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V.1. Rn as a linear and metric space
Definition
The set Rn, n ∈ N, is the set of all ordered n-tuples of real
numbers, i.e.

Rn = {[x1, . . . , xn] : x1, . . . , xn ∈ R}.

https://en.wikipedia.org/wiki/File:
Cartesian-coordinate-system.svg
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Exercise (2D)
Sketch the following points and connect them.

(4, 0), (0, 3), (−4, 0), (−6, 2), (−5, 0), (−6,−2), (−4, 0),

(0,−2), (4, 0),

and add one point:
(2, 1).

https:
//www.geogebra.org/calculator/bbsahf43

Exercise (3D)
https://www.geogebra.org/classic/ydu8a7t7

Mathematics II - Functions of multiple variables 3 / 122

https://www.geogebra.org/calculator/bbsahf43
https://www.geogebra.org/calculator/bbsahf43
https://www.geogebra.org/classic/ydu8a7t7


Exercise
Which picture(s) plots the point (2, 1, 1) correctly?

https://www.cpp.edu/conceptests/question-library/
mat214.shtml

A, C
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V.1. Rn as a linear and metric space

Definition
For x = [x1, . . . , xn] ∈ Rn, y = [y1, . . . , yn] ∈ Rn and α ∈ R we
set

x + y = [x1 + y1, . . . , xn + yn], αx = [αx1, . . . , αxn].

Further, we denote o = [0, . . . , 0] – the origin.

Exercise
Find

A (1, 2, 3, 4) + (−2, 0, 3,−1)
B −2(1, 2, 3, 4)

A (−1, 2, 6, 3), B (−2,−4,−6,−8)
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Definition
The Euclidean metric (distance) on Rn is the function
ρ : Rn × Rn → [0,+∞) defined by

ρ(x, y) =

√√√√ n∑
i=1

(xi − yi)2.

The number ρ(x, y) is called the distance of the point x from the
point y.

https://rosalind.info/glossary/euclidean-distance/
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Exercise
Find the distance of the points

A
https://www.summitlearning.org/guest/
focusareas/862919

B (1,−2, 3), (0,−3,−2)
C (−1, 0, 3, 2), (1,−1, 2,−3)

√
52,

√
27,

√
31
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Exercise
A ρ((1, 2), (1, 2))

B ρ((1, 2), (4, 6)), ρ((4, 6), (1, 2))
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Exercise
A ρ((1, 2), (1, 2))
B ρ((1, 2), (4, 6)), ρ((4, 6), (1, 2))
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Exercise
C ρ((1, 2), (4, 6)), ρ((1, 2), (1, 1)) + ρ((1, 1), (4, 6))
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Exercise
D 2ρ((1, 2), (4, 6)), ρ((2, 4), (8, 12))
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Exercise
E ρ((1, 2), (4, 6)), ρ((2, 3), (5, 7))
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Theorem 1 (properties of the Euclidean metric)
The Euclidean metric ρ has the following properties:

(i) ∀x, y ∈ Rn : ρ(x, y) = 0 ⇔ x = y,
(ii) ∀x, y ∈ Rn : ρ(x, y) = ρ(y, x), (symmetry)

(iii) ∀x, y, z ∈ Rn : ρ(x, y) ≤ ρ(x, z) + ρ(z, y),
(triangle inequality)

(iv) ∀x, y ∈ Rn,∀λ ∈ R : ρ(λx, λy) = |λ|ρ(x, y), (homogeneity)
(v) ∀x, y, z ∈ Rn : ρ(x + z, y + z) = ρ(x, y).

(translation invariance)

Mathematics II - Functions of multiple variables 12 / 122



Definition
Let x ∈ Rn, r ∈ R, r > 0. The set B(x, r) defined by

B(x, r) = {y ∈ Rn; ρ(x, y) < r}

is called an open ball with radius r centred at x or the
neighbourhood of x.

http://www.science4all.org/article/topology/
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https://en.wikipedia.
org/wiki/N-sphere

https://commons.
wikimedia.org/wiki/File:

4dSphere.jpg
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https:
//www.tinyepiphany.com/

2011/12/
visualizing-4-dimensions.

html
https://cs.wikipedia.

org/wiki/%C4%8Ctvrt%C3%
BD_rozm%C4%9Br
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Definition
Let M ⊂ Rn. We say that x ∈ Rn is an interior point of M, if
there exists r > 0 such that B(x, r) ⊂ M.

The set of all interior points of M is called the interior of M and
is denoted by IntM.

The set M ⊂ Rn is open in Rn, if each point of M is an interior
point of M, i.e. if M = IntM.

http://www.gtmath.com/2016/07/
how-close-is-close-enough-metric-spaces.html
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Exercise
Find the interior
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Exercise
Solution
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Theorem 2 (properties of open sets)
(i) The empty set and Rn are open in Rn.

(ii) Let Gα ⊂ Rn, α ∈ A ̸= ∅, be open in Rn. Then
⋃

α∈A Gα is
open in Rn.

(iii) Let Gi ⊂ Rn, i = 1, . . . ,m, be open in Rn. Then
⋂m

i=1 Gi is
open in Rn.
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Remark
(ii) A union of an arbitrary system of open sets is an open set.
(iii) An intersection of a finitely many open sets is an open set.
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Exercise
Find the interior

1. {[x, y] ∈ R2 : x2 + y2 ≤ 4}
2. {[x, y] ∈ R2 : 1 ≤ x < 4, |y| ≥ 3}
3. {[x, y] ∈ R2 : x2 + 3y2 ≥ 1, x + y > 2}

1. {[x, y] ∈ R2 : x2 + y2 < 4}
2. {[x, y] ∈ R2 : 1 < x < 4, |y| > 3}
3. {[x, y] ∈ R2 : x2 + 3y2 > 1, x + y > 2}
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Definition
Let M ⊂ Rn and x ∈ Rn. We say that x is a boundary point of M
if for each r > 0

B(x, r) ∩ M ̸= ∅ and B(x, r) ∩ (Rn \ M) ̸= ∅.

The boundary of M is the set of all boundary points of M
(notation bdM).

https://en.wikipedia.org/wiki/File:
Interior_illustration.svg
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Definition

The closure of M is the set M ∪ bdM (notation M).

A set M ⊂ Rn is said to be closed in Rn if it contains all its
boundary points, i.e. if bdM ⊂ M, or in other words if M = M.

Exercise
Decide, if the set is closed or open, find the interior, the
boundary, the closure.

M = {[x, y] ∈ R2 : 1 < x ≤ 2, 3 ≤ y ≤ 5}.

Exercise
Find the boundary

1. {[x, y] ∈ R2 : x2 + y2 ≤ 4}
2. {[x, y] ∈ R2 : 1 ≤ x < 4, |y| ≥ 3}
3. {[x, y] ∈ R2 : x2 + 3y2 ≥ 1, x + y > 2}
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Definition
Let xj ∈ Rn for each j ∈ N and x ∈ Rn. We say that a sequence
{xj}∞j=1 converges to x, if

lim
j→∞

ρ(x, xj) = 0.

The vector x is called the limit of the sequence {xj}∞j=1.

The sequence {yj}∞j=1 of points in Rn is called convergent if
there exists y ∈ Rn such that {yj}∞j=1 converges to y.

Exercise

lim
j→∞

(
1
j
,

2j + 1
j

)
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Theorem 3 (convergence is coordinatewise)

Let xj ∈ Rn for each j ∈ N and let x ∈ Rn. The sequence {xj}∞j=1
converges to x if and only if for each i ∈ {1, . . . , n} the
sequence of real numbers {xj

i}∞j=1 converges to the real number
xi.

Remark
Theorem 3 says that the convergence in the space Rn is the
same as the “coordinatewise” convergence. It follows that a
sequence {xj}∞j=1 has at most one limit. If it exists, then we
denote it by limj→∞ xj. Sometimes we also write simply xj → x
instead of limj→∞ xj = x.
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Exercise

lim
j→∞

(
1 +

1
j
, 3 − 2

j2 , e−j

)
lim
j→∞

(
(−1)j, arctan(j3)

)

(1, 3, 0), ̸ ∃
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Theorem 4 (characterisation of closed sets)
Let M ⊂ Rn. Then the following statements are equivalent:

(i) M is closed in Rn.
(ii) Rn \ M is open in Rn.

(iii) Any x ∈ Rn which is a limit of a sequence from M belongs
to M.

Exercise
Decide, if the sets are closed or open (or nothing)

1. (0, 1) in R
2. (0,∞) in R
3. (−3, 2] in R

4. (−∞, 2] in R
5. x2 + y2 < 4 in R2

6. x2 + y2 ≥ 2 in R2

1. open
2. open

3. nothing
4. closed

5. open
6. closed
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Theorem 5 (properties of closed sets)
(i) The empty set and the whole space Rn are closed in Rn.

(ii) Let Fα ⊂ Rn, α ∈ A ̸= ∅, be closed in Rn. Then
⋂

α∈A Fα is
closed in Rn.

(iii) Let Fi ⊂ Rn, i = 1, . . . ,m, be closed in Rn. Then
⋃m

i=1 Fi is
closed in Rn.
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Remark
(ii) An intersection of an arbitrary system of closed sets is
closed.
(iii) A union of finitely many closed sets is closed.
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Definition
We say that the set M ⊂ Rn is bounded if there exists r > 0
such that M ⊂ B(o, r). A sequence of points in Rn is bounded if
the set of its members is bounded.

Theorem 6

A set M ⊂ Rn is bounded if and only if its closure M is bounded.
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Exercise
Find bounded sets

A x ∈ [−1, 3], 0 < y ≤ 100
B x2 + y2 + z2 ≤ 5
C x − y < 6
D |x + y| < 6

A, B, D
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Exercise
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Definition
We say that a set M ⊂ Rn is compact if for each sequence of
elements of M there exists a convergent subsequence with a
limit in M.

Theorem 7 (characterisation of compact subsets of Rn)
The set M ⊂ Rn is compact if and only if M is bounded and
closed.

Exercise
Find compact sets

A (0, 1)
B [1, 2]× [−1,−3]
C 1 < x2 + (y − 3)2 + z2 ≤ 4
D xyz ≤ 1

B
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Map game
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Definition
We define a function of two variables as a mapping f : M → R,
where M ⊂ R2.

Example

f (x, y) = x2 + y2, [x, y] ∈ R2

f (x, y) = arccos y · arcsin x, Df = [−1, 1]× [−1, 1]
f (x, y) = ln(xy), Df = {(x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0)}
f (x, y) = x3, [x, y] ∈ R2

f (x, y) = 5, [x, y] ∈ R2
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Example

f (x, y) = x2

x2+y2 f (x, y) = sin x cos y
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Example

f (x, y) =
√

x2 + y2 f (x, y) =
√

4 − (x2 + y2)
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Exercise

Find the graph for the
contourlines

http://www.cpp.edu/˜conceptests/question-library/
mat214.shtml

A
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Exercise

Find the contourlines for the
graph.

(a) A (b) B (c) C

B
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Exercise

Find the contourlines for the
graph.

(a) A (b) B (c) C
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Exercise
Connect the contourlines and the functions

Figure: Hughes Hallett et al c 2009, John Wiley & Sons
A −x2 + y2

B x2 − y2

C −x2 − y2

D x2 + y2

I D, II B, III C, IV A
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Definition
We define a function of multiple variables as a mapping
f : M → R, where M ⊂ Rn.

Example

f (x) = x3, x ∈ R
f (x, y) = y sin x, [x, y] ∈ R2

f (x, y, z) = x2 + y2z, [x, y, z] ∈ R3

f (x, y, z) = exy arcsin z, Df = R× R× [−1, 1]

f (x, y, z) = 5, [x, y, z] ∈ R3

f (x, y, z, u) = xeyz ln u, Df = {[x, y, z, u] ∈ R4 : u > 0}
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Example
Length of the day
Length of your shadow.
Compound interest.
Storm radar.
Drivers license tests.
Google ads.
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https://math.stackexchange.com/questions/703443/
best-way-to-plot-a-4-dimensional-meshgrid
https://www.mathworks.com/matlabcentral/answers/
224648-plotting-4d-with-3-vectors-and-1-matrix

Note: Mathematica animation
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Definition
We say that a function f of n variables has a limit at a point
a ∈ Rn equal to A ∈ R∗ if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x ∈ B(a, δ)\{a} : f (x) ∈ B(A, ε).
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http://mathonline.wikidot.com/
limits-of-functions-of-two-variables
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Remark
Each function has at a given point at most one limit. We
write limx→a f (x) = A.
The function f is continuous at a if and only if
limx→a f (x) = f (a).
For limits of functions of several variables one can prove
similar theorems as for limits of functions of one variable
(arithmetics, the sandwich theorem, . . . ).

Note: Mathematica animation
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Exercise
1. lim(x,y)→(2,−1) x2 − 2xy + 3y2 − 4x + 3y − 6

2. lim(x,y)→(2,−1)
2x+3y
4x−3y

3. lim(x,y)→(0,0)
x2+xy
x+y

-6, 1/11, 0
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In the table there are values of a function f (x, y). Does there
exist the limit

lim
(x,y)→(0,0)

f (x, y)?

https://www.cpp.edu/conceptests/question-library/
mat214.shtml

No limit. (Candidates are at leat 1 and -1.)
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V.2. Continuous functions of several variables

Definition
Let M ⊂ Rn, x ∈ M, and f : M → R. We say that f is
continuous at x with respect to M, if we

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀y ∈ B(x, δ)∩M : f (y) ∈ B(f (x), ε).

We say that f is continuous at the point x if it is continuous at x
with respect to a neighbourhood of x, i.e.

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀y ∈ B(x, δ) : f (y) ∈ B(f (x), ε).
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Definition
Let M ⊂ Rn and f : M → R. We say that f is continuous on M if
it is continuous at each point x ∈ M with respect to M.

Remark
The functions πj : Rn → R, πj(x) = xj, 1 ≤ j ≤ n, are
continuous on Rn. They are called coordinate projections.

Theorem 8
Let M ⊂ Rn, x ∈ M, f : M → R, g : M → R, and c ∈ R. If f
and g are continuous at the point x with respect to M, then the
functions cf , f + g a fg are continuous at x with respect to M. If
the function g is nonzero at x, then also the function f/g is
continuous at x with respect to M.
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Theorem 9
Let r, s ∈ N, M ⊂ Rs, L ⊂ Rr, and y ∈ M. Let φ1, . . . , φr be
functions defined on M, which are continuous at y with respect
to M and [φ1(x), . . . , φr(x)] ∈ L for each x ∈ M. Let f : L → R
be continuous at the point [φ1(y), . . . , φr(y)] with respect to L.
Then the compound function F : M → R defined by

F(x) = f
(
φ1(x), . . . , φr(x)

)
, x ∈ M,

is continuous at y with respect to M.
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Exercise
Where is continuous f (x, y) = cos x

y?
A Everywhere except at the origin
B Everywhere except along the x-axis.
C Everywhere except along the y-axis.
D Everywhere except along the line y = x.

B

Exercise
Where is continuous f (x, y) = sgn xy?

A Everywhere except along the axes.
B Everywhere except along the x-axis.
C Everywhere except at the origin.
D Everywhere except along the line y = x.

A
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Exercise
Find continuous functions (at R2)

A ln(x2 + y2 + 1)
B x−y

exy

C
√

y−1
x2

D sin(2x) + x cot(x3 + 2y)
E sgn(x4 + y4)

A, B
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Theorem 10
Let f be a continuous function on Rn and c ∈ R. Then the
following holds:

(i) The set {x ∈ Rn; f (x) < c} is open in Rn.
(ii) The set {x ∈ Rn; f (x) > c} is open in Rn.

(iii) The set {x ∈ Rn; f (x) ≤ c} is closed in Rn.
(iv) The set {x ∈ Rn; f (x) ≥ c} is closed in Rn.
(v) The set {x ∈ Rn; f (x) = c} is closed in Rn.

Example

f (x, y) = x2 + y2,

Mathematica
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Partial derivatives

https://www.wikihow.com/
Take-Partial-Derivatives

http:
//calcnet.cst.cmich.edu/
faculty/angelos/m533/
lectures/pderv.htm

Animation.
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Definition
Let f be a function, a ∈ R.

f ′(a) = lim
t→0

f (a + t)− f (a)
t

.

Set ej = [0, . . . , 0, 1
jth coordinate

, 0, . . . , 0].

Definition
Let f be a function of n variables, j ∈ {1, . . . , n}, a ∈ Rn. Then
the number

∂f
∂xj

(a) = lim
t→0

f (a + tej)− f (a)
t

= lim
t→0

f (a1, . . . , aj−1, aj + t, aj+1, . . . , an)− f (a1, . . . , an)

t

is called the partial derivative (of first order) of function f
according to jth variable at the point a (if the limit exists).
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Exercise

Find ∂f
∂x , if f (x, y) = x3 + 3x2y − 5x − 7y3 + y − 5

A
∂f
∂x

= 3x2 + 6xy − 5

B
∂f
∂x

= x3+3−21y2+1−5

C
∂f
∂x

= 3x2 − 21y2 + 1

D
∂f
∂x

=

3x2 + 6xy − 5 − 7y3 + y

A
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Exercise

Find ∂f
∂y , if f (x, y) = x2 ln(x2y)

A
∂f
∂y

=
2x
y

B
∂f
∂y

=
1
y

C
∂f
∂y

=
x2

y

D
∂f
∂y

=
1

x2y

C
According to: https://www.wiley.com/college/
hugheshallett/0470089148/conceptests/concept.pdf
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Exercise

The values of a function
f (x, y) are in the table. Which
statement is most accurate?
(In the left columnt there is x,
in the first row there is y.)

A ∂f
∂x(1, 2) ≈ −1

B ∂f
∂y(1, 2) ≈ 2

C ∂f
∂x(3, 2) ≈ 1

D ∂f
∂y(3, 2) ≈ 4

https://www.cpp.edu/conceptests/question-library/

mat214.shtml

A, B
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Exercise

A ∂f
∂x > 0, ∂f

∂y > 0

B ∂f
∂x < 0, ∂f

∂y > 0

C ∂f
∂x > 0, ∂f

∂y < 0

D ∂f
∂x < 0, ∂f

∂y < 0

B
https://www.cpp.edu/conceptests/question-library/
mat214.shtml
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Exercise (True or false?)

1. Let f (x, y, z) = x2 + z + 3. Then the partial derivative ∂f
∂y is

not defined, because there is no y in the function.

False, ∂f
∂y = 0.

2. Is there a function f (x, y) such that ∂f
∂y = 3y2 and ∂f

∂x = 3x2?
Yes. For example f (x, y) = x3 + y3.

Exercise
Find a function, which is not constant, but
∂f
∂x = 0 for every x.
For example f (x, y) = y2 + 4.
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Definition
Let G ⊂ Rn be a non-empty open set. If a function f : G → R
has all partial derivatives continuous at each point of the set G
(i.e. the function x 7→ ∂f

∂xj
(x) is continuous on G for each

j ∈ {1, . . . , n}), then we say that f is of the class C1 on G. The
set of all of these functions is denoted by C1(G).

Remark
If G ⊂ Rn is a non-empty open set and and f , g ∈ C1(G), then
f + g ∈ C1(G), f − g ∈ C1(G), and fg ∈ C1(G). If moreover
g(x) ̸= 0 for each x ∈ G, then f/g ∈ C1(G).
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Exercise
Find functions, which are C1(R2).

A exy

B 3
√

x2 + y2

C sin(x−2y)
2+x2+y2

D ln y
x

A, C
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Example

f (x, y) =
√

100 − x2 − y2
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Example

f (x, y) = x2 + y2
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Example

f (x, y) = 5
√

x2 + y2
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Definition
Suppose that the function f has a finite derivative at a point
a ∈ R. The line

Ta =
{
[x, y] ∈ R2; y = f (a) + f ′(a)(x − a)

}
.

is called the tangent to the graph of f at the point [a, f (a)].

Definition
Let G ⊂ Rn be an open set, a ∈ G, and f ∈ C1(G). Then the
graph of the function

T : x 7→ f (a) +
∂f
∂x1

(a)(x1 − a1) +
∂f
∂x2

(a)(x2 − a2)

+ · · ·+ ∂f
∂xn

(a)(xn − an), x ∈ Rn,

is called the tangent hyperplane to the graph of the function f at
the point [a, f (a)].
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Exercise
Find the tangent plane of a function f (x, y) = xy at the point
(2, 3).

A z − 6 = x(x − 2) + y(y − 3)
B z − 6 = y(x − 2) + x(y − 3)
C z − 6 = 2(x − 2) + 3(y − 3)
D z − 6 = 3(x − 2) + 2(y − 3)

D

Exercise
Find the tangent plane of a function
f (x, y, z, u) = ln(xy + z2 − u) at the point a = (1, 0, 2, 3).

v − 0 = 0(x − 1) + 1(y − 0) + 4(z − 2)− 1(u − 3)

v = y + 4z − u − 5
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Theorem 11 (tangent hyperplane)

Let G ⊂ Rn be an open set, a ∈ G, f ∈ C1(G), and let T be a
function whose graph is the tangent hyperplane of the function
f at the point [a, f (a)]. Then

lim
x→a

f (x)− T(x)
ρ(x, a)

= 0.

Theorem 12
Let G ⊂ Rn be an open non-empty set and f ∈ C1(G). Then f is
continuous on G.

Remark
Existence of partial derivatives at a does not imply continuity at
a.
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Theorem 13 (derivative of a composite function; chain rule)
Let r, s ∈ N and let G ⊂ Rs, H ⊂ Rr be open sets. Let
φ1, . . . , φr ∈ C1(G), f ∈ C1(H) and [φ1(x), . . . , φr(x)] ∈ H for
each x ∈ G. Then the compound function F : G → R defined by

F(x) = f
(
φ1(x), φ2(x), . . . , φr(x)

)
, x ∈ G,

is of the class C1 on G. Let a ∈ G and b = [φ1(a), . . . , φr(a)].
Then for each j ∈ {1, . . . , s} we have

∂F
∂xj

(a) =
r∑

i=1

∂f
∂yi

(b)
∂φi

∂xj
(a).
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Remark
Let f (x, y, z) be a differentiable function, let x = g1(u, v),
y = g2(u, v), z = g3(u, v), where g1, g2, g3 are differentiable
functions. Then for h(u, v) = f (g1(u, v), g2(u, v), g3(u, v)) we
have

∂h
∂u

=
∂f
∂x

∂x
∂u

+
∂f
∂y

∂y
∂u

+
∂f
∂z

∂z
∂u

∂h
∂v

=
∂f
∂x

∂x
∂v

+
∂f
∂y

∂y
∂v

+
∂f
∂z

∂z
∂v

http://mathinsight.org/media/image/image/
chain_rule_geometric_objects.png
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Exercise
Let h(u, v) = sin x cos y, where x = (u − v)2 and y = u2 − v2.
Find ∂h/∂u a ∂h/∂v.

∂h
∂u

= cos(u−v)2 cos(u2−v2)2(u−v)−sin(u−v)2 sin(u2−v2)2u

∂h
∂v

= − cos(u−v)2 cos(u2−v2)2(u−v)+sin(u−v)2 sin(u2−v2)2v
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Exercise
Let h(u, v) = sin x cos y, where x = (u − v)2 and y = u2 − v2.
Find ∂h/∂u a ∂h/∂v.

∂h
∂u
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∂h
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Exercise
Let h(u, v) = xy, where x = u cos v and y = u sin v. Then for
∂h/∂v we have

A
∂h
∂v

= 0

B
∂h
∂v

= u2 cos(2v)

C
∂h
∂v

= −u3 sin2 v cos v + u3 sin v cos2 v

D Something else.

B
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Exercise
Let h(u, v) = xy, where x = u cos v and y = u sin v. Then for
∂h/∂v we have

A
∂h
∂v

= 0

B
∂h
∂v

= u2 cos(2v)

C
∂h
∂v

= −u3 sin2 v cos v + u3 sin v cos2 v

D Something else.
B
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V.4. Implicit function theorem and Lagrange
multiplier theorem
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f (x, y) = x2 + y2 − 1 − y 3
√

x2
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Theorem 14 (implicit function)

Let G ⊂ Rn+1 be an open set, F : G → R, and x̃ ∈ Rn, ỹ ∈ R
such that [x̃, ỹ] ∈ G. Suppose that

(i) F ∈ C1(G),
(ii) F(x̃, ỹ) = 0,

(iii)
∂F
∂y

(x̃, ỹ) ̸= 0.

Then there exist a neighbourhood U ⊂ Rn of the point x̃ and a
neighbourhood V ⊂ R of the point ỹ such that for each x ∈ U
there exists a unique y ∈ V satisfying F(x, y) = 0. If we denote
this y by φ(x), then the resulting function φ is in C1(U) and

∂φ

∂xj
(x) = −

∂F
∂xj
(x, φ(x))

∂F
∂y (x, φ(x))

for x ∈ U, j ∈ {1, . . . , n}.
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Theorem
Let G ⊂ Rn+1 be an open set, F : G → R, and x̃ ∈ Rn, ỹ ∈ R
such that [x̃, ỹ] ∈ G. Suppose that

(i) F ∈ C1(G),
(ii) F(x̃, ỹ) = 0,

(iii)
∂F
∂y

(x̃, ỹ) ̸= 0.

Then there exists a neighbourhood . . .

Exercise
Consider these exercises. Which condition is NOT satisfied?

A x2 + y3 = 4 at (2, 0)
B y − 1

2 sin y = x at (π, π)
C sin(xy) + x2 + y2 = 1 at

(0, 3)
D |x|+ ex+y = 1 at (0, 0)

A iii,
B all is ok,
C ii,
D i
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Theorem
Let G ⊂ Rn+1 be an open set, F : G → R, and x̃ ∈ Rn, ỹ ∈ R
such that [x̃, ỹ] ∈ G. Suppose that

(i) F ∈ C1(G),
(ii) F(x̃, ỹ) = 0,

(iii)
∂F
∂y

(x̃, ỹ) ̸= 0.

Then there exists a neighbourhood . . .

Exercise
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A x2 + y3 = 4 at (2, 0)
B y − 1

2 sin y = x at (π, π)
C sin(xy) + x2 + y2 = 1 at

(0, 3)
D |x|+ ex+y = 1 at (0, 0)
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B all is ok,
C ii,
D i
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Definition
Let G ⊂ Rn be an open set, a ∈ G, and f ∈ C1(G). The gradient
of f at the point a is the vector

∇f (a) =
[
∂f
∂x1

(a),
∂f
∂x2

(a), . . . ,
∂f
∂xn

(a)
]
.

Exercise
Find the gradient of f (x, y, z) = y cos3(x2z) at the point [2, 1, 0]:

A (1/5, 0, 1/5)
B (0, 1, 1/5)

C (0, 1, 0)
D (1, 0, 1/2)

C
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Remark
The gradient of f at a points in the direction of steepest growth
of f at a. At every point, the gradient is perpendicular to the
contour of f .

Exercise
The bicyclist is on a trip up the hill, which can be described as
f (x, y) = 25 − 2x2 − 4y2. When she is at the point [1, 1, 19], it
starts to rain, so she decides to go down the hill as steeply as
possible (so that she is down quickly). In what direction will
she start her decline?

A (−4x;−8y)
B (4x; 8y)

C (−4;−8)
D (4; 8)

D
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Definition
Let M ⊂ Rn, x ∈ M, and let f be a function defined at least on
M (i.e. M ⊂ Df ). We say that f attains at the point x its

maximum on M if f (y) ≤ f (x) for every y ∈ M,
local maximum with respect to M if there exists δ > 0
such that f (y) ≤ f (x) for every y ∈ B(x, δ) ∩ M,
strict local maximum with respect to M if there exists
δ > 0 such that f (y) < f (x) for every
y ∈

(
B(x, δ) \ {x}

)
∩ M.

The notions of a minimum, a local minimum, and a strict local
minimum with respect to M are defined in analogous way.

Definition
We say that a function f attains a local maximum at a point
x ∈ Rn if x is a local maximum with respect to some
neighbourhood of x.

Similarly we define local minimum, strict local maximum and
strict local minimum.
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Theorem 15 (attaining extrema)
Let M ⊂ Rn be a non-empty compact set and f : M → R a
function continuous on M. Then f attains its maximum and
minimum on M.

Corollary
Let M ⊂ Rn be a non-empty compact set and f : M → R a
continuous function on M. Then f is bounded on M.
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Theorem 16 (necessary condition of the existence of local
extremum)
Let G ⊂ Rn be an open set, a ∈ G, and suppose that a function
f : G → R has a local extremum (i.e. a local maximum or a
local minimum) at the point a. Then for each j ∈ {1, . . . , n} the
following holds:

The partial derivative
∂f
∂xj

(a) either does not exist or it is equal

to zero.
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Definition
Let G ⊂ Rn be an open set, a ∈ G, f ∈ C1(G), and ∇f (a) = o.
Then the point a is called a stationary (or critical) point of the
function f .
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Example

f (x, y) = x2 + y2
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Example

f (x, y) = e−x2−y2
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Example

f (x, y) = x + 2y − 4
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Example

f (x, y) =
√

x2 + y2
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Example

f (x, y) = x2 − y2
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Exercise
1. Consider the points A, B, C, D, E. Find the critical points.
2. Which of these points are probably points of

2.1 local maximum,
2.2 local minimum,
2.3 saddle point?

Figure: Calculus, 6th Edition; Hughes-Hallett, Gleason, McCallum et
al.
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Exercise
1. Consider the points A, B, C, D, E. Find the critical points.
2. Which of these points are probably points of

2.1 local maximum - B
2.2 local minimum - E, G
2.3 saddle point - C, D, F

Figure: Calculus, 6th Edition; Hughes-Hallett, Gleason, McCallum et
al.
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Definition
Let G ⊂ Rn be an open set, f : G → R, i, j ∈ {1, . . . , n}, and
suppose that ∂f

∂xi
(x) exists finite for each x ∈ G. Then the partial

derivative of the second order of the function f according to ith
and jth variable at a point a ∈ G is defined by

∂2f
∂xi∂xj

(a) =
∂
(

∂f
∂xi

)
∂xj

(a)

If i = j then we use the notation ∂2f
∂x2

i
(a).

Similarly we define higher order partial derivatives.

Exercise
Find the second partial derivatives of the function
f (x, y) = x2 + xy + y2.
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Exercise

Find ∂2f
∂x∂y , if f (x, y) = exy

A exy

B yexy

C x2exy

D exy(xy + 1)

D

Exercise

Find ∂2f
∂y∂x , if f (x, y) = exy

A exy

B yexy

C x2exy

D exy(xy + 1)
D
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Remark

In general it is not true that ∂2f
∂xi∂xj

(a) = ∂2f
∂xj∂xi

(a).

Theorem 17 (interchanging of partial derivatives)

Let i, j ∈ {1, . . . , n} and suppose that a function f has both
partial derivatives ∂2f

∂xi∂xj
and ∂2f

∂xj∂xi
on a neighbourhood of a

point a ∈ Rn and that these functions are continuous at a. Then

∂2f
∂xi∂xj

(a) =
∂2f

∂xj∂xi
(a).
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Exercise
You follow the red route. Where is the highest point of your
trip?
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Exercise
Where is the minimum and maximum of the function
f (x, y) = y along the curve?

https://www.cpp.edu/conceptests/
question-library/mat214.shtml

min: A, max B
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Theorem 18 (Lagrange multiplier theorem)

Let G ⊂ R2 be an open set, f , g ∈ C1(G),
M = {[x, y] ∈ G; g(x, y) = 0} and let [x̃, ỹ] ∈ M be a point of
local extremum of f with respect to M. Then at least one of the
following conditions holds:
(I) ∇g(x̃, ỹ) = o,

(II) there exists λ ∈ R satisfying

∂f
∂x

(x̃, ỹ) + λ
∂g
∂x

(x̃, ỹ) = 0,

∂f
∂y

(x̃, ỹ) + λ
∂g
∂y

(x̃, ỹ) = 0.

Remark
The number λ is called the Lagrange multiplier.
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V.5. Concave and quasiconcave functions
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 b

 a

a = 1 · a + 0 · b = a + 0 · (b − a)
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 b

 a

b = 0 · a + 1 · b = a + 1 · (b − a)
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 b

 a
3
4
· a +

1
4
· b = a +

1
4
· (b − a)
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1
2
· a +

1
2
· b = a +

1
2
· (b − a)
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1
4
· a +

3
4
· b = a +

3
4
· (b − a)
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 b

 a

t · a + (1 − t) · b = a + (1 − t) · (b − a)
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Definition
Let M ⊂ Rn. We say that M is convex if

∀x, y ∈ M ∀t ∈ [0, 1] : tx + (1 − t)y ∈ M.

Exercise
Find convex sets

A, B
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Exercise
Find convex sets

A, B, C, D
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Exercise
Find convex sets

A, B, C, D
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Concave and convex functions

https://math24.net/convex-functions.html
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Concave and convex functions
Definition
Let M ⊂ Rn be a convex set and f a function defined on M. We
say that f is

concave on M if

∀a, b ∈ M ∀t ∈ [0, 1] : f (ta+(1−t)b) ≥ tf (a)+(1−t)f (b),

strictly concave on M if

∀a, b ∈ M, a ̸= b ∀t ∈ (0, 1) :
f (ta + (1 − t)b) > tf (a) + (1 − t)f (b).

Remark
By changing the inequalities to the opposite we obtain a
definition of a convex and a strictly convex function.
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Remark
A function f is convex (strictly convex) if and only if the
function −f is concave (strictly concave).
All the theorems in this section are formulated for concave and
strictly concave functions. They have obvious analogies that
hold for convex and strictly convex functions.
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Remark
If a function f is strictly concave on M, then it is concave
on M.
Let f be a concave function on M. Then f is strictly
concave on M if and only if the graph of f “does not
contain a segment”, i.e.

¬
(
∃a, b ∈ M, a ̸= b, ∀t ∈ [0, 1] :

f (ta + (1 − t)b) = tf (a) + (1 − t)f (b)
)
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Theorem 19
Let f be a function concave on an open convex set G ⊂ Rn.
Then f is continuous on G.
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Figure: https://math24.net/convex-functions.html
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Theorem 20 (characterisation of concave functions of the class
C1)

Let G ⊂ Rn be a convex open set and f ∈ C1(G). Then the
function f is concave on G if and only if

∀x, y ∈ G : f (y) ≤ f (x) +
n∑

i=1

∂f
∂xi

(x)(yi − xi).

Corollary 21

Let G ⊂ Rn be a convex open set, f ∈ C1(G), and let a ∈ G be a
critical point of f (i.e. ∇f (a) = o). If f is concave on G, then a
is a maximum point of f on G. If f is strictly concave on G, then
a is a strict maximum point of f on G.
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Theorem 22 (level sets of concave functions)
Let f be a function concave on a convex set M ⊂ Rn. Then for
each α ∈ R the set Qα = {x ∈ M; f (x) ≥ α} is convex.
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Definition
Let M ⊂ Rn be a convex set and let f be a function defined on
M. We say that f is

quasiconcave on M if

∀a, b ∈ M ∀t ∈ [0, 1] : f (ta + (1 − t)b) ≥ min{f (a), f (b)},

strictly quasiconcave on M if

∀a, b ∈ M, a ̸= b, ∀t ∈ (0, 1) :
f (ta + (1 − t)b) > min{f (a), f (b)}.

Remark
By changing the inequalities to the opposite and changing the
minimum to a maximum we obtain a definition of a
quasiconvex and a strictly quasiconvex function.
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Not quasiconcave
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Remark
A function f is quasiconvex (strictly quasiconvex) if and only if
the function −f is quasiconcave (strictly quasiconcave).
All the theorems in this section are formulated for quasiconcave
and strictly quasiconcave functions. They have obvious
analogies that hold for quasiconvex and strictly quasiconvex
functions.

Remark
If a function f is strictly quasiconcave on M, then it is
quasiconcave on M.
Let f be a quasiconcave function on M. Then f is strictly
quasiconcave on M if and only if the graph of f “does not
contain a horizontal segment”, i.e.

¬
(
∃a, b ∈ M, a ̸= b, ∀t ∈ [0, 1] : f (ta + (1 − t)b) = f (a)

)
.
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Remark
Let M ⊂ Rn be a convex set and f a function defined on M.

If f is concave on M, then f is quasiconcave on M.
If f is strictly concave on M, then f is strictly quasiconcave
on M.

Theorem 23 (characterization of quasiconcave functions using
level sets)
Let M ⊂ Rn be a convex set and f a function defined on M.
Then f is quasiconcave on M if and only if for each α ∈ R the
set Qα = {x ∈ M; f (x) ≥ α} is convex.
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Exercise
Find quasiconcave functions:

B
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Theorem 24 (a uniqueness of an extremum)
Let f be a strictly quasiconcave function on a convex set
M ⊂ Rn. Then there exists at most one point of maximum of f .

Corollary
Let M ⊂ Rn be a convex, closed, bounded and nonempty set
and f a continuous and strictly quasiconcave function on M.
Then f attains its maximum at exactly one point.
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Theorem 25 (sufficient condition for concave and convex
functions in R2)

Let G ⊂ R2 be convex and f ∈ C2(G).

If ∂2f
∂x2 ≤ 0, ∂2f

∂y2 ≤ 0, and ∂2f
∂x2

∂2f
∂y2 −

(
∂2f
∂x∂y

)2
≥ 0 hold on G, then f

is concave on G.

If ∂2f
∂x2 ≥ 0, ∂2f

∂y2 ≥ 0, and ∂2f
∂x2

∂2f
∂y2 −

(
∂2f
∂x∂y

)2
≥ 0 hold on G, then f

is convex on G.

Exercise
Decide if the following functions are convex or concave on R2.

A f (x, y) = x2 + y2

B f (x, y) = −x4 − y4

C f (x, y) = −x2 + y2

A convex, B concave, C neither convex, nor concave
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Good luck in the exam period!
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