem 4 (characterisation of closed sets)

Let $M \subset \mathbb{R}^n$. Then the following statements are equivalent:

- (i) *M* is closed in \mathbb{R}^n .
- (ii) $\mathbb{R}^n \setminus M$ is open in \mathbb{R}^n .
- (iii) Any $\mathbf{x} \in \mathbb{R}^n$ which is a limit of a sequence from M belongs to M.

Exercise

Decide, if the sets are closed or open (or nothing)

(0, 1) in ℝ
 (0, ∞) in ℝ
 (-3, 2] in ℝ

4. $(-\infty, 2]$ in \mathbb{R} 5. $x^2 + y^2 < 4$ in \mathbb{R}^2 6. $x^2 + y^2 \ge 2$ in \mathbb{R}^2

Theorem 4 (characterisation of closed sets)

Let $M \subset \mathbb{R}^n$. Then the following statements are equivalent:

- (i) *M* is closed in \mathbb{R}^n .
- (ii) $\mathbb{R}^n \setminus M$ is open in \mathbb{R}^n .
- (iii) Any $\mathbf{x} \in \mathbb{R}^n$ which is a limit of a sequence from M belongs to M.

Exercise

Decide, if the sets are closed or open (or nothing)

- 1. (0,1) in \mathbb{R} 4. $(-\infty,2]$ in \mathbb{R}
- 2. $(0,\infty)$ in \mathbb{R} 5. $x^2 + y^2 <$
- 3. (-3, 2] in \mathbb{R}

- 5. $x^2 + y^2 < 4$ in \mathbb{R}^2 6. $x^2 + y^2 \ge 2$ in \mathbb{R}^2
- 1. open3. nothing5. open2. open4. closed6. closed

Theorem 5 (properties of closed sets)

- (i) The empty set and the whole space \mathbb{R}^n are closed in \mathbb{R}^n .
- (ii) Let $F_{\alpha} \subset \mathbb{R}^{n}$, $\alpha \in A \neq \emptyset$, be closed in \mathbb{R}^{n} . Then $\bigcap_{\alpha \in A} F_{\alpha}$ is closed in \mathbb{R}^{n} .
- (iii) Let $F_i \subset \mathbb{R}^n$, i = 1, ..., m, be closed in \mathbb{R}^n . Then $\bigcup_{i=1}^m F_i$ is closed in \mathbb{R}^n .

Remark

(ii) An intersection of an arbitrary system of closed sets is closed.

(iii) A union of finitely many closed sets is closed.

We say that the set $M \subset \mathbb{R}^n$ is bounded if there exists r > 0such that $M \subset B(o, r)$. A sequence of points in \mathbb{R}^n is bounded if the set of its members is bounded.

We say that the set $M \subset \mathbb{R}^n$ is bounded if there exists r > 0such that $M \subset B(o, r)$. A sequence of points in \mathbb{R}^n is bounded if the set of its members is bounded.

Theorem 6

A set $M \subset \mathbb{R}^n$ is bounded if and only if its closure \overline{M} is bounded.

Find bounded sets

A
$$x \in [-1, 3], 0 < y \le 100$$

B $x^2 + y^2 + z^2 \le 5$
C $x - y < 6$
D $|x + y| < 6$

Find bounded sets

A
$$x \in [-1, 3], 0 < y \le 100$$

B $x^2 + y^2 + z^2 \le 5$
C $x - y < 6$
D $|x + y| < 6$
A, B, D

We say that a set $M \subset \mathbb{R}^n$ is compact if for each sequence of elements of M there exists a convergent subsequence with a limit in M.

We say that a set $M \subset \mathbb{R}^n$ is compact if for each sequence of elements of M there exists a convergent subsequence with a limit in M.

Theorem 7 (characterisation of compact subsets of \mathbb{R}^n)

The set $M \subset \mathbb{R}^n$ is compact if and only if M is bounded and closed.

We say that a set $M \subset \mathbb{R}^n$ is compact if for each sequence of elements of M there exists a convergent subsequence with a limit in M.

Theorem 7 (characterisation of compact subsets of \mathbb{R}^n)

The set $M \subset \mathbb{R}^n$ is compact if and only if M is bounded and closed.

Exercise

Find compact sets

A (0, 1)
B
$$[1, 2] \times [-1, -3]$$

C $1 < x^2 + (y - 3)^2 + z^2 \le 4$
D $xyz \le 1$

We say that a set $M \subset \mathbb{R}^n$ is compact if for each sequence of elements of M there exists a convergent subsequence with a limit in M.

Theorem 7 (characterisation of compact subsets of \mathbb{R}^n)

The set $M \subset \mathbb{R}^n$ is compact if and only if M is bounded and closed.

Exercise

B

Find compact sets

A (0, 1)
B
$$[1, 2] \times [-1, -3]$$

C $1 < x^2 + (y - 3)^2 + z^2 \le 4$
D $xyz \le 1$

Map game

We define a function of two variables as a mapping $f : M \to \mathbb{R}$, where $M \subset \mathbb{R}^2$.

Example

$$\begin{split} f(x,y) &= x^2 + y^2, & [x,y] \in \mathbb{R}^2 \\ f(x,y) &= \arccos y \, \cdot \arcsin x, & D_f = [-1,1] \times [-1,1] \\ f(x,y) &= \ln(xy), & D_f = \{(x > 0 \land y > 0) \lor (x < 0 \land y < 0)\} \\ f(x,y) &= x^3, & [x,y] \in \mathbb{R}^2 \\ f(x,y) &= 5, & [x,y] \in \mathbb{R}^2 \end{split}$$

イロト イポト イヨト イヨト 二百

Example

$$f(x,y) = \frac{x^2}{x^2 + y^2}$$

$$f(x, y) = \sin x \cos y$$

Example

$$f(x,y) = \sqrt{x^2 + y^2}$$

$$f(x, y) = \sqrt{4 - (x^2 + y^2)}$$

Find the graph for the contourlines

http://www.cpp.edu/~conceptests/question-library/
mat214.shtml

Find the graph for the contourlines

http://www.cpp.edu/~conceptests/question-library/
mat214.shtml
A

Find the contourlines for the graph.

В

Find the contourlines for the graph.

Connect the contourlines and the functions

Figure: Hughes Hallett et al c 2009, John Wiley & Sons A $-x^2 + y^2$ C $-x^2 - y^2$ B $x^2 - y^2$ D $x^2 + y^2$

Connect the contourlines and the functions

Figure: Hughes Hallett et al c 2009, John Wiley & Sons A $-x^2 + y^2$ C $-x^2 - y^2$ B $x^2 - y^2$ D $x^2 + y^2$

I D, II B, III C, IV A

We define a function of multiple variables as a mapping $\int M dx = \sum_{n=1}^{\infty} m^n dx$

 $f: M \to \mathbb{R}$, where $M \subset \mathbb{R}^n$.

Example

$$f(x) = x^3,$$
 $x \in \mathbb{R}$
 $f(x, y) = y \sin x,$ $[x, y] \in \mathbb{R}^2$
 $f(x, y, z) = x^2 + y^2 z,$ $[x, y, z] \in \mathbb{R}^3$
 $f(x, y, z) = e^{xy} \arcsin z,$ $D_f = \mathbb{R} \times \mathbb{R} \times [-1, 1]$
 $f(x, y, z, u) = 5,$ $[x, y, z] \in \mathbb{R}^3$
 $f(x, y, z, u) = xe^{yz} \ln u,$ $D_f = \{[x, y, z, u] \in \mathbb{R}^4 : u > 0\}$

Example

- Length of the day
- Length of your shadow.
- Compound interest.
- Storm radar.
- Drivers license tests.
- Google ads.

https://math.stackexchange.com/questions/703443/ best-way-to-plot-a-4-dimensional-meshgrid https://www.mathworks.com/matlabcentral/answers/ 224648-plotting-4d-with-3-vectors-and-1-matrix

Note: Mathematica animation

We say that a function f of n variables has a limit at a point $a \in \mathbb{R}^n$ equal to $A \in \mathbb{R}^*$ if

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall \mathbf{x} \in B(\mathbf{a}, \delta) \setminus \{\mathbf{a}\} : f(\mathbf{x}) \in B(A, \varepsilon).$

surface generated by the function f is contained between the two planes z = L + c and z = L - c.

Remark

- Each function has at a given point at most one limit. We write lim_{x→a}f(x) = A.
- The function f is continuous at a if and only if $\lim_{x\to a} f(x) = f(a)$.
- For limits of functions of several variables one can prove similar theorems as for limits of functions of one variable (arithmetics, the sandwich theorem, ...).

Note: Mathematica animation

1.
$$\lim_{(x,y)\to(2,-1)} x^2 - 2xy + 3y^2 - 4x + 3y - 6$$

2.
$$\lim_{(x,y)\to(2,-1)} \frac{2x+3y}{4x-3y}$$

3.
$$\lim_{(x,y)\to(0,0)} \frac{x^2+xy}{x+y}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▶ ▲□▶

1.
$$\lim_{(x,y)\to(2,-1)} x^2 - 2xy + 3y^2 - 4x + 3y - 6$$

2. $\lim_{(x,y)\to(2,-1)} \frac{2x+3y}{4x-3y}$
3. $\lim_{(x,y)\to(0,0)} \frac{x^2+xy}{x+y}$
-6, 1/11, 0

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▶ ▲□▶

In the table there are values of a function f(x, y). Does there exist the limit

 $\lim_{(x,y)\to(0,0)}f(x,y)?$

$x \setminus y$	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.00	0.60	0.92	1.00	0.92	0.60	0.00
-0.5	-0.60	0.00	0.72	1.00	0.72	0.00	-0.6
-0.2	-0.92	-0.72	0.00	1.00	0.00	-0.72	-0.92
0	-1.00	-1.00	-1.00		-1.00	-1.00	-1.00
0.2	-0.92	-0.72	0.00	1.00	0.00	-0.72	-0.92
0.5	-0.60	0.00	0.72	1.00	0.72	0.00	-0.6
1.0	0.00	0.60	0.92	1.00	0.92	0.60	0.00

https://www.cpp.edu/conceptests/question-library/ mat214.shtml

(ロ) (同) (三) (三) (三) (○) (○)

In the table there are values of a function f(x, y). Does there exist the limit

 $\lim_{(x,y)\to(0,0)}f(x,y)?$

$x \setminus y$	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.00	0.60	0.92	1.00	0.92	0.60	0.00
-0.5	-0.60	0.00	0.72	1.00	0.72	0.00	-0.6
-0.2	-0.92	-0.72	0.00	1.00	0.00	-0.72	-0.92
0	-1.00	-1.00	-1.00		-1.00	-1.00	-1.00
0.2	-0.92	-0.72	0.00	1.00	0.00	-0.72	-0.92
0.5	-0.60	0.00	0.72	1.00	0.72	0.00	-0.6
1.0	0.00	0.60	0.92	1.00	0.92	0.60	0.00

https://www.cpp.edu/conceptests/question-library/ mat214.shtml

No limit. (Candidates are at leat 1 and -1.)

V.2. Continuous functions of several variables

Definition

Let $M \subset \mathbb{R}^n$, $x \in M$, and $f : M \to \mathbb{R}$. We say that f is continuous at x with respect to M, if we

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall \mathbf{y} \in B(\mathbf{x}, \delta) \cap M \colon f(\mathbf{y}) \in B(f(\mathbf{x}), \varepsilon).$

We say that f is continuous at the point x if it is continuous at x with respect to a neighbourhood of x, i.e.

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \; \exists \delta \in \mathbb{R}, \delta > 0 \; \forall \mathbf{y} \in B(\mathbf{x}, \delta) : f(\mathbf{y}) \in B(f(\mathbf{x}), \varepsilon).$

Let $M \subset \mathbb{R}^n$ and $f \colon M \to \mathbb{R}$. We say that f is continuous on M if it is continuous at each point $x \in M$ with respect to M.

Remark

The functions $\pi_j \colon \mathbb{R}^n \to \mathbb{R}, \pi_j(\mathbf{x}) = x_j, 1 \le j \le n$, are continuous on \mathbb{R}^n . They are called coordinate projections.

Theorem 8

Let $M \subset \mathbb{R}^n$, $\mathbf{x} \in M$, $f: M \to \mathbb{R}$, $g: M \to \mathbb{R}$, and $c \in \mathbb{R}$. If fand g are continuous at the point \mathbf{x} with respect to M, then the functions cf, f + g a fg are continuous at \mathbf{x} with respect to M. If the function g is nonzero at \mathbf{x} , then also the function f/g is continuous at \mathbf{x} with respect to M.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

Theorem 9

Let $r, s \in \mathbb{N}$, $M \subset \mathbb{R}^s$, $L \subset \mathbb{R}^r$, and $\mathbf{y} \in M$. Let $\varphi_1, \ldots, \varphi_r$ be functions defined on M, which are continuous at \mathbf{y} with respect to M and $[\varphi_1(\mathbf{x}), \ldots, \varphi_r(\mathbf{x})] \in L$ for each $\mathbf{x} \in M$. Let $f : L \to \mathbb{R}$ be continuous at the point $[\varphi_1(\mathbf{y}), \ldots, \varphi_r(\mathbf{y})]$ with respect to L. Then the compound function $F : M \to \mathbb{R}$ defined by

$$F(\mathbf{x}) = f(\varphi_1(\mathbf{x}), \ldots, \varphi_r(\mathbf{x})), \quad \mathbf{x} \in M,$$

is continuous at y with respect to M.
Where is continuous $f(x, y) = \cos \frac{x}{y}$?

- A Everywhere except at the origin
- B Everywhere except along the *x*-axis.
- C Everywhere except along the *y*-axis.
- D Everywhere except along the line y = x.

Where is continuous $f(x, y) = \cos \frac{x}{y}$?

- A Everywhere except at the origin
- B Everywhere except along the *x*-axis.
- C Everywhere except along the *y*-axis.
- D Everywhere except along the line y = x.

B

Where is continuous $f(x, y) = \cos \frac{x}{y}$?

- A Everywhere except at the origin
- B Everywhere except along the *x*-axis.
- C Everywhere except along the *y*-axis.
- D Everywhere except along the line y = x.

В

Exercise

Where is continuous $f(x, y) = \operatorname{sgn} xy$?

- A Everywhere except along the axes.
- B Everywhere except along the *x*-axis.
- C Everywhere except at the origin.
- D Everywhere except along the line y = x.

Where is continuous $f(x, y) = \cos \frac{x}{y}$?

- A Everywhere except at the origin
- B Everywhere except along the *x*-axis.
- C Everywhere except along the *y*-axis.
- D Everywhere except along the line y = x.

В

А

Exercise

Where is continuous $f(x, y) = \operatorname{sgn} xy$?

- A Everywhere except along the axes.
- B Everywhere except along the *x*-axis.
- C Everywhere except at the origin.
- D Everywhere except along the line y = x.

Find continuous functions (at \mathbb{R}^2)

A
$$\ln(x^{2} + y^{2} + 1)$$

B $\frac{x-y}{e^{xy}}$
C $\frac{\sqrt{y-1}}{x^{2}}$
D $\sin(2x) + x \cot(x^{3} + 2y)$
E $\operatorname{sgn}(x^{4} + y^{4})$

イロト イポト イヨト イヨト 一日

Find continuous functions (at \mathbb{R}^2)

A
$$\ln(x^{2} + y^{2} + 1)$$

B $\frac{x-y}{e^{xy}}$
C $\frac{\sqrt{y-1}}{x^{2}}$
D $\sin(2x) + x \cot(x^{3} + 2y)$
E $\operatorname{sgn}(x^{4} + y^{4})$
A, B

イロト イポト イヨト イヨト 一日

Theorem 10

Let f be a continuous function on \mathbb{R}^n and $c \in \mathbb{R}$. Then the following holds:

- (i) The set $\{\mathbf{x} \in \mathbb{R}^n; f(\mathbf{x}) < c\}$ is open in \mathbb{R}^n .
- (ii) The set $\{\mathbf{x} \in \mathbb{R}^n; f(\mathbf{x}) > c\}$ is open in \mathbb{R}^n .
- (iii) The set $\{\mathbf{x} \in \mathbb{R}^n; f(\mathbf{x}) \leq c\}$ is closed in \mathbb{R}^n .
- (iv) The set $\{x \in \mathbb{R}^n; f(x) \ge c\}$ is closed in \mathbb{R}^n .
- (v) The set $\{x \in \mathbb{R}^n; f(x) = c\}$ is closed in \mathbb{R}^n .

Example

$$f(x,y) = x^2 + y^2,$$

Mathematica

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Partial derivatives

https://www.wikihow.com/ Take-Partial-Derivatives http: //calcnet.cst.cmich.edu/ faculty/angelos/m533/ lectures/pderv.htm

Animation.

Definition

Let *f* be a function, $a \in \mathbb{R}$.

$$f'(a) = \lim_{t \to 0} \frac{f(a+t) - f(a)}{t}.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Definition

Let *f* be a function, $a \in \mathbb{R}$.

$$f'(a) = \lim_{t \to 0} \frac{f(a+t) - f(a)}{t}$$

Set
$$e^{j} = [0, ..., 0, \frac{1}{j^{\text{th coordinate}}}, 0, ..., 0].$$

Definition

Let *f* be a function of *n* variables, $j \in \{1, ..., n\}$, $a \in \mathbb{R}^n$. Then the number

$$\frac{\partial f}{\partial x_j}(\boldsymbol{a}) = \lim_{t \to 0} \frac{f(\boldsymbol{a} + t\boldsymbol{e}^j) - f(\boldsymbol{a})}{t}$$
$$= \lim_{t \to 0} \frac{f(a_1, \dots, a_{j-1}, a_j + t, a_{j+1}, \dots, a_n) - f(a_1, \dots, a_n)}{t}$$

is called the partial derivative (of first order) of function f according to *j*th variable at the point a (if the limit exists).

Find
$$\frac{\partial f}{\partial x}$$
, if $f(x, y) = x^3 + 3x^2y - 5x - 7y^3 + y - 5$

A
$$\frac{\partial f}{\partial x} = 3x^2 + 6xy - 5$$

B $\frac{\partial f}{\partial x} = x^3 + 3 - 21y^2 + 1 - 5$
C $\frac{\partial f}{\partial x} = 3x^2 - 21y^2 + 1$
D $\frac{\partial f}{\partial x} = 3x^2 + 6xy - 5 - 7y^3 + y$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Find
$$\frac{\partial f}{\partial x}$$
, if $f(x, y) = x^3 + 3x^2y - 5x - 7y^3 + y - 5$

A
$$\frac{\partial f}{\partial x} = 3x^2 + 6xy - 5$$

B $\frac{\partial f}{\partial x} = x^3 + 3 - 21y^2 + 1 - 5$
C $\frac{\partial f}{\partial x} = 3x^2 - 21y^2 + 1$
D $\frac{\partial f}{\partial x} = 3x^2 + 6xy - 5 - 7y^3 + y$

A

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで

Find
$$\frac{\partial f}{\partial y}$$
, if $f(x, y) = x^2 \ln(x^2 y)$
A $\frac{\partial f}{\partial y} = \frac{2x}{y}$
B $\frac{\partial f}{\partial y} = \frac{1}{y}$
C $\frac{\partial f}{\partial y} = \frac{x^2}{y}$
D $\frac{\partial f}{\partial y} = \frac{1}{x^2 y}$

Find
$$\frac{\partial f}{\partial y}$$
, if $f(x, y) = x^2 \ln(x^2 y)$
A $\frac{\partial f}{\partial y} = \frac{2x}{y}$
B $\frac{\partial f}{\partial y} = \frac{1}{y}$
C $\frac{\partial f}{\partial y} = \frac{x^2}{y}$
D $\frac{\partial f}{\partial y} = \frac{1}{x^2 y}$

С

According to: https://www.wiley.com/college/ hugheshallett/0470089148/conceptests/concept.pdf

The values of a function f(x, y) are in the table. Which statement is most accurate? (In the left columnt there is x, in the first row there is y.)

A
$$\frac{\partial f}{\partial x}(1,2) \approx -1$$

B $\frac{\partial f}{\partial y}(1,2) \approx 2$
C $\frac{\partial f}{\partial x}(3,2) \approx 1$
D $\frac{\partial f}{\partial y}(3,2) \approx 4$

https://www.cpp.edu/conceptests/question-library/
mat214.shtml

$x \setminus y$	0	1	2	3
0	3	5	7	9
1	2	4	6	8
2	1	3	5	7
3	0	2	4	6

The values of a function f(x, y) are in the table. Which statement is most accurate? (In the left columnt there is x, in the first row there is y.)

A
$$\frac{\partial f}{\partial x}(1,2) \approx -1$$

B $\frac{\partial f}{\partial y}(1,2) \approx 2$
C $\frac{\partial f}{\partial x}(3,2) \approx 1$
D $\frac{\partial f}{\partial y}(3,2) \approx 4$

https://www.cpp.edu/conceptests/question-library/
mat214.shtml

A, B

$x \setminus y$	0	1	2	3
0	3	5	7	9
1	2	4	6	8
2	1	3	5	7
3	0	2	4	6

A $\frac{\partial f}{\partial x} > 0, \frac{\partial f}{\partial y} > 0$ **B** $\frac{\partial f}{\partial x} < 0, \frac{\partial f}{\partial y} > 0$ C $\frac{\partial f}{\partial x} > 0, \frac{\partial f}{\partial y} < 0$ D $\frac{\partial f}{\partial x} < 0, \frac{\partial f}{\partial y} < 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$A \quad \frac{\partial f}{\partial x} > 0, \ \frac{\partial f}{\partial y} > 0$$
$$B \quad \frac{\partial f}{\partial x} < 0, \ \frac{\partial f}{\partial y} > 0$$
$$C \quad \frac{\partial f}{\partial x} > 0, \ \frac{\partial f}{\partial y} < 0$$
$$D \quad \frac{\partial f}{\partial x} < 0, \ \frac{\partial f}{\partial y} < 0$$

В

https://www.cpp.edu/conceptests/question-library/
mat214.shtml

▲ロト▲聞と▲臣と▲臣と 臣 のなぐ

1. Let $f(x, y, z) = x^2 + z + 3$. Then the partial derivative $\frac{\partial f}{\partial y}$ is not defined, because there is no y in the function.

1. Let $f(x, y, z) = x^2 + z + 3$. Then the partial derivative $\frac{\partial f}{\partial y}$ is not defined, because there is no y in the function. False, $\frac{\partial f}{\partial y} = 0$.

1. Let $f(x, y, z) = x^2 + z + 3$. Then the partial derivative $\frac{\partial f}{\partial y}$ is not defined, because there is no y in the function. False, $\frac{\partial f}{\partial y} = 0$.

2. Is there a function f(x, y) such that $\frac{\partial f}{\partial y} = 3y^2$ and $\frac{\partial f}{\partial x} = 3x^2$?

- 1. Let $f(x, y, z) = x^2 + z + 3$. Then the partial derivative $\frac{\partial f}{\partial y}$ is not defined, because there is no y in the function. False, $\frac{\partial f}{\partial y} = 0$.
- 2. Is there a function f(x, y) such that $\frac{\partial f}{\partial y} = 3y^2$ and $\frac{\partial f}{\partial x} = 3x^2$? Yes. For example $f(x, y) = x^3 + y^3$.

- 1. Let $f(x, y, z) = x^2 + z + 3$. Then the partial derivative $\frac{\partial f}{\partial y}$ is not defined, because there is no y in the function. False, $\frac{\partial f}{\partial y} = 0$.
- 2. Is there a function f(x, y) such that $\frac{\partial f}{\partial y} = 3y^2$ and $\frac{\partial f}{\partial x} = 3x^2$? Yes. For example $f(x, y) = x^3 + y^3$.

Exercise

Find a function, which is not constant, but $\frac{\partial f}{\partial x} = 0$ for every *x*.

- 1. Let $f(x, y, z) = x^2 + z + 3$. Then the partial derivative $\frac{\partial f}{\partial y}$ is not defined, because there is no y in the function. False, $\frac{\partial f}{\partial y} = 0$.
- 2. Is there a function f(x, y) such that $\frac{\partial f}{\partial y} = 3y^2$ and $\frac{\partial f}{\partial x} = 3x^2$? Yes. For example $f(x, y) = x^3 + y^3$.

Exercise

Find a function, which is not constant, but $\frac{\partial f}{\partial x} = 0$ for every *x*. For example $f(x, y) = y^2 + 4$.

Definition

Let $G \subset \mathbb{R}^n$ be a non-empty open set. If a function $f: G \to \mathbb{R}$ has all partial derivatives continuous at each point of the set G (i.e. the function $\mathbf{x} \mapsto \frac{\partial f}{\partial x_j}(\mathbf{x})$ is continuous on G for each $j \in \{1, \ldots, n\}$), then we say that f is of the class \mathcal{C}^1 on G. The set of all of these functions is denoted by $\mathcal{C}^1(G)$.

Definition

Let $G \subset \mathbb{R}^n$ be a non-empty open set. If a function $f: G \to \mathbb{R}$ has all partial derivatives continuous at each point of the set G(i.e. the function $\mathbf{x} \mapsto \frac{\partial f}{\partial x_j}(\mathbf{x})$ is continuous on G for each $j \in \{1, \ldots, n\}$), then we say that f is of the class \mathcal{C}^1 on G. The set of all of these functions is denoted by $\mathcal{C}^1(G)$.

Remark

If $G \subset \mathbb{R}^n$ is a non-empty open set and $\operatorname{and} f, g \in \mathcal{C}^1(G)$, then $f + g \in \mathcal{C}^1(G), f - g \in \mathcal{C}^1(G)$, and $fg \in \mathcal{C}^1(G)$. If moreover $g(\mathbf{x}) \neq 0$ for each $\mathbf{x} \in G$, then $f/g \in \mathcal{C}^1(G)$.

Find functions, which are $C^1(\mathbb{R}^2)$.

A
$$e^{xy}$$

B $\sqrt[3]{x^2 + y^2}$
C $\frac{\sin(x-2y)}{2+x^2+y^2}$
D $\ln \frac{y}{x}$

▲□▶▲圖▶★≧▶★≧▶ ≧ の��

Find functions, which are $C^1(\mathbb{R}^2)$. A e^{xy} C $\frac{\sin(x-2y)}{2+x^2+y^2}$ B $\sqrt[3]{x^2+y^2}$ D $\ln \frac{y}{x}$ A, C

▲□▶▲圖▶★≧▶★≧▶ ≧ の��

Example

$$f(x, y) = \sqrt{100 - x^2 - y^2}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Example

$$f(x, y) = x^2 + y^2$$

・ロト・(個)ト・(目)ト・(目)ト・(目)・(の)へ()・

Example

$$f(x,y) = 5\sqrt{x^2 + y^2}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで
Definition

Suppose that the function f has a finite derivative at a point $a \in \mathbb{R}$. The line

$$T_a = \{ [x, y] \in \mathbb{R}^2; \ y = f(a) + f'(a)(x - a) \}$$

is called the tangent to the graph of f at the point [a, f(a)].

Definition

Suppose that the function *f* has a finite derivative at a point $a \in \mathbb{R}$. The line

$$T_a = \{ [x, y] \in \mathbb{R}^2; \ y = f(a) + f'(a)(x - a) \}$$

is called the tangent to the graph of f at the point [a, f(a)].

Definition

Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, and $f \in C^1(G)$. Then the graph of the function

$$T: \mathbf{x} \mapsto f(\mathbf{a}) + \frac{\partial f}{\partial x_1}(\mathbf{a})(x_1 - a_1) + \frac{\partial f}{\partial x_2}(\mathbf{a})(x_2 - a_2) \\ + \dots + \frac{\partial f}{\partial x_n}(\mathbf{a})(x_n - a_n), \quad \mathbf{x} \in \mathbb{R}^n,$$

is called the tangent hyperplane to the graph of the function f at the point [a, f(a)].

Find the tangent plane of a function f(x, y) = xy at the point (2, 3).

A
$$z-6 = x(x-2) + y(y-3)$$

B $z-6 = y(x-2) + x(y-3)$
C $z-6 = 2(x-2) + 3(y-3)$
D $z-6 = 3(x-2) + 2(y-3)$

Find the tangent plane of a function f(x, y) = xy at the point (2, 3).

A
$$z-6 = x(x-2) + y(y-3)$$

B $z-6 = y(x-2) + x(y-3)$
C $z-6 = 2(x-2) + 3(y-3)$
D $z-6 = 3(x-2) + 2(y-3)$
D

Find the tangent plane of a function f(x, y) = xy at the point (2, 3).

A
$$z-6 = x(x-2) + y(y-3)$$

B $z-6 = y(x-2) + x(y-3)$
C $z-6 = 2(x-2) + 3(y-3)$
D $z-6 = 3(x-2) + 2(y-3)$

Exercise

Find the tangent plane of a function $f(x, y, z, u) = \ln(xy + z^2 - u)$ at the point a = (1, 0, 2, 3).

Find the tangent plane of a function f(x, y) = xy at the point (2, 3).

A
$$z-6 = x(x-2) + y(y-3)$$

B $z-6 = y(x-2) + x(y-3)$
C $z-6 = 2(x-2) + 3(y-3)$
D $z-6 = 3(x-2) + 2(y-3)$

Exercise

Find the tangent plane of a function $f(x, y, z, u) = \ln(xy + z^2 - u)$ at the point a = (1, 0, 2, 3). v - 0 = 0(x - 1) + 1(y - 0) + 4(z - 2) - 1(u - 3)v = y + 4z - u - 5

Theorem 11 (tangent hyperplane)

Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, $f \in C^1(G)$, and let T be a function whose graph is the tangent hyperplane of the function f at the point [a, f(a)]. Then

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{f(\mathbf{x})-T(\mathbf{x})}{\rho(\mathbf{x},\mathbf{a})}=0.$$

Theorem 11 (tangent hyperplane)

Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, $f \in C^1(G)$, and let T be a function whose graph is the tangent hyperplane of the function f at the point [a, f(a)]. Then

$$\lim_{\mathbf{x}\to \mathbf{a}}\frac{f(\mathbf{x})-T(\mathbf{x})}{\rho(\mathbf{x},\mathbf{a})}=0.$$

Theorem 12

Let $G \subset \mathbb{R}^n$ be an open non-empty set and $f \in C^1(G)$. Then f is continuous on G.

Theorem 11 (tangent hyperplane)

Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, $f \in C^1(G)$, and let T be a function whose graph is the tangent hyperplane of the function f at the point [a, f(a)]. Then

$$\lim_{\mathbf{x}\to \mathbf{a}}\frac{f(\mathbf{x})-T(\mathbf{x})}{\rho(\mathbf{x},\mathbf{a})}=0.$$

Theorem 12

Let $G \subset \mathbb{R}^n$ be an open non-empty set and $f \in C^1(G)$. Then f is continuous on G.

Remark

Existence of partial derivatives at *a* **does not** imply continuity at *a*.

Theorem 13 (derivative of a composite function; chain rule)

Let $r, s \in \mathbb{N}$ and let $G \subset \mathbb{R}^s$, $H \subset \mathbb{R}^r$ be open sets. Let $\varphi_1, \ldots, \varphi_r \in C^1(G), f \in C^1(H)$ and $[\varphi_1(\mathbf{x}), \ldots, \varphi_r(\mathbf{x})] \in H$ for each $\mathbf{x} \in G$. Then the compound function $F \colon G \to \mathbb{R}$ defined by

$$F(\mathbf{x}) = f(\varphi_1(\mathbf{x}), \varphi_2(\mathbf{x}), \dots, \varphi_r(\mathbf{x})), \quad \mathbf{x} \in G$$

is of the class C^1 on G. Let $\mathbf{a} \in G$ and $\mathbf{b} = [\varphi_1(\mathbf{a}), \dots, \varphi_r(\mathbf{a})]$. Then for each $j \in \{1, \dots, s\}$ we have

$$\frac{\partial F}{\partial x_j}(\boldsymbol{a}) = \sum_{i=1}^r \frac{\partial f}{\partial y_i}(\boldsymbol{b}) \frac{\partial \varphi_i}{\partial x_j}(\boldsymbol{a}).$$

Remark

Let f(x, y, z) be a differentiable function, let $x = g_1(u, v)$, $y = g_2(u, v)$, $z = g_3(u, v)$, where g_1, g_2, g_3 are differentiable functions. Then for $h(u, v) = f(g_1(u, v), g_2(u, v), g_3(u, v))$ we have

$$\frac{\partial h}{\partial u} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial u} + \frac{\partial f}{\partial z}\frac{\partial z}{\partial u}$$
$$\frac{\partial h}{\partial v} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial v} + \frac{\partial f}{\partial z}\frac{\partial z}{\partial v}$$

$$\frac{d}{d} = \frac{d}{d} \times \frac{d}{d}$$

Let $h(u, v) = \sin x \cos y$, where $x = (u - v)^2$ and $y = u^2 - v^2$. Find $\partial h / \partial u$ a $\partial h / \partial v$.

Let $h(u, v) = \sin x \cos y$, where $x = (u - v)^2$ and $y = u^2 - v^2$. Find $\partial h / \partial u$ a $\partial h / \partial v$.

$$\frac{\partial h}{\partial u} = \cos(u-v)^2 \cos(u^2 - v^2) 2(u-v) - \sin(u-v)^2 \sin(u^2 - v^2) 2u$$
$$\frac{\partial h}{\partial v} = -\cos(u-v)^2 \cos(u^2 - v^2) 2(u-v) + \sin(u-v)^2 \sin(u^2 - v^2) 2v$$

Let h(u, v) = xy, where $x = u \cos v$ and $y = u \sin v$. Then for $\partial h / \partial v$ we have

A $\frac{\partial h}{\partial v} = 0$ B $\frac{\partial h}{\partial v} = u^2 \cos(2v)$ C $\frac{\partial h}{\partial v} = -u^3 \sin^2 v \cos v + u^3 \sin v \cos^2 v$ D Something else.

Let h(u, v) = xy, where $x = u \cos v$ and $y = u \sin v$. Then for $\partial h / \partial v$ we have

A
$$\frac{\partial h}{\partial v} = 0$$

B $\frac{\partial h}{\partial v} = u^2 \cos(2v)$
C $\frac{\partial h}{\partial v} = -u^3 \sin^2 v \cos v + u^3 \sin v \cos^2 v$
D Something else.

ヘロト 人間 とく ヨン くヨン

V.4. Implicit function theorem and Lagrange multiplier theorem

V.4. Implicit function theorem and Lagrange multiplier theorem

V.4. Implicit function theorem and Lagrange multiplier theorem

athematics II - Functions of multiple variables 75/122

fathematics II - Functions of multiple variables 76/122

Theorem 14 (implicit function)

Let $G \subset \mathbb{R}^{n+1}$ be an open set, $F \colon G \to \mathbb{R}$, and $\tilde{\mathbf{x}} \in \mathbb{R}^n$, $\tilde{y} \in \mathbb{R}$ such that $[\tilde{\mathbf{x}}, \tilde{y}] \in G$. Suppose that (i) $F \in C^1(G)$, (ii) $F(\tilde{\mathbf{x}}, \tilde{y}) = 0$, (iii) $\frac{\partial F}{\partial \nu}(\tilde{\mathbf{x}}, \tilde{y}) \neq 0$.

Then there exist a neighbourhood $U \subset \mathbb{R}^n$ of the point $\tilde{\mathbf{x}}$ and a neighbourhood $V \subset \mathbb{R}$ of the point \tilde{y} such that for each $\mathbf{x} \in U$ there exists a unique $y \in V$ satisfying $F(\mathbf{x}, y) = 0$. If we denote this y by $\varphi(\mathbf{x})$, then the resulting function φ is in $C^1(U)$ and

$$\frac{\partial \varphi}{\partial x_j}(\boldsymbol{x}) = -\frac{\frac{\partial F}{\partial x_j}(\boldsymbol{x},\varphi(\boldsymbol{x}))}{\frac{\partial F}{\partial y}(\boldsymbol{x},\varphi(\boldsymbol{x}))} \quad for \, \boldsymbol{x} \in U, \, j \in \{1,\ldots,n\}$$

Theorem

Let $G \subset \mathbb{R}^{n+1}$ be an open set, $F \colon G \to \mathbb{R}$, and $\tilde{\mathbf{x}} \in \mathbb{R}^n$, $\tilde{y} \in \mathbb{R}$ such that $[\tilde{\mathbf{x}}, \tilde{y}] \in G$. Suppose that (i) $F \in C^1(G)$, (ii) $F(\tilde{\mathbf{x}}, \tilde{y}) = 0$, (iii) $\frac{\partial F}{\partial y}(\tilde{\mathbf{x}}, \tilde{y}) \neq 0$.

Then there exists a neighbourhood ...

Exercise

Consider these exercises. Which condition is NOT satisfied?

A
$$x^2 + y^3 = 4$$
 at $(2, 0)$
B $y - \frac{1}{2} \sin y = x$ at (π, π)
C $\sin(xy) + x^2 + y^2 = 1$ at $(0, 3)$
D $|x| + e^{x+y} = 1$ at $(0, 0)$

Theorem

Let $G \subset \mathbb{R}^{n+1}$ be an open set, $F \colon G \to \mathbb{R}$, and $\tilde{\mathbf{x}} \in \mathbb{R}^n$, $\tilde{y} \in \mathbb{R}$ such that $[\tilde{\mathbf{x}}, \tilde{y}] \in G$. Suppose that (i) $F \in C^1(G)$, (ii) $F(\tilde{\mathbf{x}}, \tilde{y}) = 0$, (iii) $\frac{\partial F}{\partial y}(\tilde{\mathbf{x}}, \tilde{y}) \neq 0$.

Then there exists a neighbourhood ...

Exercise

Consider these exercises. Which condition is NOT satisfied?

A
$$x^{2} + y^{3} = 4$$
 at $(2, 0)$
B $y - \frac{1}{2} \sin y = x$ at (π, π)
C $\sin(xy) + x^{2} + y^{2} = 1$ at
 $(0, 3)$
D $|x| + e^{x+y} = 1$ at $(0, 0)$
A iii,
B all is ok
C ii,
D i

Definition

Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, and $f \in C^1(G)$. The gradient of f at the point a is the vector

$$abla f(\boldsymbol{a}) = \left[\frac{\partial f}{\partial x_1}(\boldsymbol{a}), \frac{\partial f}{\partial x_2}(\boldsymbol{a}), \dots, \frac{\partial f}{\partial x_n}(\boldsymbol{a}) \right]$$

Exercise

Find the gradient of $f(x, y, z) = y \cos^3(x^2 z)$ at the point [2, 1, 0]:

A	(1/5, 0, 1/5)	С	(0,1,0)
B	(0, 1, 1/5)	D	(1, 0, 1/2)

Definition

Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, and $f \in C^1(G)$. The gradient of f at the point a is the vector

$$abla f(\boldsymbol{a}) = \left[\frac{\partial f}{\partial x_1}(\boldsymbol{a}), \frac{\partial f}{\partial x_2}(\boldsymbol{a}), \dots, \frac{\partial f}{\partial x_n}(\boldsymbol{a}) \right]$$

Exercise

Find the gradient of $f(x, y, z) = y \cos^3(x^2 z)$ at the point [2, 1, 0]:

A	(1/5, 0, 1/5)	С	(0,1,0)
B	(0, 1, 1/5)	D	$\left(1,0,1/2\right)$

С

Remark

The gradient of f at a points in the direction of steepest growth of f at a. At every point, the gradient is perpendicular to the contour of f.

Exercise

The bicyclist is on a trip up the hill, which can be described as $f(x, y) = 25 - 2x^2 - 4y^2$. When she is at the point [1, 1, 19], it starts to rain, so she decides to go down the hill as steeply as possible (so that she is down quickly). In what direction will she start her decline?

A
$$(-4x; -8y)$$
C $(-4; -8)$ B $(4x; 8y)$ D $(4; 8)$

Remark

The gradient of f at a points in the direction of steepest growth of f at a. At every point, the gradient is perpendicular to the contour of f.

Exercise

D

The bicyclist is on a trip up the hill, which can be described as $f(x, y) = 25 - 2x^2 - 4y^2$. When she is at the point [1, 1, 19], it starts to rain, so she decides to go down the hill as steeply as possible (so that she is down quickly). In what direction will she start her decline?

A
$$(-4x; -8y)$$
C $(-4; -8)$ B $(4x; 8y)$ D $(4; 8)$

Definition

Let $M \subset \mathbb{R}^n$, $x \in M$, and let f be a function defined at least on M (i.e. $M \subset D_f$). We say that f attains at the point x its

- maximum on M if $f(\mathbf{y}) \leq f(\mathbf{x})$ for every $\mathbf{y} \in M$,
- local maximum with respect to M if there exists $\delta > 0$ such that $f(\mathbf{y}) \le f(\mathbf{x})$ for every $\mathbf{y} \in B(\mathbf{x}, \delta) \cap M$,
- strict local maximum with respect to *M* if there exists $\delta > 0$ such that $f(\mathbf{y}) < f(\mathbf{x})$ for every $\mathbf{y} \in (B(\mathbf{x}, \delta) \setminus \{\mathbf{x}\}) \cap M$.

The notions of a minimum, a local minimum, and a strict local minimum with respect to *M* are defined in analogous way.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

Definition

Let $M \subset \mathbb{R}^n$, $x \in M$, and let f be a function defined at least on M (i.e. $M \subset D_f$). We say that f attains at the point x its

- maximum on M if $f(\mathbf{y}) \leq f(\mathbf{x})$ for every $\mathbf{y} \in M$,
- local maximum with respect to M if there exists $\delta > 0$ such that $f(\mathbf{y}) \le f(\mathbf{x})$ for every $\mathbf{y} \in B(\mathbf{x}, \delta) \cap M$,
- strict local maximum with respect to *M* if there exists δ > 0 such that f(y) < f(x) for every y ∈ (B(x, δ) \ {x}) ∩ M.

The notions of a minimum, a local minimum, and a strict local minimum with respect to *M* are defined in analogous way.

Definition

We say that a function f attains a local maximum at a point $x \in \mathbb{R}^n$ if x is a local maximum with respect to some neighbourhood of x.

Theorem 15 (attaining extrema)

Let $M \subset \mathbb{R}^n$ be a non-empty compact set and $f: M \to \mathbb{R}$ a function continuous on M. Then f attains its maximum and minimum on M.

Corollary

Let $M \subset \mathbb{R}^n$ be a non-empty compact set and $f: M \to \mathbb{R}$ a continuous function on M. Then f is bounded on M.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

Theorem 16 (necessary condition of the existence of local extremum)

Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, and suppose that a function $f: G \to \mathbb{R}$ has a local extremum (i.e. a local maximum or a local minimum) at the point a. Then for each $j \in \{1, ..., n\}$ the following holds:

The partial derivative $\frac{\partial f}{\partial x_j}(\boldsymbol{a})$ either does not exist or it is equal to zero.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Definition

Let $G \subset \mathbb{R}^n$ be an open set, $a \in G, f \in C^1(G)$, and $\nabla f(a) = o$. Then the point *a* is called a stationary (or critical) point of the function *f*.

$$f(x, y) = x^2 + y^2$$

7/122

$$f(x,y) = e^{-x^2 - y^2}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

$$f(x,y) = x + 2y - 4$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

$$f(x,y) = \sqrt{x^2 + y^2}$$

$$f(x, y) = x^2 - y^2$$

900

- 1. Consider the points A, B, C, D, E. Find the critical points.
- 2. Which of these points are probably points of
 - 2.1 local maximum,
 - 2.2 local minimum,
 - 2.3 saddle point?

Figure: Calculus, 6th Edition; Hughes-Hallett, Gleason, McCallum et

- 1. Consider the points A, B, C, D, E. Find the critical points.
- 2. Which of these points are probably points of
 - 2.1 local maximum B
 - 2.2 local minimum E, G
 - 2.3 saddle point C, D, F

Figure: Calculus, 6th Edition; Hughes-Hallett, Gleason, McCallum et

Definition

Let $G \subset \mathbb{R}^n$ be an open set, $f: G \to \mathbb{R}$, $i, j \in \{1, ..., n\}$, and suppose that $\frac{\partial f}{\partial x_i}(\mathbf{x})$ exists finite for each $\mathbf{x} \in G$. Then the partial derivative of the second order of the function f according to *i*th and *j*th variable at a point $\mathbf{a} \in G$ is defined by

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{a}) = \frac{\partial \left(\frac{\partial f}{\partial x_i}\right)}{\partial x_j}(\boldsymbol{a})$$

If i = j then we use the notation $\frac{\partial^2 f}{\partial x_i^2}(\boldsymbol{a})$.

Similarly we define higher order partial derivatives.

Exercise

Find the second partial derivatives of the function $f(x, y) = x^2 + xy + y^2$.

- Find $\frac{\partial^2 f}{\partial x \partial y}$, if $f(x, y) = e^{xy}$ A e^{xy} B ye^{xy}
 - **C** $x^2 e^{xy}$
 - D $e^{xy}(xy+1)$

▲ロト▲聞と▲臣と▲臣と 臣 のなぐ

Find $\frac{\partial^2 f}{\partial x \partial y}$, if $f(x, y) = e^{xy}$ A e^{xy} B $y e^{xy}$ C $x^2 e^{xy}$ D $e^{xy}(xy + 1)$ D

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Find $\frac{\partial^2 f}{\partial x \partial y}$, if $f(x, y) = e^{xy}$ A e^{xy} B $y e^{xy}$ C $x^2 e^{xy}$

D
$$e^{xy}(xy+1)$$

D

Exercise

Find $\frac{\partial^2 f}{\partial y \partial x}$, if $f(x, y) = e^{xy}$ A e^{xy} B $y e^{xy}$ C $x^2 e^{xy}$ D $e^{xy}(xy + 1)$

Find $\frac{\partial^2 f}{\partial x \partial y}$, if $f(x, y) = e^{xy}$ A e^{xy} B $y e^{xy}$ C $x^2 e^{xy}$

D
$$e^{xy}(xy+1)$$

D

Exercise

Find
$$\frac{\partial^2 f}{\partial y \partial x}$$
, if $f(x, y) = e^{xy}$
A e^{xy}
B $y e^{xy}$
C $x^2 e^{xy}$
D $e^{xy}(xy + 1)$
D

Remark

In general it is **not true** that
$$\frac{\partial^2 f}{\partial x_i \partial x_i}(\boldsymbol{a}) = \frac{\partial^2 f}{\partial x_i \partial x_i}(\boldsymbol{a})$$
.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Remark

In general it is **not true** that
$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{a}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\boldsymbol{a})$$
.

Theorem 17 (interchanging of partial derivatives)

Let $i, j \in \{1, ..., n\}$ and suppose that a function f has both partial derivatives $\frac{\partial^2 f}{\partial x_i \partial x_j}$ and $\frac{\partial^2 f}{\partial x_j \partial x_i}$ on a neighbourhood of apoint $\mathbf{a} \in \mathbb{R}^n$ and that these functions are continuous at \mathbf{a} . Then

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{a}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\boldsymbol{a}).$$

You follow the red route. Where is the highest point of your trip?

Where is the minimum and maximum of the function f(x, y) = y along the curve?

https://www.cpp.edu/conceptests/
question-library/mat214.shtml

Where is the minimum and maximum of the function f(x, y) = y along the curve?

https://www.cpp.edu/conceptests/
question-library/mat214.shtml min: A, max B

Theorem 18 (Lagrange multiplier theorem)

Let $G \subset \mathbb{R}^2$ be an open set, $f, g \in C^1(G)$, $M = \{[x, y] \in G; g(x, y) = 0\}$ and let $[\tilde{x}, \tilde{y}] \in M$ be a point of local extremum of f with respect to M. Then at least one of the following conditions holds:

(I) $\nabla g(\tilde{x}, \tilde{y}) = \boldsymbol{o}$,

(II) there exists $\lambda \in \mathbb{R}$ satisfying

$$rac{\partial f}{\partial x}(ilde{x}, ilde{y}) + \lambda rac{\partial g}{\partial x}(ilde{x}, ilde{y}) = 0, \ rac{\partial f}{\partial y}(ilde{x}, ilde{y}) + \lambda rac{\partial g}{\partial y}(ilde{x}, ilde{y}) = 0.$$

Remark

The number λ is called the Lagrange multiplier.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の Q ()

V.5. Concave and quasiconcave functions

Mathematics II - Functions of multiple variables 100/122

Mathematics II - Functions of multiple variables 100/122

Mathematics II - Functions of multiple variables 100/122

• **b**

• a
b a

$$\boldsymbol{a} = 1 \cdot \boldsymbol{a} + 0 \cdot \boldsymbol{b} = \boldsymbol{a} + 0 \cdot (\boldsymbol{b} - \boldsymbol{a})$$

$\boldsymbol{b} = 0 \cdot \boldsymbol{a} + 1 \cdot \boldsymbol{b} = \boldsymbol{a} + 1 \cdot (\boldsymbol{b} - \boldsymbol{a})$

イロト イ部ト イヨト イヨト 二百

イロト イポト イヨト イヨト 一日

イロト イポト イヨト イヨト 一日

$$t \cdot \boldsymbol{a} + (1-t) \cdot \boldsymbol{b} = \boldsymbol{a} + (1-t) \cdot (\boldsymbol{b} - \boldsymbol{a})$$

Definition

Let $M \subset \mathbb{R}^n$. We say that *M* is convex if

$$\forall \boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{M} \; \forall t \in [0, 1] \colon t\boldsymbol{x} + (1 - t)\boldsymbol{y} \in \boldsymbol{M}.$$

Exercise

Definition

Let $M \subset \mathbb{R}^n$. We say that *M* is convex if

$$\forall \boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{M} \; \forall t \in [0, 1] \colon t\boldsymbol{x} + (1 - t)\boldsymbol{y} \in \boldsymbol{M}.$$

Exercise

Α, Β

Exercise

Find convex sets

Exercise

Find convex sets

Mathematics II - Functions of multiple variables 103/1

Concave and convex functions

https://math24.net/convex-functions.html

Concave and convex functions

Definition

Let $M \subset \mathbb{R}^n$ be a convex set and f a function defined on M. We say that f is

• concave on M if

$$\forall \boldsymbol{a}, \boldsymbol{b} \in M \forall t \in [0, 1]: f(t\boldsymbol{a} + (1 - t)\boldsymbol{b}) \ge tf(\boldsymbol{a}) + (1 - t)f(\boldsymbol{b}),$$

• strictly concave on *M* if

$$\forall \boldsymbol{a}, \boldsymbol{b} \in M, \boldsymbol{a} \neq \boldsymbol{b} \ \forall t \in (0, 1):$$

 $f(t\boldsymbol{a} + (1 - t)\boldsymbol{b}) > tf(\boldsymbol{a}) + (1 - t)f(\boldsymbol{b}).$

Remark

By changing the inequalities to the opposite we obtain a definition of a *convex* and a *strictly convex* function.

A function f is convex (strictly convex) if and only if the function -f is concave (strictly concave). All the theorems in this section are formulated for concave and strictly concave functions. They have obvious analogies that hold for convex and strictly convex functions.

- If a function *f* is strictly concave on *M*, then it is concave on *M*.
- Let f be a concave function on M. Then f is strictly concave on M if and only if the graph of f "does not contain a segment", i.e.

$$\neg (\exists \boldsymbol{a}, \boldsymbol{b} \in M, \boldsymbol{a} \neq \boldsymbol{b}, \forall t \in [0, 1]:$$
$$f(t\boldsymbol{a} + (1 - t)\boldsymbol{b}) = tf(\boldsymbol{a}) + (1 - t)f(\boldsymbol{b}))$$

Mathematics II - Functions of multiple variables 108

Theorem 19

Let f be a function concave on an open convex set $G \subset \mathbb{R}^n$. Then f is continuous on G.

Figure: https://math24.net/convex-functions.html

Theorem 20 (characterisation of concave functions of the class C^1)

Let $G \subset \mathbb{R}^n$ be a convex open set and $f \in C^1(G)$. Then the function f is concave on G if and only if

$$\forall \mathbf{x}, \mathbf{y} \in G: f(\mathbf{y}) \leq f(\mathbf{x}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{x})(y_i - x_i).$$

Theorem 20 (characterisation of concave functions of the class C^1)

Let $G \subset \mathbb{R}^n$ be a convex open set and $f \in C^1(G)$. Then the function f is concave on G if and only if

$$\forall \boldsymbol{x}, \boldsymbol{y} \in G: f(\boldsymbol{y}) \leq f(\boldsymbol{x}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\boldsymbol{x})(y_{i} - x_{i}).$$

Corollary 21

Let $G \subset \mathbb{R}^n$ be a convex open set, $f \in C^1(G)$, and let $\mathbf{a} \in G$ be a critical point of f (i.e. $\nabla f(\mathbf{a}) = \mathbf{o}$). If f is concave on G, then \mathbf{a} is a maximum point of f on G. If f is strictly concave on G, then \mathbf{a} is a strict maximum point of f on G.

Theorem 22 (level sets of concave functions)

Let f be a function concave on a convex set $M \subset \mathbb{R}^n$. Then for each $\alpha \in \mathbb{R}$ the set $Q_\alpha = \{ \mathbf{x} \in M; f(\mathbf{x}) \ge \alpha \}$ is convex.

Definition

Let $M \subset \mathbb{R}^n$ be a convex set and let f be a function defined on M. We say that f is

• quasiconcave on M if

 $\forall \boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{M} \, \forall t \in [0, 1] : f(t\boldsymbol{a} + (1 - t)\boldsymbol{b}) \geq \min\{f(\boldsymbol{a}), f(\boldsymbol{b})\},\$

• strictly quasiconcave on *M* if

$$\forall \boldsymbol{a}, \boldsymbol{b} \in M, \boldsymbol{a} \neq \boldsymbol{b}, \forall t \in (0, 1):$$
$$f(t\boldsymbol{a} + (1 - t)\boldsymbol{b}) > \min\{f(\boldsymbol{a}), f(\boldsymbol{b})\}.$$

Remark

By changing the inequalities to the opposite and changing the minimum to a maximum we obtain a definition of a *quasiconvex* and a *strictly quasiconvex* function.

э.

Mathematics II - Functions of multiple variables 114/122

Not quasiconcave

A function f is quasiconvex (strictly quasiconvex) if and only if the function -f is quasiconcave (strictly quasiconcave). All the theorems in this section are formulated for quasiconcave and strictly quasiconcave functions. They have obvious analogies that hold for quasiconvex and strictly quasiconvex functions.

A function f is quasiconvex (strictly quasiconvex) if and only if the function -f is quasiconcave (strictly quasiconcave). All the theorems in this section are formulated for quasiconcave and strictly quasiconcave functions. They have obvious analogies that hold for quasiconvex and strictly quasiconvex functions.

Remark

- If a function *f* is strictly quasiconcave on *M*, then it is quasiconcave on *M*.
- Let *f* be a quasiconcave function on *M*. Then *f* is strictly quasiconcave on *M* if and only if the graph of *f* "does not contain a horizontal segment", i.e.

$$\neg \big(\exists \boldsymbol{a}, \boldsymbol{b} \in M, \boldsymbol{a} \neq \boldsymbol{b}, \forall t \in [0, 1] : f(t\boldsymbol{a} + (1 - t)\boldsymbol{b}) = f(\boldsymbol{a})\big).$$

Let $M \subset \mathbb{R}^n$ be a convex set and f a function defined on M.

- If f is concave on M, then f is quasiconcave on M.
- If *f* is strictly concave on *M*, then *f* is strictly quasiconcave on *M*.

Let $M \subset \mathbb{R}^n$ be a convex set and f a function defined on M.

- If f is concave on M, then f is quasiconcave on M.
- If *f* is strictly concave on *M*, then *f* is strictly quasiconcave on *M*.

Theorem 23 (characterization of quasiconcave functions using level sets)

Let $M \subset \mathbb{R}^n$ be a convex set and f a function defined on M. Then f is quasiconcave on M if and only if for each $\alpha \in \mathbb{R}$ the set $Q_\alpha = \{ \mathbf{x} \in M; f(\mathbf{x}) \ge \alpha \}$ is convex.

Exercise

Find quasiconcave functions:

Find quasiconcave functions:

В

Theorem 24 (a uniqueness of an extremum)

Let f be a strictly quasiconcave function on a convex set $M \subset \mathbb{R}^n$. Then there exists at most one point of maximum of f.

Theorem 24 (a uniqueness of an extremum)

Let f be a strictly quasiconcave function on a convex set $M \subset \mathbb{R}^n$. Then there exists at most one point of maximum of f.

Corollary

Let $M \subset \mathbb{R}^n$ be a convex, closed, bounded and nonempty set and f a continuous and strictly quasiconcave function on M. Then f attains its maximum at exactly one point.

Theorem 25 (sufficient condition for concave and convex functions in \mathbb{R}^2)

Let $G \subset \mathbb{R}^2$ be convex and $f \in C^2(G)$. If $\frac{\partial^2 f}{\partial x^2} \leq 0$, $\frac{\partial^2 f}{\partial y^2} \leq 0$, and $\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 \geq 0$ hold on G, then f is concave on G.

Theorem 25 (sufficient condition for concave and convex functions in \mathbb{R}^2)

Let
$$G \subset \mathbb{R}^2$$
 be convex and $f \in C^2(G)$.
If $\frac{\partial^2 f}{\partial x^2} \leq 0$, $\frac{\partial^2 f}{\partial y^2} \leq 0$, and $\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 \geq 0$ hold on G , then f
is concave on G .
If $\frac{\partial^2 f}{\partial x^2} \geq 0$, $\frac{\partial^2 f}{\partial y^2} \geq 0$, and $\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 \geq 0$ hold on G , then f
is convex on G .

Exercise

Decide if the following functions are convex or concave on \mathbb{R}^2 .

A
$$f(x, y) = x^{2} + y^{2}$$

B $f(x, y) = -x^{4} - y^{4}$
C $f(x, y) = -x^{2} + y^{2}$

э.

Theorem 25 (sufficient condition for concave and convex functions in \mathbb{R}^2)

Let
$$G \subset \mathbb{R}^2$$
 be convex and $f \in C^2(G)$.
If $\frac{\partial^2 f}{\partial x^2} \leq 0$, $\frac{\partial^2 f}{\partial y^2} \leq 0$, and $\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 \geq 0$ hold on G , then f is concave on G .
If $\frac{\partial^2 f}{\partial x^2} \geq 0$, $\frac{\partial^2 f}{\partial y^2} \geq 0$, and $\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 \geq 0$ hold on G , then f is convex on G .

Exercise

Decide if the following functions are convex or concave on \mathbb{R}^2 .

A
$$f(x, y) = x^{2} + y^{2}$$

B $f(x, y) = -x^{4} - y^{4}$
C $f(x, y) = -x^{2} + y^{2}$

A convex, B concave, C neither convex, nor concave

э.

Good luck in the exam period!