Mathematics I - List of concept questions

21/22

Sets

Exercise (True or false)

A - set of all animals living in Australia.

A $a \in A$ **B** $b \in A$ **C** $c \in A$ **D** $d \in A$ **E** $e \in A$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ●□ ● ●

Sets

Exercise (True or false)

A - set of all animals living in Australia.

A $a \notin A$ **B** $b \notin A$ **C** $c \notin A$ **D** $d \notin A$ **E** $e \notin A$

Sets - questions

Exercise Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 3, 5, 7, 9\}$ and $B = \{1, 2, 3, 4, 5\}$. Find

1. $A \cup B$	3. A^{c}	5. $A \setminus B$
2. $A \cap B$	4. $(B^c)^c$	6. $B \setminus A$

Exercise (True or false) Let *A* be a set.

 $\begin{array}{l} \mathbf{A} \quad \emptyset \in A \\ \mathbf{B} \quad \emptyset \subset A \\ \mathbf{C} \quad \mathbf{0} = \emptyset \end{array}$

D $\{x\} \in \{x, y, z\}$ **E** $x \in \{x, y, z\}$

▲ロト ▲圖 ト ▲ ヨ ト ▲ ヨ ト つので

Sets

Exercise Let $A = \{1, 2, 3\}, B = \{2, 4\}$. Find $A \times B, B \times B$ and sketch them. 0 2

Which sets are bounded from below? Bounded from above? Bounded?

ヘロト 4 目 ト 4 目 ト 4 目 ト 9 0 0

A N
B
$$\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, ...\}$$

C $\mathbb{R} \setminus \mathbb{Q} \cap (-3, 2]$
D $\{x \in \mathbb{R} : x < \pi\}$
E $(-\infty, -1) \cup \{0\} \cup [1, \infty)$

Find infimum, minimum, maximum and supremum:

1.
$$\{1, 2, 3, 4\}$$
6. $(-7, -0) \cup (1, 2)$ 2. $[-2, 3]$ 7. $[0, \infty)$ 3. $(-2, 3)$ 8. $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ 5. $[-2, -1) \cup (0, 25]$ 9. \mathbb{N}

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Exercise Find the formula for a_n .

Figure:

https://www.cpp.edu/conceptests/question-library/mat116.shtml

▲ロト ▲圖 ト ▲ ヨ ト ▲ ヨ ト つので

Find the first 4 terms of a sequences

$$\mathbf{A} \ a_n = \frac{(-1)^n}{n}$$
$$\mathbf{B} \ a_n = \frac{n+1}{n}$$

Exercise

Find the formula for the following sequence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A
$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

B $-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5} \dots$

Exercise Which of these sequences are bounded?

Find non-decreasing sequences.

A
$$a_n = \ln n$$

B $a_n = e^{-n}$
C $a_n = -4$
D $a_n = \frac{(-1)^n}{3^n}$
E $a_n = (-2)^n$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Exercise

Check, if the sequence is monotone:

1.
$$a_n = \frac{n}{4+n^2}$$

2. $a_n = \frac{n}{n+1}$

Exercise Let $a_n = 1, 2, 3, 4, 5, ..., b_n = (-1)^n$. Find A $a_n + b_n$ B a_n/b_n C $3a_n$

▲ロト ▲圖 ト ▲ ヨ ト ▲ ヨ ト つので

Exercise

Find a sequence, which is

- 1. bounded and covergent
- 2. bounded and divergent
- 3. unbounded and covergent
- 4. unbounded and divergent

Exercise Let $a_n = 3, 7, 4, 1/2, \pi, -1$. Find $b_n = a_{2n}$: A 6, 14, 8... B 5, 9, 6... D 4, 1/2, π ...

By:https://www.cpp.edu/conceptests/ question-library/mat116.shtm

Exercise (True or false)

Let $\lim a_n = A \in \mathbb{R}$ and $\lim b_n = B \in \mathbb{R}$. If $a_n < b_n$, then A < B.

Exercise

Find the sandwich for the sequence $a_n = \frac{\cos n}{n}$.

Exercise

Give an example of $a_n \rightarrow \infty$ and find its lower bound.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

 1. $2 + \infty$ 4. $-4(-\infty)$ 7. $\frac{5}{\infty}$

 2. $-\infty + 3$ 5. -7∞

 3. $\pi\infty$ 6. $\frac{\infty}{-3}$

Exercise

Find a sequence $\{x_n\}, x_n \to \sup M$ for a set M = [2, 5).

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Exercise

Find the convergent subsequence:

A
$$a_n = (-1)^n$$

B $a_n = \{0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, \dots\}$

Find the domain and range for the following mappings:

Figure: Calculus: Single and Multivariable, 6th Edition, Hughes-Hallett, col.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Which of the following functions has its domain the same as its range?

A x^2 **B** \sqrt{x} **C** x^3 **D** |x| **E** 2x-3

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

(Inspired by: Active Calculus & Mathematical Modeling, Carroll College Mathematics Department)

Exercise Find the image:

A [-6, -2] **B** [-1, 1) **C** [0, 2) **D** $[2, \infty)$

Exercise Find the preimage:

A $\{-1\}$ **B** [2,3] **C** [0,1] **D** [0,1)

Find g(f(4)).

A -2 B -1 C 0 D 1 E 2 Find x, if f(g(x)) = 2.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

In the tables we can find values of functions f and g.

x	-2	-1	0	1	2
f(x)	1	0	-2	2	-1
g(x)	-1	1	2	0	-2

Find g(f(1)).

A -2 B -1 C 0 D 1 E 2 Find f(f(0)).

A -2 B -1 C 0 D 1 E 2

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

In the tables we can find values of functions *f* and *g*. If f(g(x)) = -2, find *x*.

x	-2	-1	0	1	2
f(x)	1	0	-2	2	-1
g(x)	-1	1	2	0	-2

A -2 B -1 C 0 D 1 E 2

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

A e^x B x^3 C sin x D tan x E $\frac{1}{x}$

▲ロト ▲圖 ト ▲ ヨ ト ▲ ヨ ト つので

Which functions are onto? Which functions are one-to-one? Which functions are bijections?

Exercise

Find inverse mappings at \mathbb{R} :

 A 2x + 1 C $\sqrt[3]{x}$

 B e^x D x^2

Exercise Decide, which functions are monotone on its domain:

Decide, which functions are bounded, bounded from above, below:

Exercise Decide, which functions are even or odd:

Decide, which functions are even or odd:

A
$$x^{3} + 1$$

B $x(x^{2} + 1)$
C $|x - 2|$
D $e^{x^{2}} \sin x$
E $|1 + \cos x|$

▲□▶ ▲圖▶ ▲温≯ ▲温≯ 三温

Exercise Decide, which functions are periodic

(日)(同)(日)(日)(日)(日)

Sketch in the function so that it is periodic with the smallest possible period

▲□▶▲圖▶★≧▶★≧▶ 差 のへで

Exercise Find $\lim_{x\to 0} f(x)$

A -3 B 0 C 5 D 7 E ∞

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise Find $\lim_{x\to 2} f(x)$

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise Find $\lim_{x\to 4} f(x)$

A 4C 0E doesexistsB 8D ∞ not

Figure: Calculus: Single and Multivariable, Hughes-Hallet

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

E does not exist

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise Find $\lim_{x\to 1+} f(x) + 2g(x)$

A 13 C 8 B 9 D 6

E 3

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト つので

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise Find $\lim_{x\to 1^-} f(x)g(x)$

A 20 C 4 B 15 D 3

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト つので

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise Which functions are continuous at \mathbb{R} ?

A
$$x^3 + \sin(4-x)$$
 C $\frac{2+x}{e^x}$
B $\frac{e^x}{2+x}$ D $\cos(e^{\sqrt[3]{x}})$

$$\mathbf{E} \ln(2+x^2)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Example

 $\lim_{x\to 0} (\sin x) (\operatorname{sign} x)$

Exercise

$$\lim_{x \to \infty} \ln \left(\frac{x-1}{x+2} \right)$$

A 0 B 1 C ln 1 D $-\frac{1}{2}$ E ∞

 $\lim_{x \to 0} \arctan \frac{1}{x^2}$ A 0 B 1 C $\frac{\pi}{2}$ D $-\frac{\pi}{4}$ E ∞

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Is there a solution between 0 and 2?

•
$$x^5 - 2x - 1 = 0$$

• $x^3 - 4x^2 + 4x + 1 = 0$
• $5x^3 - 15x^2 + 10x + 1 = 0$

https:

//www.geogebra.org/calculator/pqbtmk54

Exercise

Find the image of the interval (-1, 2] under the functions

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト つので

• *x*²

• $\operatorname{sign} x$

Exercise Find local extrema:

Figure: https: //math24.net/local-extrema-functions.html

 $f = \cos x \sin x$. Find f'.

A $\cos^2 x$ C $\cos^2 x - \sin^2 x$ B $\sin^2 x$ D $-\sin x \cos x$

Exercise $f = e^7$. Find f'. A $7e^6$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

 $C \frac{e^x x^2 - 2x e^x}{x^4}$

D $\frac{e^x 2x + x^2 e^x}{x^4}$

Exercise

$$f = \frac{e^{x}}{x^{2}} \operatorname{Find} f'.$$
A $\frac{e^{x}}{2x}$
B $\frac{e^{x}(x-2)}{x^{3}}$

Exercise $f = \sin x + e^{\sin x}$ Find f'. A $\cos x + e^{\cos x}$ B $\cos x + e^{\sin x}$ C $\cos x + \sin x e^{\cos x}$ D $\cos x + \cos x e^{\sin x}$

Exercise (True or false?)

1. If f'(x) = g'(x), then f(x) = g(x). (For every *x*.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. If $f'(a) \neq g'(a)$, then $f(a) \neq g(a)$. (We are talking about particular point *a*.)

▲□▶▲圖▶▲≧▶▲≧▶ 差 うくぐ

Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Exercise Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~