Mathematics II - List of concept questions

21/22

Exercise (2D)

Sketch the following points and connect them.

$$(14,5), (13,2), (12,0), (13,-3), (10,-1), (4,-2), (3,-4), \\(1,-3), (-4,-3), (-6,-2), (-6,-7), (-8,-5), (-9,-2), \\(-13,-1), (-11,0), (-14,1), (-12,2), (-9,3), (-4,3), (-2,7), \\(0,3), (3,2), (9,1), (14,5).$$

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

https://mathcrush.com/geometry_worksheets/

Exercise (3D)

https://www.geogebra.org/classic/ydu8a7t7

Exercise Which picture(s) plots the point (2, 1, 1) correctly?

https://www.cpp.edu/conceptests/question-library/mat214.shtml

イロト 不得 とうき とうとう

Find

A (1,2,3,4) + (-2,0,3,-1)B -2(1,2,3,4)

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Find the distance of the points

А

https://www.summitlearning.org/guest/focusareas/862919

▲□▶▲圖▶★≧▶★≧▶ ≧ の��

Exercise Find the interior

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Decide, if the set is closed or open, find the interior, the boundary, the closure.

$$M = \{ [x, y] \in \mathbb{R}^2 : 1 < x \le 2, 3 \le y \le 5 \}.$$

Find

$$\lim_{j \to \infty} \left(\frac{1}{j}, \frac{2j+1}{j}\right)$$

Find the limits of

$$x^{j} = \left(1 + \frac{1}{j}, 3 - \frac{2}{j^{2}}, e^{-j}\right)$$

 $x^{j} = \left((-1)^{j}, \arctan(j^{3})\right)$

Decide, if the sets are closed or open (or nothing)

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

- 1. (0,1) in \mathbb{R}
- 2. $(0,\infty)$ in $\mathbb R$
- 3. $(-\infty, 2]$ in \mathbb{R}
- 4. $x^2 + y^2 < 4$ in \mathbb{R}^2
- 5. $x^2 + y^2 \ge 2$ in \mathbb{R}^2

Find bounded sets

A
$$x \in [-1, 3], 0 < y \le 100$$

B $x^2 + y^2 + z^2 \le 5$
C $|x + y| < 6$

Find compact sets

1. (0,1)2. $[1,2] \times [-1,-3]$ 3. $1 < x^2 + (y-3)^2 + z^2 \le 4$ 4. $xyz \le 1$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

http://www.cpp.edu/~conceptests/question-library/mat214.shtml

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

Find the contourlines for the graph.

(□) (@) (E) (E) (E)

Connect the contourlines and the functions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Figure: Hughes Hallett et al c 2009, John Wiley & Sons A $-x^2 + y^2$ C $-x^2 - y^2$ B $x^2 - y^2$ D $x^2 + y^2$

1. $\lim_{(x,y)\to(2,-1)} x^2 - 2xy + 3y^2 - 4x + 3y - 6$ 2. $\lim_{(x,y)\to(2,-1)} \frac{2x+3y}{4x-3y}$ 3. $\lim_{(x,y)\to(0,0)} \frac{x^2+xy}{x+y}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

In the table there are values of a function f(x, y). Does there exist the limit

$$\lim_{(x,y)\to(0,0)}f(x,y)?$$

$x \setminus y$	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.00	0.60	0.92	1.00	0.92	0.60	0.00
-0.5	-0.60	0.00	0.72	1.00	0.72	0.00	-0.6
-0.2	-0.92	-0.72	0.00	1.00	0.00	-0.72	-0.92
0	-1.00	-1.00	-1.00		-1.00	-1.00	-1.00
0.2	-0.92	-0.72	0.00	1.00	0.00	-0.72	-0.92
0.5	-0.60	0.00	0.72	1.00	0.72	0.00	-0.6
1.0	0.00	0.60	0.92	1.00	0.92	0.60	0.00

https://www.cpp.edu/conceptests/question-library/mat214.shtml

◆□▶◆圖▶◆圖▶◆圖▶ ■ 少々で

$$\lim_{(x,y)\to(4,1)}\sqrt{\frac{x^2-3xy}{x+y}}$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Where is continuous $f(x, y) = \cos \frac{x}{y}$?

- A Everywhere except at the origin
- **B** Everywhere except along the *x*-axis.
- **C** Everywhere except along the *y*-axis.
- **D** Everywhere except along the line y = x.

Exercise

Where is continuous $f(x, y) = \operatorname{sgn} xy$?

- A Everywhere except along the axes.
- **B** Everywhere except along the *x*-axis.
- C Everywhere except at the origin.
- **D** Everywhere except along the line y = x.

ヘロト 4 目 ト 4 目 ト 4 目 ト 9 0 0

Find continuous functions (at \mathbb{R}^2)

A $\ln(x^{2} + y^{2} + 1)$ B $\frac{x-y}{e^{xy}}$ C $\frac{\sqrt{y-1}}{x^{2}}$ D $\sin(2x) + x \cot(x^{3} + 2y)$ E $\operatorname{sgn}(x^{4} + y^{4})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Exercise Find $\frac{\partial f}{\partial x}$, if $f(x, y) = x^3 + 3x^2y - 5x - 7y^3 + y - 5$

A
$$\frac{\partial f}{\partial x} = 3x^2 + 6xy - 5 - 7y^3 + y$$

B $\frac{\partial f}{\partial x} = 3x^2 + 6xy - 5$
C $\frac{\partial f}{\partial x} = x^3 + 3 - 21y^2 + 1 - 5$
D $\frac{\partial f}{\partial x} = 3x^2 - 21y^2 + 1$

Find $\frac{\partial f}{\partial y}$, if $f(x, y) = x^2 \ln(x^2 y)$

A
$$\frac{\partial f}{\partial y} = \frac{2x}{y}$$

B $\frac{\partial f}{\partial y} = \frac{1}{y}$
C $\frac{\partial f}{\partial y} = \frac{x^2}{y}$
D $\frac{\partial f}{\partial y} = \frac{1}{x^2 y}$

According to: https://www.wiley.com/college/hugheshallett/ 0470089148/conceptests/concept.pdf

ヘロト 4 目 ト 4 目 ト 4 目 ト 9 0 0

The values of a function f(x, y) are in the table. Which statement is most accurate?

(In the left columnt there is *x*, in the first row there is *y*.)

$x \setminus y$	0	1	2	3
0	3	5	7	9
1	2	4	6	8
2	1	3	5	7
3	0	2	4	6

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A
$$\frac{\partial f}{\partial x}(1,2) \approx -1$$

B $\frac{\partial f}{\partial y}(1,2) \approx 2$
C $\frac{\partial f}{\partial x}(3,2) \approx 1$
D $\frac{\partial f}{\partial y}(3,2) \approx 4$

https://www.cpp.edu/conceptests/question-library/mat214.shtml

 $\begin{array}{l} \mathbf{A} \quad \frac{\partial f}{\partial x} > \mathbf{0}, \ \frac{\partial f}{\partial y} > \mathbf{0} \\ \\ \mathbf{B} \quad \frac{\partial f}{\partial x} < \mathbf{0}, \ \frac{\partial f}{\partial y} > \mathbf{0} \\ \\ \mathbf{C} \quad \frac{\partial f}{\partial x} > \mathbf{0}, \ \frac{\partial f}{\partial y} < \mathbf{0} \\ \\ \\ \mathbf{D} \quad \frac{\partial f}{\partial x} < \mathbf{0}, \ \frac{\partial f}{\partial y} < \mathbf{0} \end{array}$

https://www.cpp.edu/conceptests/question-library/mat214.shtml

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト つので

Exercise (True or false?)

1. Let $f(x, y, z) = x^2 + z + 3$. Then the partial derivative $\frac{\partial f}{\partial y}$ is not defined, because there is no y in the function.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. Is there a function f(x, y) such that $\frac{\partial f}{\partial y} = 3y^2$ and $\frac{\partial f}{\partial x} = 3x^2$?

Exercise

Find a function, which is not constant, but $\frac{\partial f}{\partial x} = 0$ for every *x*.

Find functions, which are $C^1(\mathbb{R}^2)$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Find the tangent plane of a function f(x, y) = xy at the point (2, 3).

A
$$z-6 = x(x-2) + y(y-3)$$

B $z-6 = y(x-2) + x(y-3)$
C $z-6 = 2(x-2) + 3(y-3)$
D $z-6 = 3(x-2) + 2(y-3)$

Exercise

Find the tangent plane of a function $f(x, y, z, u) = \ln(xy + z^2 - u)$ at the point a = (1, 0, 2, 3).

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Let $h(u, v) = \sin x \cos y$, where $x = (u - v)^2$ and $y = u^2 - v^2$. Find $\partial h / \partial u$ a $\partial h / \partial v$.

Exercise

Let h(u, v) = xy, where $x = u \cos v$ and $y = u \sin v$. Then for $\partial h / \partial v$ we have

イロト イポト イヨト イヨト ヨー シッペ

A
$$\frac{\partial h}{\partial v} = 0$$

B $\frac{\partial h}{\partial v} = u^2 \cos(2v)$
C $\frac{\partial h}{\partial v} = -u^3 \sin^2 v \cos v + u^3 \sin v \cos^2 v$

D Something else.

Let f(x, y) satisfies the Chain rule theorem assumptions. Show, that a function $h(u, v, w) = \frac{uv}{w} \ln u + uf\left(\frac{v}{u}, \frac{w}{u}\right)$, where $x = \frac{v}{u}, y = \frac{w}{u}$ satisfies the following condition

$$u\frac{\partial h}{\partial u} + v\frac{\partial h}{\partial v} + w\frac{\partial h}{\partial w} = h + \frac{uv}{w}.$$

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Which condition for the Implicit function theorem is NOT satisfied?

A
$$x^2 + y^3 = 4$$
 at (2,0)
B $y - \frac{1}{2} \sin y = x$ at (π, π)
C $\sin(xy) + x^2 + y^2 = 1$ at (0,3)
D $|x| + e^{x+y} = 1$ at (0,0)

Find the gradient of $f(x, y, z) = y \cos^3(x^2 z)$ at the point [2, 1, 0]:

A	(1/5, 0, 1/5)	C $(0, 1, 0)$
B	(0, 0, 1/5)	D $(1,0,1/2)$

The bicyclist is on a trip up the hill, which can be described as $f(x, y) = 25 - 2x^2 - 4y^2$. When she is at the point [1, 1, 19], it starts to rain, so she decides to go down the hill as steeply as possible (so that she is down quickly). In what direction will she start her decline?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A
$$(-4x; -8y)$$
C $(-4; -8)$ B $(4x; 8y)$ D $(4; 8)$

- 1. Consider the points A, B, C, D, E. Find the critical points.
- 2. Which of these points are probably points of
 - 2.1 local maximum,
 - 2.2 local minimum,
 - 2.3 saddle poi y Ģ xВ _1

Figure: Calculus, 6th Edition; Hughes-Hallett, Gleason, McCallum et al.

イロト (同) (ヨ) (ヨ) (つ) (つ)

Exercise Find the second partial derivatives of the function $f(x, y) = x^2 + xy + y^2$.

Exercise Find $\frac{\partial^2 f}{\partial x \partial y}$, if $f(x, y) = e^{xy}$ A e^{xy} B ye^{xy} C $x^2 e^{xy}$ D $e^{xy}(xy + 1)$

Exercise Find $\frac{\partial^2 f}{\partial y \partial x}$, if $f(x, y) = e^{xy}$ A e^{xy} B $y e^{xy}$ C $x^2 e^{xy}$ D $e^{xy}(xy + 1)$

▲□▶ ▲課▶ ▲注▶ ★注▶ … 注: のへで

You follow the red route. Where is the highest point of your trip?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 ● ○○○

Where is the minimum and maximum of the function f(x, y) = y along the

curve?

https://www.cpp.edu/conceptests/question-library/
mat214.shtml

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Exercise Find convex sets

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@
Exercise Find convex sets

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Exercise Find quasiconcave functions:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Decide if the following functions are convex or concave on \mathbb{R}^2 .

A
$$f(x, y) = x^{2} + y^{2}$$

B $f(x, y) = -x^{4} - y^{4}$
C $f(x, y) = -x^{2} + y^{2}$

Find the type of the matrix

$$\begin{pmatrix} 6 & 11 & -2 \\ 23 & 31 & 5 \end{pmatrix}$$
A 2x3 B 3x2 C 6

Exercise Are A and B equal?

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 0 & 4 \\ -1 & -2 & 5 \end{pmatrix}$$
$$\mathbf{B} = \begin{pmatrix} 4 & 0 & 4 \\ 1 & 2 & 3 \\ -1 & -2 & 5 \end{pmatrix}$$

Exercise Let

$$A = \begin{pmatrix} 4 & 6 \\ 20 & 24 \end{pmatrix}$$

$$B = \begin{pmatrix} 2 & 5 \\ 3 & 7 \end{pmatrix}.$$

Find A + B

 $\begin{array}{cccc} A & 71 & & D \\ B & & & \begin{pmatrix} 26 & 62 \\ 112 & 268 \end{pmatrix} \\ C & & E \\ \begin{pmatrix} 6 & 11 \\ 23 & 31 \end{pmatrix} & & \begin{pmatrix} 4 & 6 & 2 & 5 \\ 20 & 24 & 3 & 7 \end{pmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Exercise	
Let	$A = \begin{pmatrix} 4 & 6\\ 20 & 7 \end{pmatrix}$
Find 5A	
A	$\begin{pmatrix} 9 & 6 \\ 20 & 7 \end{pmatrix}$
В	$\begin{pmatrix} 9 & 11 \\ 25 & 12 \end{pmatrix}$
С	$\begin{pmatrix} 20 & 6 \\ 20 & 7 \end{pmatrix}$
D	$\begin{pmatrix} 20 & 30\\ 100 & 35 \end{pmatrix}$

▲□▶▲圖▶▲≣▶▲≣▶ ▲□▶

Exercise Find AB, if

$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ -3 & 1 \end{pmatrix}$$
$$\mathbf{A} \begin{pmatrix} 3 & -1 \\ -2 & 2 \end{pmatrix}$$
$$\mathbf{B} \begin{pmatrix} 0 & -2 \\ 2 & 5 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 0 & -1 \\ 2 & 2 \end{pmatrix}$$

$$\mathbf{C} \begin{pmatrix} 0 & 0 \\ -6 & 2 \end{pmatrix}$$

- **D** something else
- **E AB** is not well defined

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Exercise Find AB, if

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$
$$\mathbf{A} \quad \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
$$\mathbf{B} \quad (10 \quad 7)$$
$$\mathbf{C} \quad \begin{pmatrix} 8 & 4 \\ -3 & -2 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

D $\begin{pmatrix} 7\\10 \end{pmatrix}$ **E AB** is not well defined

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Exercise Let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \qquad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Find

1. AI 2. IA

Exercise Let

$$A = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix} \qquad \qquad B = \begin{pmatrix} 0 & 0 \\ 3 & -3 \end{pmatrix}$$

Find

1. *AB*

2. BA

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -1 & 3 \\ -2 & 0 & 4 \end{pmatrix}.$$

Find \mathbf{A}^T ?

 $A^{T} = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -1 & 3 \\ -2 & 0 & 4 \end{pmatrix}$

 $A^{T} = \begin{pmatrix} 2 & 0 & -2 \\ 3 & -1 & 0 \\ 1 & 3 & 4 \end{pmatrix}$

Α

С

$$A^{T} = \begin{pmatrix} -2 & 0 & 4\\ 0 & -1 & 3\\ 2 & 3 & 1 \end{pmatrix}$$

В

D

$$A^{T} = \begin{pmatrix} 1 & 3 & 4 \\ 3 & -1 & 0 \\ 2 & 0 - 2 \end{pmatrix}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ○へ⊙

Exercise Let

$$A = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix} \qquad \qquad B = \begin{pmatrix} 3 & 0 \\ 5 & -1 \end{pmatrix}$$

Find

1. $(AB)^T$ 2. $A^T B^T$ 3. $B^T A$	\mathbf{A}^T
--	----------------

Let **A** and **B** are matrices of the type 2×3 . Which of these operations are NOT well defined?

$\mathbf{A} \mathbf{A} + \mathbf{B}$	$\mathbf{D} \mathbf{A} \mathbf{B}^T$
B $\mathbf{A}^T \mathbf{B}$	
C BA	E AB

Exercise

We want to multiply matrices $\mathbf{A} \times \mathbf{B}$. We need:

- **A A** and **B** needs to have the same number of rows.
- **B** A and **B** needs to have the same number of columns.
- C the number of rows of A needs to be the same as the number of columns of B
- D the number of columns of A needs to be the same as the number of rows of B

ヘロト 4 目 ト 4 目 ト 4 目 ト 9 0 0

Let **A** is a matrix of the type 2×3 and **B** is of the type 3×6 . Find the type of **AB**:

Exercise (True or False?)

Let A and B be square matrices of the same dimension. Then

$$(\mathbf{A} + \mathbf{B}) \times (\mathbf{A} + \mathbf{B}) = \mathbf{A}^2 + 2\mathbf{A}\mathbf{B} + \mathbf{B}^2.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Exercise Let		$\mathbf{A} = \begin{pmatrix} 0 & 4 \\ 2 & 0 \end{pmatrix}$	
Find A^{-1}			
A B	$\begin{pmatrix} 0 & 4 \\ 2 & 0 \end{pmatrix}$ $\begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}$	C D	$\begin{pmatrix} 0 & 1/4 \\ 1/2 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1/2 \\ 1/4 & 0 \end{pmatrix}$

▲□▶▲圖▶▲≣▶▲≣▶ ▲□▶

Exercise Find the determinant of

$$\begin{pmatrix} 5 & 4 \\ 1 & 3 \end{pmatrix}$$
C 15
D 19

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

A 4 B 11

Exercise Find the determinant of

A 0B 6

$$\begin{pmatrix} 5 & 2 & -1 \\ 0 & 3 & 4 \\ 0 & 0 & 1 \end{pmatrix}$$
C 15
D 22

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

B 107

C something else

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Exercise We have $\det \begin{pmatrix} -2 & 1 & 3\\ 2 & 0 & 4\\ 1 & 3 & 1 \end{pmatrix} = 44.$ Find $\det \begin{pmatrix} -2 & 1 & 3\\ 0 & 1 & 7\\ 1 & 3 & 1 \end{pmatrix}?$ C 88 A 44 **B** -44 D something else

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ

Exercise We have $\det \begin{pmatrix} -2 & 1 & 3\\ 2 & 0 & 4\\ 1 & 3 & 1 \end{pmatrix} = 44.$ Find $\det \begin{pmatrix} -2 & 1 & 3\\ 2 & 0 & 4\\ 0 & 7 & 5 \end{pmatrix}?$ A 44 **D** 22 **B** -44 C 88 E something else

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖▶ 圖 のへで

Let **A** be a matrix of type (2x2). Find det(5A).

 A
 5 det A
 C
 25 det A

 B
 10 det A
 D something else

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Exercise Let det $\mathbf{A} = 3$. Find det \mathbf{A}^{-1} .

A 1/3

B 3

C 9 D hard to say.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Exercise We have	$\det \begin{pmatrix} -2 & 1 & 3\\ 2 & 0 & 4\\ 1 & 3 & 1 \end{pmatrix} = 44.$
Find	$\det \begin{pmatrix} -2 & 2 & 1\\ 1 & 0 & 3\\ 3 & 4 & 1 \end{pmatrix}?$
A 44	D 22
B 1/44 C 88	E -44

▲□▶▲圖▶▲≣▶▲≣▶ ▲□▶

Which of the following matrices do NOT have inverse matrix?

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

A	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
В	$\begin{pmatrix} 2 & 2 \\ 4 & 4 \end{pmatrix}$
C	$\begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$
D	$\begin{pmatrix} 0 & 4 \\ 2 & 0 \end{pmatrix}$

E All of them have inverse matrix.

Exercise Let u = (1, 2, 4) and v = (-2, 0, 5). Then 2u - 3v is A (-4, 4, 23)B (8, 4, -7)C (8, 4, 23)D (7, 6, 2)

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Express z = (-5, 3, 6) as the linear combination of x = (1, -1, 4) and y = (-3, 2, 6). A -5xB -2x + yC x + 2yD 2x + yE impossible

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Express *w* as the linear combination of *u* and *v*.

Figure: https: //www.chegg.com/homework-help/questions-and-answers/ write-vector-w-linear-combination-u-v-q55559120

A
$$w = 2u + v$$
D $w = u - v$ B $w = u + v$ E w cannot be written like that.

▲ロト ▲圖 ト ▲ ヨ ト ▲ ヨ ト つので

Which of the following vector can be written as the linear combination of vectors (1, 0, 0), (0, 1, 0), (0, 0, 1)?

 $\begin{array}{l} \textbf{A} \ (0,2,0) \\ \textbf{B} \ (-3,0,1) \\ \textbf{C} \ (0.4,3.7,-1.5) \end{array}$

Exercise

Describe the set of all linear combinations of vectors (2, 4, 6) and (-1, -2, -3)?

A point B line C vector D plane E space

Exercise

Describe the set of all linear combinations of vectors (1, 2, 0) and (-1, 1, 0)?

A point B line C vector D plane E space

The vectors (1, 0, 0), (0, 0, 2), (3, 0, 4) are

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- A linearly dependent
- B linearly independent

Find the rank of the matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

Exercise Let

$$\mathbf{A} = \begin{pmatrix} 5 & 4 & -8 & 1 \\ 1 & 3 & 4 & 8 \\ 0 & 2 & 1 & 3 \\ -1 & -2 & 4 & 1 \end{pmatrix}.$$

After the transformation we get

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Find the rank of A:

A 0 C 2 B 1 D 3

We made a matrix from the vectors x, y, u, v and w. Find rank of this matrix.

▲ロト ▲圖 ト ▲ ヨ ト ▲ ヨ ト つので

http://mathquest.carroll.edu/libraries/FHMW.
student.edition.pdf

- **A** 1
- **B** 2
- **C** 3
- **D** 4
- **E** 5

Decide about definiteness of the following matrices:

$$\begin{pmatrix} -2 & 0 \\ 0 & -5 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 8 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Which of this matrices can NOT be negative semidefinite?

 A
 B
 C

 $\begin{pmatrix} 5 & 1 & -4 \\ 3 & 9 & 4 \\ 1 & 2 & -5 \end{pmatrix}$ $\begin{pmatrix} -1 & 0 & 8 \\ 3 & -2 & 1 \\ 1 & 0 & -2 \end{pmatrix}$ $\begin{pmatrix} -1 & 2 & 4 \\ -3 & 0 & 3 \\ -11 & 6 & -5 \end{pmatrix}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Exercise Find the Hessian matrix of the function $x^3 + y^4 + 3x^2$ at the point [-2, 0].

Connect the functions in the left column with their antiderivatives on the right.

1. 0	A $-\cos x$
2. 1	B $\sin x$
3. <i>x</i>	C <i>x</i>
4. $\cos x$	D 1
5. $\sin x$	$\mathbf{E} \frac{x^2}{2}$
Exercise Find $\int e^x dx$:

A e^x	C $e^{x} + 3$	E $2e^{x} + 2$
B $-e^x$	D $e^x + e^{\pi}$	

Find $\int x \sin x$.

- **A** $F = \sin x + x \cos x$
- **B** $F = \sin x x \cos x$
- **C** $F = x \sin x + \cos x$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Find *F*. You know that $F = \int 3x^2 + 2x \, dx$ and F(0) = 1.

Exercise (True or false?)

A If
$$f'(x) = g'(x)$$
, then $f(x) = g(x)$ (for all x).

B If
$$\int f(x) = \int g(x)$$
, then $f(x) = g(x)$ (for all x).

http:

//www.math.cornell.edu/~GoodQuestions/GQbysection_pdfversion.pdf

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Which of the following functions definitely have primitive function?

A
$$\frac{1}{x}, x \in \mathbb{R}$$
C $\ln x, x \in (0, \infty)$ E $\cot x, x \in (0, \pi)$ B $\arctan x^2, x \in \mathbb{R}$ D $\frac{x^2}{x^3+1}, x \in \mathbb{R}$

Find integrals, which should be solved by integration by parts

A
$$\int xe^{x^2} dx$$

B $\int x \cos x dx$
C $\int 1 \ln x dx$
D $\int \frac{x}{\ln x} dx$
E $\int \sin x \ln x^2 dx$

By parts or by substitution?

A
$$\int \arcsin x \, dx$$

B $\int \frac{x}{1+x^2} \, dx$
C $\int (x^2 - 3) \ln x \, dx$
D $\int \frac{1}{x \ln x} \, dx$
E $\int x^2 \cos 2x \, dx$

https://learningapps.org/display?v=pgeigqe6j21

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

True or false?

A
$$\int kf = k \int f$$

B $\int f + g = \int f + \int g$
C $\int f - g = \int f - \int g$
D $\int f \cdot g = \int f \cdot \int g$
E $\int f/g = \int f/\int g$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Exercise Find a mistake.

1. $\int \frac{3x^2 + 1}{2x} dx = \frac{x^3 + x}{x^2} + c$ 2. $\forall a \in \mathbb{R}$ $\int x^a dx = \frac{x^{a+1}}{a+1} + c$

Calculus: Single and Multivariable, 6th Edition, Deborah Hughes-Hallett and col.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Find rational functions.

Find the multiplicity of $\lambda = -2$ of the polynomial $P(x) = (x^2 + x - 2)(x + 2)^3$.

A -2 B 1 C 2 D 3 E 4

Use the Riemann sums and estimate the integral

$$\int_0^{15} f(x) \, \mathrm{d}x.$$

Check the table for some values of f:

x	0	3	6	9	12	15
f(x)	50	48	44	36	24	8

Table: Applied Calculus, 6th Edition, Deborah Hughes-Hallett and col.

◆□▶◆圖▶◆圖▶◆圖▶ ■ 少々⊙

Exercise (True – False) A Let f be a function. Then $\int_0^2 f(x) dx \le \int_0^3 f(x) dx$. B If $\int_2^6 g(x) dx \le \int_2^6 f(x) dx$, then $g(x) \le f(x)$ for all $2 \le x \le 6$.

Let *f* be an odd function such that $\int_{-2}^{0} f(x) dx = 4$. Find

- 1. $\int_0^2 f(x) \, \mathrm{d}x$
- 2. $\int_{-2}^{2} f(x) \, \mathrm{d}x$

Figure: Applied Calculus, 6th Edition, Deborah Hughes-Hallett and col.

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト のの()

Decide, if the integrals are

 $A \int_{-\pi}^{0} \sin x \, dx$ $B \int_{0}^{\pi} \cos x \, dx$ $C \int_{-\pi}^{\pi} \sin x \, dx$ $D \int_{-\pi/2}^{\pi/2} \cos x \, dx$ $E \int_{0}^{2\pi} e^{-x} \sin x \, dx$

- positive
 0
- 3. negative

ヘロト 4 目 ト 4 目 ト 4 目 ト 9 0 0