Mathematics I - Introduction

21/22

http://www.karlin.mff.cuni.cz/~pick/2018-10-02-prvni-prednaska-z-analyzy.pdf https://www.youtube.com/watch?v=6cC3ndnR66s https://fanmovie.cz/dvd/alenka-v-risi-divu-na-dvd-a-blu-ray/ https://ceskapozice.lidovky.cz/nove-relikvie-z-mendelovy-pozustalosti-otec-genetiky-laka-vedce-do-ceska-1q6-/tema.aspx?c=A121220_120247_pozice_88014

https://g.cz/pred-77-lety-byl-cepinem-zavrazden-bolsevik-trockij-po-propusteni-z-vezeni-zil-jeho-vrah-kousek-za-prahou/

 Preparation for other courses — Statistics, Microeconomics, . . .

At the end of the course students should be able to

- Preparation for other courses Statistics, Microeconomics, . . .
- Training of logical thinking and mathematical exactness

At the end of the course students should be able to

- Preparation for other courses Statistics, Microeconomics, . . .
- Training of logical thinking and mathematical exactness

At the end of the course students should be able to

• compute limits and derivatives and investigate functions

- Preparation for other courses Statistics, Microeconomics, . . .
- Training of logical thinking and mathematical exactness

At the end of the course students should be able to

- compute limits and derivatives and investigate functions
- understand definitions (give positive and negative examples) and theorems (explain their meaning, necessity of the assumptions, apply them in particular situations)

- Preparation for other courses Statistics, Microeconomics, . . .
- Training of logical thinking and mathematical exactness

At the end of the course students should be able to

- compute limits and derivatives and investigate functions
- understand definitions (give positive and negative examples) and theorems (explain their meaning, necessity of the assumptions, apply them in particular situations)
- perform mathematical proofs, give mathematically exact arguments, write mathematical formulae, use quantifiers

Mathematics I

- Introduction
- Limit of a sequence
- Mappings
- Functions of one real variable

Textbooks

- Hájková et al: Mathematics 1
- Trench: Introduction to real analysis
- Ghorpade, Limaye: A course in calculus and real analysis
- Zorich: Mathematical analysis I
- Rudin: Principles of mathematical analysis

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

• $x \in A \dots x$ is an element (or member) of the set A

We take a set to be a collection of definite and distinguishable objects into a coherent whole.

• $x \in A \dots x$ is an element (or member) of the set A

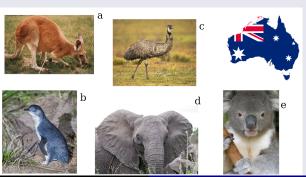
We take a set to be a collection of definite and distinguishable objects into a coherent whole.

• $x \in A \dots x$ is an element (or member) of the set A

Exercise (True or false)

A - set of all animals living in Australia.

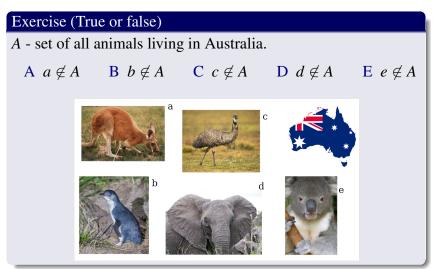
A $a \in A$ B $b \in A$ C $c \in A$ D $d \in A$ E $e \in A$



1)40

• $x \notin A \dots x$ is not a member of the set A

• $x \notin A \dots x$ is not a member of the set A



• A^c ... the complement of the set A

- A^c ... the complement of the set A
- $B \subset A$... the set B is a subset of the set A (inclusion) Example: B is the set of all birds living in Australia: $B \subset A$.

- A^c ... the complement of the set A
- $B \subset A$... the set B is a subset of the set A (inclusion) Example: B is the set of all birds living in Australia: $B \subset A$.
- A = B ... the sets A and B have the same elements; the following holds: $A \subset B$ and $B \subset A$

- A^c ... the complement of the set A
- $B \subset A$... the set B is a subset of the set A (inclusion) Example: B is the set of all birds living in Australia: $B \subset A$.
- A = B ... the sets A and B have the same elements; the following holds: $A \subset B$ and $B \subset A$
- \emptyset ... an empty set

- A^c ... the complement of the set A
- $B \subset A$... the set B is a subset of the set A (inclusion) Example: B is the set of all birds living in Australia: $B \subset A$.
- A = B ... the sets A and B have the same elements; the following holds: $A \subset B$ and $B \subset A$
- ∅ ... an empty set
- $A \cup B \dots$ the union of the sets A and B

- A^c ... the complement of the set A
- $B \subset A$... the set B is a subset of the set A (inclusion) Example: B is the set of all birds living in Australia: $B \subset A$.
- A = B ... the sets A and B have the same elements; the following holds: $A \subset B$ and $B \subset A$
- ∅ ... an empty set
- $A \cup B \dots$ the union of the sets A and B
- $A \cap B$... the intersection of the sets A and B

- A^c ... the complement of the set A
- $B \subset A$... the set B is a subset of the set A (inclusion) Example: B is the set of all birds living in Australia: $B \subset A$.
- A = B ... the sets A and B have the same elements; the following holds: $A \subset B$ and $B \subset A$
- ∅ ... an empty set
- $A \cup B$... the union of the sets A and B
- $A \cap B$... the intersection of the sets A and B
- disjoint sets . . . A and B are disjoint if $A \cap B = \emptyset$

- A^c ... the complement of the set A
- $B \subset A$... the set B is a subset of the set A (inclusion) Example: B is the set of all birds living in Australia: $B \subset A$.
- A = B ... the sets A and B have the same elements; the following holds: $A \subset B$ and $B \subset A$
- ∅ ... an empty set
- $A \cup B$... the union of the sets A and B
- $A \cap B$... the intersection of the sets A and B
- disjoint sets ... A and B are disjoint if $A \cap B = \emptyset$
- $A \setminus B = \{x \in A; x \notin B\} \dots$ a difference of the sets A and B

- A^c ... the complement of the set A
- $B \subset A$... the set B is a subset of the set A (inclusion) Example: B is the set of all birds living in Australia: $B \subset A$.
- A = B ... the sets A and B have the same elements; the following holds: $A \subset B$ and $B \subset A$
- ∅ ...an empty set
- $A \cup B$... the union of the sets A and B
- $A \cap B$... the intersection of the sets A and B
- disjoint sets . . . A and B are disjoint if $A \cap B = \emptyset$
- $A \setminus B = \{x \in A; x \notin B\} \dots$ a difference of the sets A and B
- $A_1 \times \cdots \times A_m = \{[a_1, \dots, a_m]; a_1 \in A_1, \dots, a_m \in A_m\}$...the Cartesian product

Sets - questions

Exercise

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{1, 3, 5, 7, 9\}$ and $B = \{1, 2, 3, 4, 5\}$. Find

1. $A \cup B$

3. A^c

5. $A \setminus B$

2. $A \cap B$

4. $(B^c)^c$

6. $B \setminus A$

Sets - questions

Exercise

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{1, 3, 5, 7, 9\}$ and $B = \{1, 2, 3, 4, 5\}$. Find

1. $A \cup B$

3. A^{c}

5. $A \setminus B$

2. $A \cap B$

4. $(B^c)^c$

6. $B \setminus A$

Exercise (True or false)

Let A be a set.

 $A \emptyset \in A$

D $\{x\} \in \{x, y, z\}$

- $\mathbf{B} \ \emptyset \subset A$
- $\mathbf{C} \ 0 = \emptyset$

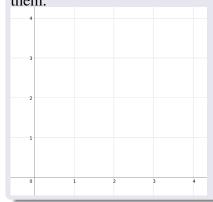
 $\mathbf{E} \ x \in \{x, y, z\}$

 $A_1 \times \cdots \times A_m = \{[a_1, \dots, a_m]; \ a_1 \in A_1, \dots, a_m \in A_m\} \dots$ the Cartesian product

 $A_1 \times \cdots \times A_m = \{[a_1, \dots, a_m]; \ a_1 \in A_1, \dots, a_m \in A_m\} \dots$ the Cartesian product

Exercise

Let $A = \{1, 2, 3\}$, $B = \{2, 4\}$. Find $A \times B$, $B \times B$ and sketch them.



Let I be a non-empty set of indices and suppose we have a system of sets A_{α} , where the indices α run over I.

• $\bigcup_{\alpha \in I} A_{\alpha}$... the set of all elements belonging to at least one of the sets A_{α}

Let I be a non-empty set of indices and suppose we have a system of sets A_{α} , where the indices α run over I.

- $\bigcup_{\alpha \in I} A_{\alpha}$... the set of all elements belonging to at least one of the sets A_{α}
- $igoplus_{lpha\in I}A_lpha$... the set of all elements belonging to every A_lpha

Let I be a non-empty set of indices and suppose we have a system of sets A_{α} , where the indices α run over I.

- $\bigcup_{\alpha \in I} A_{\alpha}$... the set of all elements belonging to at least one of the sets A_{α}
- $igoplus_{lpha\in I}A_lpha$... the set of all elements belonging to every A_lpha

Let I be a non-empty set of indices and suppose we have a system of sets A_{α} , where the indices α run over I.

- $\bigcup_{\alpha \in I} A_{\alpha}$... the set of all elements belonging to at least one of the sets A_{α}
- $igoplus_{lpha\in I}A_lpha$... the set of all elements belonging to every A_lpha

Example.

Let I be a non-empty set of indices and suppose we have a system of sets A_{α} , where the indices α run over I.

- $\bigcup_{\alpha \in I} A_{\alpha}$... the set of all elements belonging to at least one of the sets A_{α}
- $igoplus_{lpha\in I}A_lpha$. . . the set of all elements belonging to every A_lpha

Example.

$$A_1 \cup A_2 \cup A_3$$
 is equivalent to $\bigcup_{i=1}^{3} A_i$, and also to $\bigcup_{i \in \{1,2,3\}} A_i$.

Let I be a non-empty set of indices and suppose we have a system of sets A_{α} , where the indices α run over I.

- $\bigcup_{\alpha \in I} A_{\alpha}$... the set of all elements belonging to at least one of the sets A_{α}
- $igoplus_{lpha \in I} A_lpha$... the set of all elements belonging to every A_lpha

Example.

$$A_1 \cup A_2 \cup A_3$$
 is equivalent to $\bigcup_{i=1}^3 A_i$, and also to $\bigcup_{i \in \{1,2,3\}} A_i$.

Infinitely many sets: $A_1 \cup A_2 \cup A_3 \cup ...$ is equivalent to $\bigcup_{i=1}^{\infty} A_i$, and also to $\bigcup A_i$.

Exercise

Let
$$A_1 = \{0, 1\}, A_2 = \{0, 2\}, A_3 = \{0, 3\}$$
. Find

$$1. \bigcup_{i=1}^{3} A_i$$

$$2. \bigcap_{i \in \{1,2,3\}} A_i$$

Logic

Logic

A statement (or proposition) is a sentence which can be declared to be either true or false.

Logic

A statement (or proposition) is a sentence which can be declared to be either true or false.

Exercise

Find statements.

- A Let it be!
- B We all live in a yellow submarine.
- C Is there anybody out there?
- D We don't need no education.

Statements

- ¬, also non ... negation
- & (also \land) ... conjunction, logical "and"
- $\vee \dots$ disjuction (alternative), logical "or"
- $\bullet \Rightarrow \dots implication$
- ⇔ ... equivalence; "if and only if"

Exercise

- 1. Alice does not like chocolate icecream.
- 2. Alice likes chocolate and lemon icecream.
- 3. Alice likes chocolate or lemon icecream.
- 4. If it will be raining tomorrow, we will play board games.
- 5. We will play board games tomorrow if and only if it will be raining.

A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables. A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables. General form:

$$V(x), x \in M$$

A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we substitute certain elements of a given set for the variables. General form:

$$V(x), x \in M$$

$$V(x_1,\ldots,x_n),x_1\in M_1,\ldots,x_n\in M_n$$

Example

V(x): x is even

$$M = \{1, 2, 3, 4, 5\}$$

V(3) false, V(4) true.

$$V(x_1, x_2)$$
: $x_1 \cdot x_2 = 1$

$$M = \{2, \frac{1}{2}, 3, 4\}$$

$$V(2, \frac{1}{2})$$
 true, $V(2, 3)$ false.

$$\forall x \in M : A(x).$$

$$\forall x \in M : A(x).$$

The statement "There exists x in M such that A(x) holds." is shortened to

$$\exists x \in M : A(x).$$

$$\forall x \in M \colon A(x).$$

The statement "There exists x in M such that A(x) holds." is shortened to

$$\exists x \in M : A(x).$$

The statement "There is only one x in M such that A(x) holds." is shortened to

$$\exists ! x \in M : A(x).$$

$$\forall x \in M : A(x).$$

The statement "There exists x in M such that A(x) holds." is shortened to

$$\exists x \in M : A(x).$$

The statement "There is only one x in M such that A(x) holds." is shortened to

$$\exists ! x \in M : A(x).$$

Example

$$\forall x \in \mathbb{R} : |x| \ge 0$$

$$\exists x \in \mathbb{Q} : x + 3 \le 12$$

$$\exists ! x \in \mathbb{R}^+ : x^2 = 42$$

If A(x), $x \in M$ and B(x), $x \in M$ are predicates, then

$$\forall x \in M, B(x) : A(x)$$
 means $\forall x \in M : (B(x) \Rightarrow A(x)),$

If A(x), $x \in M$ and B(x), $x \in M$ are predicates, then

$$\forall x \in M, B(x) : A(x)$$
 means $\forall x \in M : (B(x) \Rightarrow A(x)),$

 $\exists x \in M, B(x) : A(x)$ means $\exists x \in M : (A(x) \& B(x)).$

Example

$$\forall x \in \mathbb{R}, x \ge -1 : 1 + 2x \le (1+x)^2$$
$$\exists x \in \mathbb{R}, x > 0 : x > x^2$$

Negations of the statements with quantifiers:

$$\neg(\forall x \in M : A(x))$$
 is the same as $\exists x \in M : \neg A(x)$,

Negations of the statements with quantifiers:

$$\neg(\forall x \in M : A(x))$$
 is the same as $\exists x \in M : \neg A(x)$,

$$\neg(\exists x \in M : A(x))$$
 is the same as $\forall x \in M : \neg A(x)$.

Example

Find negation

$$\forall x \in \mathbb{R}, x \ge -1 : 1 + 2x \le (1+x)^2$$

$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x \ge 0, y \ge 0 : \frac{x+y}{2} \ge \sqrt{xy}$$

$$\exists x \in \mathbb{R}, x > 0 : x > x^2$$

Methods of proofs

Methods of proofs

- direct proof
- indirect proof
- proof by contradiction
- mathematical induction

Induction

Exercise

$$\sum_{i=1}^{n} (2i - 1) = n^2$$

• The set of natural numbers

• The set of natural numbers

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of integers

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of integers

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of integers

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n; n \in \mathbb{N}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of integers

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n; n \in \mathbb{N}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

• The set of rational numbers

Mathematics I - Introduction

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of integers

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n; n \in \mathbb{N}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

• The set of rational numbers

Mathematics I - Introduction

• The set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

• The set of integers

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n; n \in \mathbb{N}\} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

• The set of rational numbers

$$\mathbb{Q} = \left\{ \frac{p}{q}; \ p \in \mathbb{Z}, q \in \mathbb{N} \right\},$$

where $\frac{p_1}{q_1} = \frac{p_2}{q_2}$ if and only if $p_1 \cdot q_2 = p_2 \cdot q_1$.

Real numbers

Real numbers

By the set of real numbers \mathbb{R} we will understand a set on which there are operations of addition and multiplication (denoted by + and \cdot), and a relation of ordering (denoted by \leq), such that it has the following three groups of properties.

- I. The properties of addition and multiplication and their relationships.
- II. The relationships of the ordering and the operations of addition and multiplication.
- III. The infimum axiom.

The properties of addition and multiplication and their relationships:

The properties of addition and multiplication and their relationships:

- $\forall x, y \in \mathbb{R} : x + y = y + x$ (commutativity of addition),
- $\forall x, y, z \in \mathbb{R}$: x + (y + z) = (x + y) + z (associativity),
- There is an element in \mathbb{R} (denoted by 0 and called a zero element), such that x + 0 = x for every $x \in \mathbb{R}$,
- $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x + y = 0$ (y is called the negative of x, such y is only one, denoted by -x),
- $\forall x, y \in \mathbb{R} : x \cdot y = y \cdot x$ (commutativity),
- $\forall x, y, z \in \mathbb{R} : x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (associativity),
- There is a non-zero element in \mathbb{R} (called identity, denoted by 1), such that $1 \cdot x = x$ for every $x \in \mathbb{R}$,
- $\forall x \in \mathbb{R} \setminus \{0\} \exists y \in \mathbb{R} : x \cdot y = 1 \text{ (such } y \text{ is only one, denoted by } x^{-1} \text{ or } \frac{1}{r}),$
- $\forall x, y, z \in \mathbb{R}$: $(x + y) \cdot z = x \cdot z + y \cdot z$ (distributivity).

The relationships of the ordering and the operations of addition and multiplication:

The relationships of the ordering and the operations of addition and multiplication:

- $\forall x, y, z \in \mathbb{R} : (x \le y \& y \le z) \Rightarrow x \le z \text{ (transitivity)},$
- $\forall x, y \in \mathbb{R} : (x \le y \& y \le x) \Rightarrow x = y \text{ (weak antisymmetry)},$
- $\bullet \ \forall x, y \in \mathbb{R} \colon x \leq y \lor y \leq x,$
- $\bullet \ \forall x, y, z \in \mathbb{R} : x \le y \Rightarrow x + z \le y + z,$
- $\forall x, y \in \mathbb{R} : (0 \le x \& 0 \le y) \Rightarrow 0 \le x \cdot y.$

We say that the set $M \subset \mathbb{R}$ is bounded from below if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have x > a.

We say that the set $M \subset \mathbb{R}$ is bounded from below if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have $x \geq a$. Such a number a is called a lower bound of the set M.

We say that the set $M \subset \mathbb{R}$ is bounded from below if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have $x \geq a$. Such a number a is called a lower bound of the set M. Analogously we define the notions of a set bounded from above and an upper bound.

We say that the set $M \subset \mathbb{R}$ is bounded from below if there exists a number $a \in \mathbb{R}$ such that for each $x \in M$ we have $x \ge a$. Such a number a is called a lower bound of the set M.

Analogously we define the notions of a set bounded from above and an upper bound. We say that a set $M \subset \mathbb{R}$ is bounded if it is bounded from above and below.

Exercise

Which sets are bounded from below? Bounded from above? Bounded?

- $A \mathbb{N}$
- B $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\}$
- $\mathbb{C} \mathbb{R} \setminus \mathbb{Q} \cap (-3,2]$
- **D** $\{x \in \mathbb{R} : x < \pi\}$
- E $(-\infty, -1) \cup \{0\} \cup [1, \infty)$

The infimum axiom:

Let M be a non-empty set bounded from below. Then there exists a unique number $g \in \mathbb{R}$ such that

(i) $\forall x \in M : x \geq g$,

The infimum axiom:

Let M be a non-empty set bounded from below. Then there exists a unique number $g \in \mathbb{R}$ such that

- (i) $\forall x \in M : x \geq g$,
- (ii) $\forall g' \in \mathbb{R}, g' > g \exists x \in M : x < g'$.

The infimum axiom:

Let M be a non-empty set bounded from below. Then there exists a unique number $g \in \mathbb{R}$ such that

- (i) $\forall x \in M : x \geq g$,
- (ii) $\forall g' \in \mathbb{R}, g' > g \; \exists x \in M \colon x < g'.$

The number g is denoted by $\inf M$ and is called the infimum of the set M.

- The infimum of A is the greater lower bound of the set A. All other lower bounds are smaller than inf(A).
- 2) Furthermore if b is greater than inf(A) then there exists an a contained in the set A such that a < b.

Figure:

https://mathspandorabox.wordpress.com/2016/03/11/the-difference-between-supremum-and-infimum-equivalent-and-equal-set/

Remark

• The infimum axiom says that every non-empty set bounded from below has infimum.

Remark

- The infimum axiom says that every non-empty set bounded from below has infimum.
- The infimum of the set *M* is its greatest lower bound.

Remark

- The infimum axiom says that every non-empty set bounded from below has infimum.
- The infimum of the set *M* is its greatest lower bound.
- The real numbers exist and are uniquely determined by the properties I–III.

The following hold:

- (i) $\forall x \in \mathbb{R} : x \cdot 0 = 0 \cdot x = 0$,
- (ii) $\forall x \in \mathbb{R}: -x = (-1) \cdot x$,
- (iii) $\forall x, y \in \mathbb{R} : xy = 0 \Rightarrow (x = 0 \lor y = 0),$
- (iv) $\forall x \in \mathbb{R} \ \forall n \in \mathbb{N} : x^{-n} = (x^{-1})^n$,
- (v) $\forall x, y \in \mathbb{R} : (x > 0 \land y > 0) \Rightarrow xy > 0$,
- (vi) $\forall x \in \mathbb{R}, x \ge 0 \ \forall y \in \mathbb{R}, y \ge 0 \ \forall n \in \mathbb{N} \colon x < y \Leftrightarrow x^n < y^n$.

Let $a, b \in \mathbb{R}$, $a \leq b$. We denote:

- An open interval $(a, b) = \{x \in \mathbb{R}; \ a < x < b\},\$
- A closed interval $[a,b] = \{x \in \mathbb{R}; a \le x \le b\},\$
- A half-open interval $[a, b) = \{x \in \mathbb{R}; a \le x < b\},\$
- A half-open interval $(a, b] = \{x \in \mathbb{R}; \ a < x \le b\}.$

Let $a, b \in \mathbb{R}$, $a \leq b$. We denote:

- An open interval $(a, b) = \{x \in \mathbb{R}; \ a < x < b\},\$
- A closed interval $[a,b] = \{x \in \mathbb{R}; a \le x \le b\},\$
- A half-open interval $[a,b) = \{x \in \mathbb{R}; a \le x < b\},\$
- A half-open interval $(a, b] = \{x \in \mathbb{R}; \ a < x \le b\}.$

The point a is called the left endpoint of the interval, The point b is called the right endpoint of the interval. A point in the interval which is not an endpoint is called an inner point of the interval.

Let $a, b \in \mathbb{R}$, $a \leq b$. We denote:

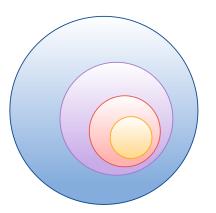
- An open interval $(a, b) = \{x \in \mathbb{R}; \ a < x < b\},\$
- A closed interval $[a,b] = \{x \in \mathbb{R}; a \le x \le b\},\$
- A half-open interval $[a, b) = \{x \in \mathbb{R}; a \le x < b\},\$
- A half-open interval $(a, b] = \{x \in \mathbb{R}; \ a < x \le b\}.$

The point a is called the left endpoint of the interval, The point b is called the right endpoint of the interval. A point in the interval which is not an endpoint is called an inner point of the interval.

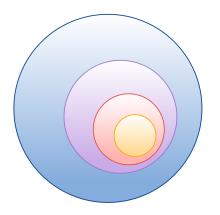
Unbounded intervals:

$$(a, +\infty) = \{x \in \mathbb{R}; \ a < x\}, \quad (-\infty, a) = \{x \in \mathbb{R}; \ x < a\},$$
 analogically $(-\infty, a], [a, +\infty)$ and $(-\infty, +\infty)$.

Label the Venn diagram with \mathbb{N} , \mathbb{Q} , \mathbb{Z} , \mathbb{R} , $\mathbb{R} \setminus \mathbb{Q}$.



Label the Venn diagram with \mathbb{N} , \mathbb{Q} , \mathbb{Z} , \mathbb{R} , $\mathbb{R} \setminus \mathbb{Q}$.



We have $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$. If we transfer the addition and multiplication from \mathbb{R} to the above sets, we obtain the usual operations on these sets.

A real number that is not rational is called irrational. The set $\mathbb{R} \setminus \mathbb{Q}$ is called the set of irrational numbers.

Definition

Let $M \subset \mathbb{R}$. A number $G \in \mathbb{R}$ satisfying

- (i) $\forall x \in M : x \leq G$,
- (ii) $\forall G' \in \mathbb{R}, G' < G \exists x \in M : x > G',$

is called a supremum of the set *M*.

Definition

Let $M \subset \mathbb{R}$. A number $G \in \mathbb{R}$ satisfying

- (i) $\forall x \in M : x \leq G$,
- (ii) $\forall G' \in \mathbb{R}, G' < G \exists x \in M : x > G',$

is called a supremum of the set M.

Theorem 1 (Supremum theorem)

Let $M \subset \mathbb{R}$ be a non-empty set bounded from above. Then there exists a unique supremum of the set M.

Definition

Let $M \subset \mathbb{R}$. A number $G \in \mathbb{R}$ satisfying

- (i) $\forall x \in M : x \leq G$,
- (ii) $\forall G' \in \mathbb{R}, G' < G \exists x \in M : x > G',$

is called a supremum of the set M.

Theorem 1 (Supremum theorem)

Let $M \subset \mathbb{R}$ be a non-empty set bounded from above. Then there exists a unique supremum of the set M.

The supremum of the set M is denoted by $\sup M$.

Definition

Let $M \subset \mathbb{R}$. A number $G \in \mathbb{R}$ satisfying

- (i) $\forall x \in M : x \leq G$,
- (ii) $\forall G' \in \mathbb{R}, G' < G \exists x \in M : x > G',$

is called a supremum of the set M.

Theorem 1 (Supremum theorem)

Let $M \subset \mathbb{R}$ be a non-empty set bounded from above. Then there exists a unique supremum of the set M.

The supremum of the set M is denoted by $\sup M$.

The following holds: $\sup M = -\inf(-M)$.

Let $M \subset \mathbb{R}$. We say that a is a maximum of the set M (denoted by $\max M$) if a is an upper bound of M and $a \in M$.

Analogously we define a minimum of M, denoted by $\min M$.

Exercise

Find infimum, minimum, maximum and supremum:

$$[-2,3]$$

3.
$$(-2,3)$$

4.
$$(-2,3]$$

5.
$$[-2, -1) \cup (0, 25]$$

6.
$$(-7, -0) \cup (1, 2)$$

7.
$$[0,\infty)$$

8.
$$\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$$

Theorem 2 (Archimedean property)

For every $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ satisfying n > x.

Theorem 2 (Archimedean property)

For every $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ satisfying n > x.

Theorem 3 (existence of an integer part)

For every $r \in \mathbb{R}$ there exists an integer part of r, i.e. a number $k \in \mathbb{Z}$ satisfying $k \le r < k + 1$. The integer part of r is determined uniquely and it is denoted by [r].

Theorem 4 (nth root)

For every $x \in [0, +\infty)$ and every $n \in \mathbb{N}$ there exists a unique $y \in [0, +\infty)$ satisfying $y^n = x$.

Theorem 4 (nth root)

For every $x \in [0, +\infty)$ and every $n \in \mathbb{N}$ there exists a unique $y \in [0, +\infty)$ satisfying $y^n = x$.

Theorem 5 (density of \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$)

Let $a, b \in \mathbb{R}$, a < b. Then there exist $r \in \mathbb{Q}$ satisfying a < r < b and $s \in \mathbb{R} \setminus \mathbb{Q}$ satisfying a < s < b.

Definition

Suppose that to each natural number $n \in \mathbb{N}$ we assign a real number a_n . Then we say that $\{a_n\}_{n=1}^{\infty}$ is a sequence of real numbers.

Definition

Suppose that to each natural number $n \in \mathbb{N}$ we assign a real number a_n . Then we say that $\{a_n\}_{n=1}^{\infty}$ is a sequence of real numbers. The number a_n is called the *n*th member of this sequence.

Definition

Suppose that to each natural number $n \in \mathbb{N}$ we assign a real number a_n . Then we say that $\{a_n\}_{n=1}^{\infty}$ is a sequence of real numbers. The number a_n is called the *n*th member of this sequence.

A sequence $\{a_n\}_{n=1}^{\infty}$ is equal to a sequence $\{b_n\}_{n=1}^{\infty}$ if $a_n = b_n$ holds for every $n \in \mathbb{N}$.

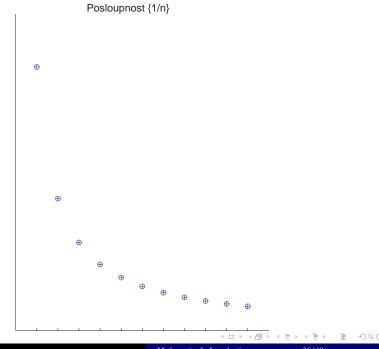
Definition

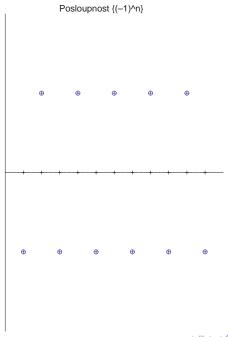
Suppose that to each natural number $n \in \mathbb{N}$ we assign a real number a_n . Then we say that $\{a_n\}_{n=1}^{\infty}$ is a sequence of real numbers. The number a_n is called the *n*th member of this sequence.

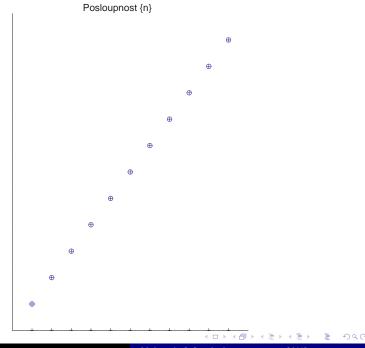
A sequence $\{a_n\}_{n=1}^{\infty}$ is equal to a sequence $\{b_n\}_{n=1}^{\infty}$ if $a_n = b_n$ holds for every $n \in \mathbb{N}$.

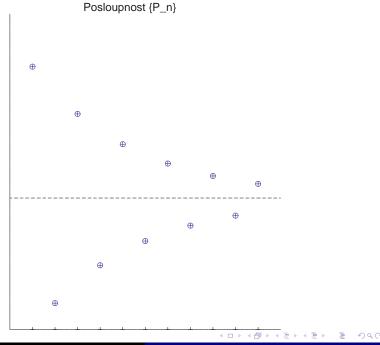
By the set of all members of the sequence $\{a_n\}_{n=1}^{\infty}$ we understand the set

$${x \in \mathbb{R}; \ \exists n \in \mathbb{N}: a_n = x}.$$









We say that a sequence $\{a_n\}$ is

• bounded from above if the set of all members of this sequence is bounded from above,

- bounded from above if the set of all members of this sequence is bounded from above,
- bounded from below if the set of all members of this sequence is bounded from below,

- bounded from above if the set of all members of this sequence is bounded from above,
- bounded from below if the set of all members of this sequence is bounded from below,
- bounded if the set of all members of this sequence is bounded.

We say that a sequence $\{a_n\}$ is

• increasing if $a_n < a_{n+1}$ for every $n \in \mathbb{N}$,

- increasing if $a_n < a_{n+1}$ for every $n \in \mathbb{N}$,
- decreasing if $a_n > a_{n+1}$ for every $n \in \mathbb{N}$,

- increasing if $a_n < a_{n+1}$ for every $n \in \mathbb{N}$,
- decreasing if $a_n > a_{n+1}$ for every $n \in \mathbb{N}$,
- non-decreasing if $a_n \leq a_{n+1}$ for every $n \in \mathbb{N}$,

- increasing if $a_n < a_{n+1}$ for every $n \in \mathbb{N}$,
- decreasing if $a_n > a_{n+1}$ for every $n \in \mathbb{N}$,
- non-decreasing if $a_n \leq a_{n+1}$ for every $n \in \mathbb{N}$,
- non-increasing if $a_n \ge a_{n+1}$ for every $n \in \mathbb{N}$.

We say that a sequence $\{a_n\}$ is

- increasing if $a_n < a_{n+1}$ for every $n \in \mathbb{N}$,
- decreasing if $a_n > a_{n+1}$ for every $n \in \mathbb{N}$,
- non-decreasing if $a_n \leq a_{n+1}$ for every $n \in \mathbb{N}$,
- non-increasing if $a_n \ge a_{n+1}$ for every $n \in \mathbb{N}$.

A sequence $\{a_n\}$ is monotone if it satisfies one of the conditions above.

We say that a sequence $\{a_n\}$ is

- increasing if $a_n < a_{n+1}$ for every $n \in \mathbb{N}$,
- decreasing if $a_n > a_{n+1}$ for every $n \in \mathbb{N}$,
- non-decreasing if $a_n \leq a_{n+1}$ for every $n \in \mathbb{N}$,
- non-increasing if $a_n \ge a_{n+1}$ for every $n \in \mathbb{N}$.

A sequence $\{a_n\}$ is monotone if it satisfies one of the conditions above. A sequence $\{a_n\}$ is strictly monotone if it is increasing or decreasing.

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers.

• By the sum of sequences $\{a_n\}$ and $\{b_n\}$ we understand a sequence $\{a_n + b_n\}$.

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers.

- By the sum of sequences $\{a_n\}$ and $\{b_n\}$ we understand a sequence $\{a_n + b_n\}$.
- Analogously we define a difference and a product of sequences.

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers.

- By the sum of sequences $\{a_n\}$ and $\{b_n\}$ we understand a sequence $\{a_n + b_n\}$.
- Analogously we define a difference and a product of sequences.
- Suppose all the members of the sequence $\{b_n\}$ are non-zero. Then by the quotient of sequences $\{a_n\}$ and $\{b_n\}$ we understand a sequence $\{\frac{a_n}{b_n}\}$.

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers.

- By the sum of sequences $\{a_n\}$ and $\{b_n\}$ we understand a sequence $\{a_n + b_n\}$.
- Analogously we define a difference and a product of sequences.
- Suppose all the members of the sequence $\{b_n\}$ are non-zero. Then by the quotient of sequences $\{a_n\}$ and $\{b_n\}$ we understand a sequence $\{\frac{a_n}{b_n}\}$.
- If $\lambda \in \mathbb{R}$, then by the λ -multiple of the sequence $\{a_n\}$ we understand a sequence $\{\lambda a_n\}$.

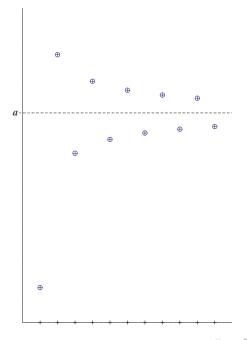
We say that a sequence $\{a_n\}$ has a limit which equals to a number $A \in \mathbb{R}$ if to every positive real number ε there exists a natural number n_0 such that for every index $n \ge n_0$ we have $|a_n - A| < \varepsilon$, i.e.

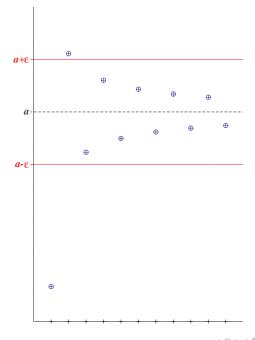
$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \ge n_0 \colon |a_n - A| < \varepsilon.$$

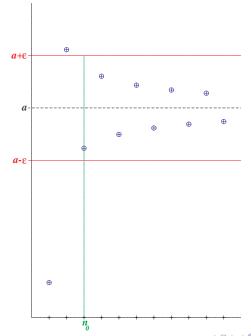
We say that a sequence $\{a_n\}$ has a limit which equals to a number $A \in \mathbb{R}$ if to every positive real number ε there exists a natural number n_0 such that for every index $n \ge n_0$ we have $|a_n - A| < \varepsilon$, i.e.

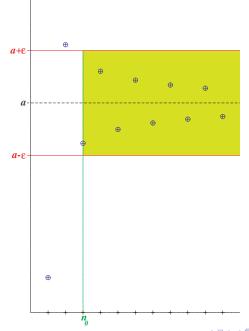
$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \ge n_0 \colon |a_n - A| < \varepsilon.$$

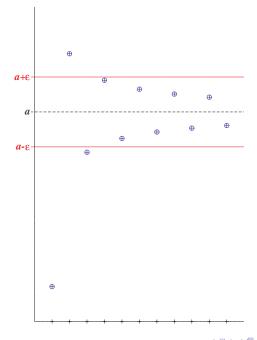
We say that a sequence $\{a_n\}$ is convergent if there exists $A \in \mathbb{R}$ which is a limit of $\{a_n\}$.

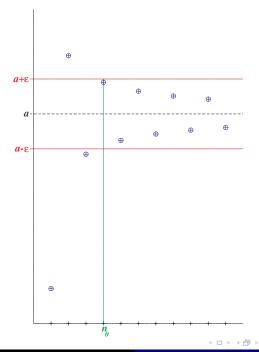


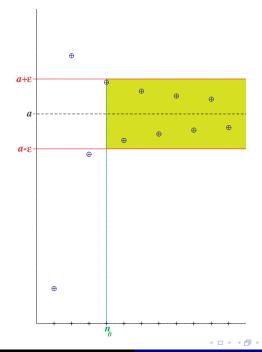


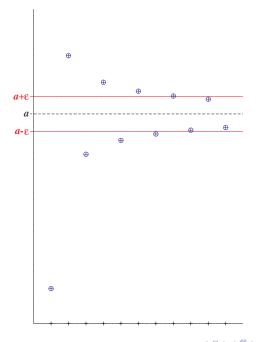


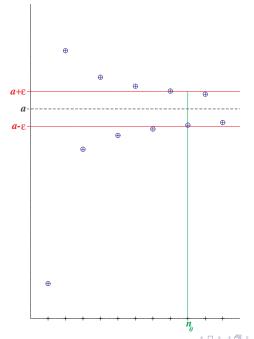


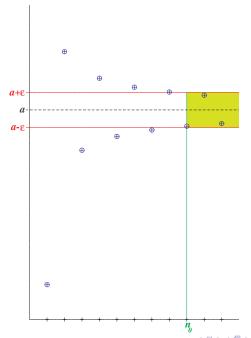












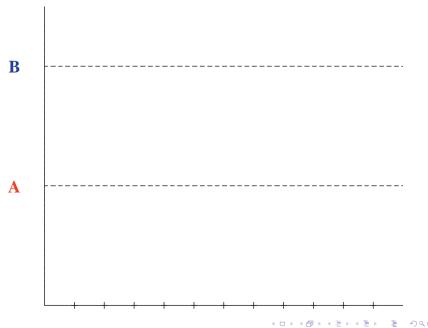
Theorem 6 (uniqueness of a limit)

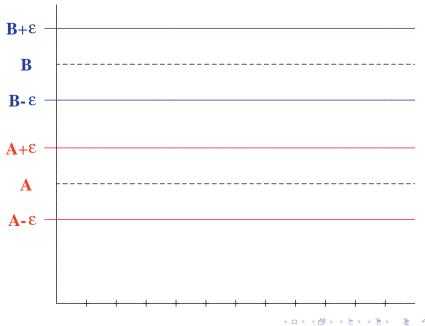
Every sequence has at most one limit.

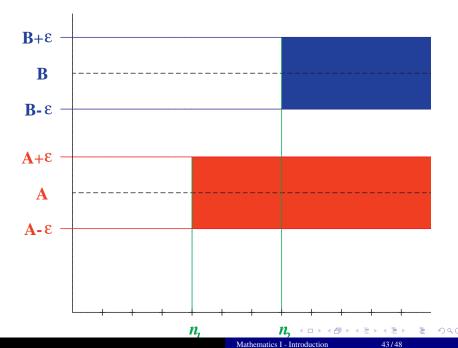
Theorem 6 (uniqueness of a limit)

Every sequence has at most one limit.

We use the notation $\lim_{n\to\infty} a_n = A$ or simply $\lim a_n = A$.







Remark

Let $\{a_n\}$ be a sequence of real numbers and $A \in \mathbb{R}$. Then

$$\lim a_n = A \Leftrightarrow \lim (a_n - A) = 0 \Leftrightarrow \lim |a_n - A| = 0.$$

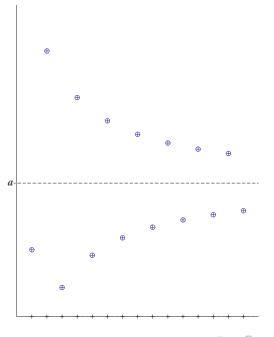
Remark

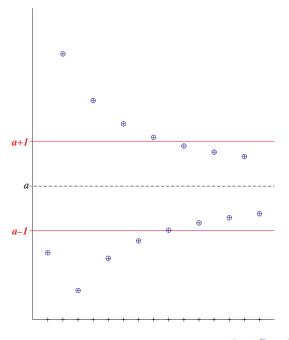
Let $\{a_n\}$ be a sequence of real numbers and $A \in \mathbb{R}$. Then

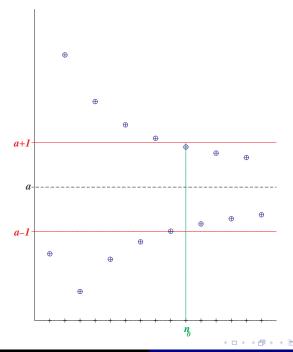
$$\lim a_n = A \Leftrightarrow \lim (a_n - A) = 0 \Leftrightarrow \lim |a_n - A| = 0.$$

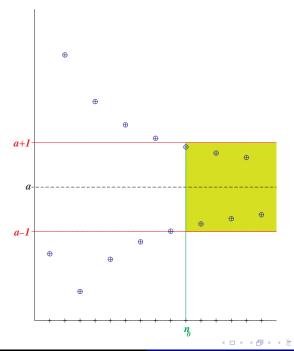
Theorem 7

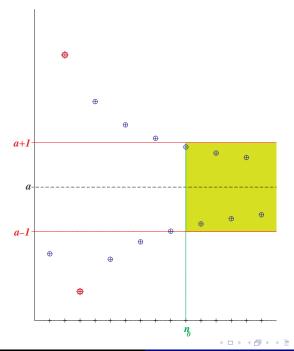
Every convergent sequence is bounded.



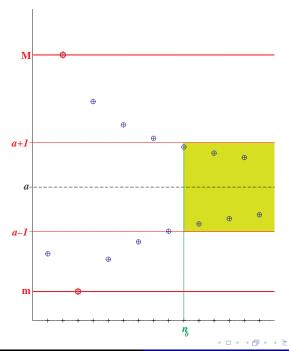








₽ 99€



Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers. We say that a sequence $\{b_k\}_{k=1}^{\infty}$ is a subsequence of $\{a_n\}_{n=1}^{\infty}$ if there is an increasing sequence $\{n_k\}_{k=1}^{\infty}$ of natural numbers such that $b_k = a_{n_k}$ for every $k \in \mathbb{N}$.

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers. We say that a sequence $\{b_k\}_{k=1}^{\infty}$ is a subsequence of $\{a_n\}_{n=1}^{\infty}$ if there is an increasing sequence $\{n_k\}_{k=1}^{\infty}$ of natural numbers such that $b_k = a_{n_k}$ for every $k \in \mathbb{N}$.

Theorem 8 (limit of a subsequence)

Let $\{b_k\}_{k=1}^{\infty}$ be a subsequence of $\{a_n\}_{n=1}^{\infty}$. If $\lim_{n\to\infty} a_n = A \in \mathbb{R}$, then also $\lim_{k\to\infty} b_k = A$.

Remark

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers, $A \in \mathbb{R}$, $K \in \mathbb{R}$, K > 0. If

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \ge n_0 \colon \ |a_n - A| < K\varepsilon,$$

then $\lim a_n = A$.

Theorem 9 (arithmetics of limits)

Suppose that $\lim a_n = A \in \mathbb{R}$ and $\lim b_n = B \in \mathbb{R}$. Then

(i)
$$\lim(a_n+b_n)=A+B$$
,

Theorem 9 (arithmetics of limits)

Suppose that $\lim a_n = A \in \mathbb{R}$ and $\lim b_n = B \in \mathbb{R}$. Then

- (i) $\lim(a_n+b_n)=A+B$,
- (ii) $\lim(a_n \cdot b_n) = A \cdot B$,

Theorem 9 (arithmetics of limits)

Suppose that $\lim a_n = A \in \mathbb{R}$ and $\lim b_n = B \in \mathbb{R}$. Then

- (i) $\lim (a_n + b_n) = A + B$,
- (ii) $\lim(a_n \cdot b_n) = A \cdot B$,
- (iii) if $B \neq 0$ and $b_n \neq 0$ for all $n \in \mathbb{N}$, then $\lim (a_n/b_n) = A/B$.