Mathematics II - Summary

21/22

Mathematics II - Summary

1/24

$$A \quad \frac{\partial f}{\partial x} > 0, \ \frac{\partial f}{\partial y} > 0$$
$$B \quad \frac{\partial f}{\partial x} < 0, \ \frac{\partial f}{\partial y} > 0$$
$$C \quad \frac{\partial f}{\partial x} > 0, \ \frac{\partial f}{\partial y} < 0$$
$$D \quad \frac{\partial f}{\partial x} < 0, \ \frac{\partial f}{\partial y} < 0$$

Find the tangent plane of a function f(x, y) = xy at the point (2, 3).

A
$$z-6 = x(x-2) + y(y-3)$$

B $z-6 = y(x-2) + x(y-3)$
C $z-6 = 2(x-2) + 3(y-3)$
D $z-6 = 3(x-2) + 2(y-3)$

-

Let h(u, v) = xy, where $x = u \cos v$ and $y = u \sin v$. Then for $\partial h / \partial v$ we have

A
$$\frac{\partial h}{\partial v} = 0$$

B $\frac{\partial h}{\partial v} = u^2 \cos(2v)$
C $\frac{\partial h}{\partial v} = -u^3 \sin^2 v \cos v + u^3 \sin v \cos^2 v$
D Something else.

-

The bicyclist is on a trip up the hill, which can be described as $f(x, y) = 25 - 2x^2 - 4y^2$. When she is at the point [1, 1, 19], it starts to rain, so she decides to go down the hill as steeply as possible (so that she is down quickly). In what direction will she start her decline?

A
$$(-4x; -8y)$$
C $(-4; -8)$ B $(4x; 8y)$ D $(4; 8)$

Where is the minimum and maximum of the function f(x, y) = y along the

Find quasiconcave functions:

Mathematics II - Summar

< □ > < □ > < □ > < □ > < □ > < □ >

Α

B C

Find AB, if

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ 2 \\ 10 & 7 \end{pmatrix}$$

 $\begin{pmatrix} 8 & 4 \\ -3 & -2 \end{pmatrix}$

$$\mathbf{B} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

D
$$\begin{pmatrix} 7\\10 \end{pmatrix}$$

E **AB** is not well defined

Mathematics II - Summa

9/24

・ロト ・ 同 ト ・ 臣 ト ・ 臣 ト

Let **A** and **B** are matrices of the type 2×3 . Which of these operations are NOT well defined?

A A + B	$\mathbf{D} \mathbf{A} \mathbf{B}^T$
$\mathbf{B} \mathbf{A}^T \mathbf{B}$	
C BA	E AB

프 - 프

Let		$\mathbf{A} = \begin{pmatrix} 0 & 4 \\ 2 & 0 \end{pmatrix}$	
Find A^{-1}			
А		С	(0, 1/4)
	$\begin{pmatrix} 0 & 4 \\ 2 & 0 \end{pmatrix}$		$\begin{pmatrix} 0 & 1/4 \\ 1/2 & 0 \end{pmatrix}$
В	$\begin{pmatrix} 4 & 0 \end{pmatrix}$	D	$\begin{pmatrix} 0 & 1/2 \end{pmatrix}$
	$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$		$\begin{pmatrix} 1/4 & 0 \end{pmatrix}$

We have	$\det \begin{pmatrix} -2 & 1 & 3\\ 2 & 0 & 4\\ 1 & 3 & 1 \end{pmatrix} = 44.$
Find	$\det \begin{pmatrix} -2 & 1 & 3\\ 0 & 1 & 7\\ 1 & 3 & 1 \end{pmatrix}?$
A 44	C 88
B -44	D something else

Mathematics II - Summa

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ∧ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ <

Exercise	
Let $\det \mathbf{A} = 3$. Find $\det \mathbf{A}$	-1.
A 1/3	C Q
A 1/3	D hand to say
ВЗ	D nard to say.

Exercise				
Describe the	set of all linear	r combinations o	f vectors (1, 2	, 0) and $(-1, 1, 0)$?
A point	B line	C vector	D plane	E space

Mathematics II - Summary

We made a matrix from the vectors *x*, *y*, *u*, *v* and *w*. Find rank of this matrix.

http://mathquest.carroll.edu/libraries/FHMW. student.edition.pdf

А	1
В	2
С	3
D	4
E	5

Which of this matrices can NOT be negative semidefinite?

Find $\int x \sin x$.

- A $F = \sin x + x \cos x$
- B $F = \sin x x \cos x$
- C $F = x \sin x + \cos x$

< 口 > < 同

프 - 프

► < Ξ ►</p>

Which of the following functions definitely have primitive function?

A $\frac{1}{x}, x \in \mathbb{R}$ C $\ln x, x \in (0, \infty)$ E $\cot x, x \in (0, \pi)$ B $\arctan x^2, x \in \mathbb{R}$ D $\frac{x^2}{x^3+1}, x \in \mathbb{R}$

By parts or by substitution?

A
$$\int \arcsin x \, dx$$

B $\int \frac{x}{1+x^2} \, dx$
C $\int (x^2 - 3) \ln x \, dx$
D $\int \frac{1}{x \ln x} \, dx$
E $\int x^2 \cos 2x \, dx$

3

・ロト ・ 静 ト ・ 油 ト ・ 油 ト

Find the multiplicity of $\lambda = -2$ of the polynomial $P(x) = (x^2 + x - 2)(x + 2)^3$.				
A -2	B 1	C 2	D 3	E 4

Exercise (True – False)

A Let f be a function. Then
$$\int_0^2 f(x) dx \le \int_0^3 f(x) dx$$
.
B If $\int_2^6 g(x) dx \le \int_2^6 f(x) dx$, then $g(x) \le f(x)$ for all $2 \le x \le 6$.

Mathematics II - Summary

21/24

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶

= 990

Let *f* be an odd function such that $\int_{-2}^{0} f(x) dx = 4$. Find

 $1. \quad \int_0^2 f(x) \, \mathrm{d}x$

Decide, if the integrals are

A $\int_{-\pi}^{0} \sin x \, dx$ B $\int_{0}^{\pi} \cos x \, dx$ C $\int_{-\pi}^{\pi} \sin x \, dx$ D $\int_{-\pi/2}^{\pi/2} \cos x \, dx$ E $\int_{0}^{2\pi} e^{-x} \sin x \, dx$

- 1. positive
- 2. 0
- 3. negative

э

Figure: https://www.meme-arsenal.com/en/create/template/805594

Mathematics II - Summary

24/24

- - ∃ →

3

∃ > _