Mathematics I - Practice of concept questions

21/22

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Find infimum, minimum, maximum and supremum:

1.
$$\{1, 2, 3, 4\}$$
6. $(-7, -0) \cup (1, 2)$ 2. $[-2, 3]$ 7. $[0, \infty)$ 3. $(-2, 3)$ 8. $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ 5. $[-2, -1) \cup (0, 25]$ 9. \mathbb{N}

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Exercise Which of these sequences are bounded?

Find non-decreasing sequences.

A
$$a_n = \ln n$$

B $a_n = e^{-n}$
C $a_n = -4$
D $a_n = \frac{(-1)^n}{3^n}$
E $a_n = (-2)^n$

Find a sequence, which is

- 1. bounded and covergent
- 2. bounded and divergent
- 3. unbounded and covergent
- 4. unbounded and divergent

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ●□ ● ●

Exercise Let $a_n = 3, 7, 4, 1/2, \pi, -1$. Find $b_n = a_{2n}$: A 6, 14, 8... B 5, 9, 6... D 4, 1/2, π ...

By:https://www.cpp.edu/conceptests/ question-library/mat116.shtm

Exercise (True or false) Let $\lim a_n = A \in \mathbb{R}$ and $\lim b_n = B \in \mathbb{R}$. If $a_n < b_n$, then A < B.

1.
$$2 + \infty$$
 4. $-4(-\infty)$
 7. $\frac{5}{\infty}$

 2. $-\infty + 3$
 5. -7∞

 3. $\pi\infty$
 6. $\frac{\infty}{-3}$

Exercise

Find the convergent subsequence:

A
$$a_n = (-1)^n$$

B $a_n = \{0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, \dots\}$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Find the domain and range for the following mappings:

Figure: Calculus: Single and Multivariable, 6th Edition, Hughes-Hallett, col.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Exercise Find the image:

A [-6, -2] **B** [-1, 1) **C** [0, 2) **D** $[2, \infty)$

Exercise Find the preimage:

A $\{-1\}$ **B** [2,3] **C** [0,1] **D** [0,1)

A e^x B x^3 C $\sin x$ D $\tan x$ E $\frac{1}{x}$ Which functions are onto? Which functions are one-to-one?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Which functions are bijections?

Exercise Decide, which functions are monotone on its domain:

Decide, which functions are bounded, bounded from above, below:

Exercise Decide, which functions are even or odd:

Decide, which functions are even or odd:

A
$$x^{3} + 1$$

B $x(x^{2} + 1)$
C $|x - 2|$
D $e^{x^{2}} \sin x$
E $|1 + \cos x|$

▲□▶ ▲圖▶ ▲温≯ ▲温≯ 三温

Exercise Decide, which functions are periodic

▲□▶▲圖▶▲臣▶▲臣▶ = 臣 - のへで

Exercise Find $\lim_{x\to 0} f(x)$

A -3 B 0 C 5 D 7 E ∞

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise Find $\lim_{x\to 2} f(x)$

Figure: Calculus: Single and Multivariable, Hughes-Hallet

Exercise Find $\lim_{x\to 4} f(x)$

A 4C 0E doesexistsB 8D ∞ not

Figure: Calculus: Single and Multivariable, Hughes-Hallet

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Exercise $\lim_{x \to \infty} \ln \left(\frac{x-1}{x+2} \right)$ A 0 B 1 C ln 1 D $-\frac{1}{2}$ E ∞

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Exercise Find local extrema:

Figure: https: //math24.net/local-extrema-functions.html

▲□▶ ▲課▶ ▲注▶ ★注▶ … 注: のへで

▲□▶▲圖▶▲≧▶▲≧▶ 差 うくぐ

Let us assume that a function y = f(x) is continuous at \mathbb{R} . Sketch *f*.

Figure: Calculus, Hughes-Hallet, Gleason, McCallum

▲ロト ▲ 理 ト ▲ 国 ト → 国 → の Q (~)