# Mathematics II - Integrals

21/22

# VII. Antiderivatives and Riemann integral

# VII.1. Antiderivatives

#### Definition

Let f be a function defined on an open interval I. We say that a function  $F: I \to \mathbb{R}$  is an antiderivative of f on I if for each  $x \in I$  the derivative F'(x) exists and F'(x) = f(x).

#### Exercise

Connect the functions in the left column with their antiderivatives on the right.

- 1. 0
- 2. 1
- 3. *x*
- 4.  $\cos x$
- 5.  $\sin x$

- $A \cos x$
- $\mathbf{B} \sin x$
- $\mathbf{C}$  x
- D 1
- $\mathbf{E} \frac{x^2}{2}$

#### Definition

Let f be a function defined on an open interval I. We say that a function  $F: I \to \mathbb{R}$  is an antiderivative of f on I if for each  $x \in I$  the derivative F'(x) exists and F'(x) = f(x).

#### Remark

An antiderivative of f is sometimes called a function *primitive* to f. If F is an antiderivative of f on I, then F is continuous on I.

#### Definition

Let f be a function defined on an open interval I. We say that a function  $F: I \to \mathbb{R}$  is an antiderivative of f on I if for each  $x \in I$  the derivative F'(x) exists and F'(x) = f(x).

#### Remark

An antiderivative of f is sometimes called a function *primitive* to f. If F is an antiderivative of f on I, then F is continuous on I.

#### Exercise

Find  $\int e^x dx$ :

$$A e^{i}$$

$$C e^{x} + 3$$

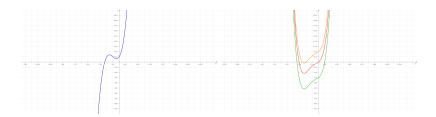
E 
$$2e^{x} + 2$$

$$\mathbf{B} - e^x$$

$$\mathbf{D} e^x + e^{\pi}$$

# Theorem 1 (Uniqueness of an antiderivative)

Let F and G be antiderivatives of f on an open interval I. Then there exists  $c \in \mathbb{R}$  such that F(x) = G(x) + c for each  $x \in I$ .



#### Remark

The set of all antiderivatives of f on an open interval I is denoted by

$$\int f(x) \, \mathrm{d}x.$$

The fact that F is an antiderivative of f on I is expressed by

$$\int f(x) \, \mathrm{d}x \stackrel{c}{=} F(x), \quad x \in I.$$

#### Exercise

Find  $\int x \sin x$ .

 $\mathbf{A} \ F = \sin x + x \cos x$ 

 $\mathbf{B} \ F = \sin x - x \cos x$ 

 $F = x \sin x + \cos x$ 

Find F. You know that  $F = \int 3x^2 + 2x \, dx$  and F(0) = 1.

Find F. You know that  $F = \int 3x^2 + 2x \, dx$  and F(0) = 1.

#### Exercise (True or false?)

A If f'(x) = g'(x), then f(x) = g(x) (for all x).

**B** If 
$$\int f(x) = \int g(x)$$
, then  $f(x) = g(x)$  (for all x).

http:

 $//{\tt www.math.cornell.edu/^GoodQuestions/GQbysection\_pdfversion.pdf}$ 

#### Table of basic antiderivatives

• 
$$\int x^n dx \stackrel{c}{=} \frac{x^{n+1}}{n+1}$$
 on  $\mathbb{R}$  for  $n \in \mathbb{N} \cup \{0\}$ ; on  $(-\infty,0)$  and on  $(0,\infty)$  for  $n \in \mathbb{Z}$ ,  $n < -1$ ,

• 
$$\int x^{\alpha} dx \stackrel{c}{=} \frac{x^{\alpha+1}}{\alpha+1}$$
 on  $(0,+\infty)$  for  $\alpha \in \mathbb{R} \setminus \{-1\}$ ,

• 
$$\int \frac{1}{x} dx \stackrel{c}{=} \log |x|$$
 on  $(0, +\infty)$  and on  $(-\infty, 0)$ ,

$$\oint \sin x \, \mathrm{d}x \stackrel{c}{=} -\cos x \text{ on } \mathbb{R},$$

- $\int \frac{1}{\cos^2 x} dx \stackrel{c}{=} \operatorname{tg} x$  on each of the intervals  $(-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi), k \in \mathbb{Z}$ ,
- $\int \frac{1}{\sin^2 x} dx \stackrel{c}{=} -\cos x$  on each of the intervals  $(k\pi, \pi + k\pi), k \in \mathbb{Z}$ ,
- $\int \frac{1}{1+x^2} dx \stackrel{c}{=} \operatorname{arctg} x$  on  $\mathbb{R}$ ,
- $\int \frac{1}{\sqrt{1-x^2}} dx \stackrel{c}{=} \arcsin x \text{ on } (-1,1),$

https://www.flippity.net/mg.php?k=
1F5i3udTbsLHBaMpm3DcWBM3sc9757rctP-S9gM8Ejgc

# Theorem 2 (Existence of an antiderivative)

Let f be a continuous function on an open interval I. Then f has an antiderivative on I.

#### Exercise

Which of the following functions definitely have primitive function?

$$\mathbf{A} \quad \frac{1}{x}, x \in \mathbb{R}$$

C 
$$\ln x, x \in (0, \infty)$$
 E  $\cot x, x \in (0, \pi)$ 

$$\mathbf{E} \cot x, x \in (0, \pi)$$

B 
$$\arctan x^2, x \in \mathbb{R}$$
 D  $\frac{x^2}{x^3+1}, x \in \mathbb{R}$ 

$$\mathbf{D} \ \ \tfrac{x^2}{x^3+1}, x \in \mathbb{R}$$

#### Remark

The following functions have antiderivatives, but it can not be easily expressed.

 $\bullet \int e^{x^2} dx$ 

 $\bullet \int \sin x^2 dx$ 

 $\int \sqrt{1-x^4} \, \mathrm{d}x$ 

•  $\int \ln(\ln x) dx$ 

 $\int \frac{\sin x}{x} dx$ 

# Theorem 3 (Linearity of antiderivatives)

Suppose that f has an antiderivative F on an open interval I, g has an antiderivative G on I, and let  $\alpha, \beta \in \mathbb{R}$ . Then the function  $\alpha F + \beta G$  is an antiderivative of  $\alpha f + \beta g$  on I.

#### Theorem 4 (substitution)

(i) Let F be an antiderivative of f on (a,b). Let  $\varphi: (\alpha,\beta) \to (a,b)$  have a finite derivative at each point of  $(\alpha,\beta)$ . Then

$$\int f(\varphi(x))\varphi'(x) dx \stackrel{c}{=} F(\varphi(x)) \quad on \ (\alpha, \beta).$$

#### Theorem 4 (substitution)

(i) Let F be an antiderivative of f on (a,b). Let  $\varphi: (\alpha,\beta) \to (a,b)$  have a finite derivative at each point of  $(\alpha,\beta)$ . Then

$$\int f(\varphi(x))\varphi'(x) dx \stackrel{c}{=} F(\varphi(x)) \quad on \ (\alpha, \beta).$$

(ii) Let  $\varphi$  be a function with a finite derivative in each point of  $(\alpha, \beta)$  such that the derivative is either everywhere positive or everywhere negative, and such that  $\varphi((\alpha, \beta)) = (a, b)$ . Let f be a function defined on (a, b) and suppose that

$$\int f(\varphi(t))\varphi'(t) dt \stackrel{c}{=} G(t) \quad on \ (\alpha, \beta).$$

Then

$$\int f(x) dx \stackrel{c}{=} G(\varphi^{-1}(x)) \quad on \ (a,b).$$

#### Theorem 5 (integration by parts)

Let I be an open interval and let the functions f and g be continuous on I. Let F be an antiderivative of f on I and G an antiderivative of g on I. Then

$$\int f(x)G(x) dx = F(x)G(x) - \int F(x)g(x) dx \quad on I.$$

#### Remark

We can write as  $\int fg' = fg - \int f'g$  or  $\int u'v = uv - \int uv'$ .

```
https://cs.khanacademy.org/math/integralni-pocet/xbf9b4d9711003f1c:
integracni-metody/xbf9b4d9711003f1c:
integrace-per-partes/v/integral-of-ln-x
```

# Example $\int x \cos x \qquad \int x \arctan x$

Let P(x) be a polynomial. The following table can help to choose u' and v.

|                       | v(x) | u'(x)      |
|-----------------------|------|------------|
| $P(x) \cdot e^{kx}$   | P(x) | $e^{kx}$   |
| $P(x) \cdot a^{kx}$   | P(x) | $a^{kx}$   |
| $P(x) \cdot \sin(kx)$ | P(x) | $\sin(kx)$ |
| $P(x) \cdot \cos(kx)$ | P(x) | $\cos(kx)$ |

|                                         | v(x)                         | u'(x) |
|-----------------------------------------|------------------------------|-------|
| $P(x) \cdot \ln^n x$                    | $\ln^n x$                    | P(x)  |
| $P(x) \cdot \arcsin(kx)$                | $\arcsin(kx)$                | P(x)  |
| $P(x) \cdot \arccos(kx)$                | $\arccos(kx)$                | P(x)  |
| $P(x) \cdot \arctan(kx)$                | $\arctan(kx)$                | P(x)  |
| $P(x) \cdot \operatorname{arccotg}(kx)$ | $\operatorname{arccotg}(kx)$ | P(x)  |

Find integrals, which should be solved by integration by parts

A 
$$\int xe^{x^2} dx$$
  
B  $\int x \cos x dx$   
C  $\int 1 \ln x dx$ 

$$\mathbf{D} \int \frac{x}{\ln x} \, \mathrm{d}x$$

By parts or by substitution?

A 
$$\int \arcsin x \, dx$$

$$\mathbf{B} \int \frac{x}{1+x^2} \, \mathrm{d}x$$

$$C \int (x^2 - 3) \ln x \, dx$$

$$\mathbf{D} \int \frac{1}{x \ln x} \, \mathrm{d}x$$

$$\mathbf{E} \int x^2 \cos 2x \, \mathrm{d}x$$

https://learningapps.org/display?v=pgeigge6j21

True or false?

$$\mathbf{A} \int kf = k \int f$$

$$\mathbf{B} \int f + g = \int f + \int g$$

$$C \int f - g = \int f - \int g$$

$$\mathbf{D} \int f \cdot g = \int f \cdot \int g$$

$$\mathbf{E} \int f/g = \int f/\int g$$

Find a mistake.

1.

$$\int \frac{3x^2 + 1}{2x} \, \mathrm{d}x = \frac{x^3 + x}{x^2} + c$$

2.  $\forall a \in \mathbb{R}$ 

$$\int x^a \, \mathrm{d}x = \frac{x^{a+1}}{a+1} + c$$

Calculus: Single and Multivariable, 6th Edition, Deborah Hughes-Hallett and col.

#### Definition

A rational function is a ratio of two polynomials, where the polynomial in the denominator is not a zero polynomial.

#### Definition

A rational function is a ratio of two polynomials, where the polynomial in the denominator is not a zero polynomial.

#### Exercise

Find rational functions.

A 
$$\frac{3x-4+x^4}{x^2-2x+1}$$

$$x^2-2x+$$
**B**  $x^6+5$ 

$$C \frac{x^5 - 8x + 2}{3}$$

D 
$$\frac{\sqrt{2+5}}{1+\sqrt[3]{x^3-8}}$$

E 
$$\frac{(3x-4)(2x+5)}{(x-1)(x^2+2)}$$

## Theorem ("fundamental theorem of algebra")

Let  $n \in \mathbb{N}$ ,  $a_0, \ldots, a_n \in \mathbb{C}$ ,  $a_n \neq 0$ . Then the equation

$$a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = 0$$

has at least one solution  $z \in \mathbb{C}$ .



# Lemma 6 (polynomial division)

Let P and Q be polynomials (with complex coefficients) such that Q is not a zero polynomial. Then there are uniquely determined polynomials S and R satisfying:

- $\deg R < \deg Q$ ,
- P(x) = S(x)Q(x) + R(x) for all  $x \in \mathbb{C}$ .

If P and Q have real coefficients then so have S and R.

## Lemma 6 (polynomial division)

Let P and Q be polynomials (with complex coefficients) such that Q is not a zero polynomial. Then there are uniquely determined polynomials S and R satisfying:

- $\deg R < \deg Q$
- P(x) = S(x)Q(x) + R(x) for all  $x \in \mathbb{C}$ .

If P and Q have real coefficients then so have S and R.

# Corollary

If P is a polynomials and  $\lambda \in \mathbb{C}$  its **root** (i.e.  $P(\lambda) = 0$ ), then there is a polynomial S satisfying  $P(x) = (x - \lambda)S(x)$  for all  $x \in \mathbb{C}$ .

#### Example

$$x^2 - x - 6 = (x+2)(x-3)$$

$$x^3 + x = x(x - i)(x + i)$$



#### Theorem 7 (factorisation into monomials)

Let  $P(x) = a_n x^n + \dots + a_1 x + a_0$  be a polynomial of degree  $n \in \mathbb{N}$ . Then there are numbers  $x_1, \dots, x_n \in \mathbb{C}$  such that

$$P(x) = a_n(x - x_1) \cdots (x - x_n), \quad x \in \mathbb{C}.$$

#### Theorem 7 (factorisation into monomials)

Let  $P(x) = a_n x^n + \dots + a_1 x + a_0$  be a polynomial of degree  $n \in \mathbb{N}$ . Then there are numbers  $x_1, \dots, x_n \in \mathbb{C}$  such that

$$P(x) = a_n(x - x_1) \cdots (x - x_n), \quad x \in \mathbb{C}.$$

#### Definition

Let P be a polynomial that is not zero,  $\lambda \in \mathbb{C}$ , and  $k \in \mathbb{N}$ . We say that  $\lambda$  is a root of multiplicity k of the polynomial P if there is a polynomial S satisfying  $S(\lambda) \neq 0$  and  $P(x) = (x - \lambda)^k S(x)$  for all  $x \in \mathbb{C}$ .

#### Exercise

Find the multiplicity of  $\lambda = -2$  of the polynomial  $P(x) = (x^2 + x - 2)(x + 2)^3$ .

**A** -2

B 1

**C** 2

D 3

E 4

# Theorem 8 (roots of a polynomial with real coefficients)

Let P be a polynomial with real coefficients and  $\lambda \in \mathbb{C}$  a root of P of multiplicity  $k \in \mathbb{N}$ . Then the also the conjugate number  $\overline{\lambda}$  is a root of P of multiplicity k.

#### Theorem 9 (factorisation of a polynomial with real coefficients)

Let  $P(x) = a_n x^n + \cdots + a_1 x + a_0$  be a polynomial of degree n with real coefficients. Then there exist real numbers  $x_1, \ldots, x_k, \alpha_1, \ldots, \alpha_l, \beta_1, \ldots, \beta_l$  and natural numbers  $p_1, \ldots, p_k, q_1, \ldots, q_l$  such that

• 
$$P(x) = a_n(x - x_1)^{p_1} \cdots (x - x_k)^{p_k} (x^2 + \alpha_1 x + \beta_1)^{q_1} \cdots (x^2 + \alpha_l x + \beta_l)^{q_l}$$

#### Theorem 9 (factorisation of a polynomial with real coefficients)

Let  $P(x) = a_n x^n + \cdots + a_1 x + a_0$  be a polynomial of degree n with real coefficients. Then there exist real numbers  $x_1, \ldots, x_k, \alpha_1, \ldots, \alpha_l, \beta_1, \ldots, \beta_l$  and natural numbers  $p_1, \ldots, p_k, q_1, \ldots, q_l$  such that

- $P(x) = a_n(x x_1)^{p_1} \cdots (x x_k)^{p_k} (x^2 + \alpha_1 x + \beta_1)^{q_1} \cdots (x^2 + \alpha_l x + \beta_l)^{q_l}$
- no two polynomials from  $x x_1, x x_2, \dots, x x_k$ ,  $x^2 + \alpha_1 x + \beta_1, \dots, x^2 + \alpha_l x + \beta_l$  have a common root,

#### Theorem 9 (factorisation of a polynomial with real coefficients)

Let  $P(x) = a_n x^n + \cdots + a_1 x + a_0$  be a polynomial of degree n with real coefficients. Then there exist real numbers  $x_1, \ldots, x_k, \alpha_1, \ldots, \alpha_l, \beta_1, \ldots, \beta_l$  and natural numbers  $p_1, \ldots, p_k, q_1, \ldots, q_l$  such that

- $P(x) = a_n(x x_1)^{p_1} \cdots (x x_k)^{p_k} (x^2 + \alpha_1 x + \beta_1)^{q_1} \cdots (x^2 + \alpha_l x + \beta_l)^{q_l}$
- no two polynomials from  $x x_1, x x_2, \dots, x x_k$ ,  $x^2 + \alpha_1 x + \beta_1, \dots, x^2 + \alpha_l x + \beta_l$  have a common root,
- the polynomials  $x^2 + \alpha_1 x + \beta_1, \dots, x^2 + \alpha_l x + \beta_l$  have no real root.

Let P,Q be polynomials with real coefficients such that  $\deg P < \deg Q$  and let

$$Q(x) = a_n(x - x_1)^{p_1} \cdots (x - x_k)^{p_k} (x^2 + \alpha_1 x + \beta_1)^{q_1} \cdots (x^2 + \alpha_l x + \beta_l)^{q_l}$$

be a factorisation of from Theorem 9. Then there exist unique real numbers  $A_1^1, \ldots, A_{n_1}^1, \ldots, A_{n_r}^k, \ldots, A_{n_r}^k$ 

 $B_1^1, C_1^1, \dots, B_{q_1}^1, C_{q_1}^1, \dots, B_1^l, C_1^l, \dots, B_{q_l}^l, C_{q_l}^l$  such that

$$\frac{P(x)}{Q(x)} =$$

Let P,Q be polynomials with real coefficients such that  $\deg P < \deg Q$  and let

$$Q(x) = a_n(x - x_1)^{p_1} \cdots (x - x_k)^{p_k} (x^2 + \alpha_1 x + \beta_1)^{q_1} \cdots (x^2 + \alpha_l x + \beta_l)^{q_l}$$

be a factorisation of from Theorem 9. Then there exist unique real numbers

$$A_1^1,\ldots,A_{p_1}^1,\ldots,A_1^k,\ldots,A_{p_k}^k,$$

$$B_1^1, C_1^1, \dots, B_{q_1}^1, C_{q_1}^1, \dots, B_1^l, C_1^l, \dots, B_{q_l}^l, C_{q_l}^l$$
 such that

$$\frac{P(x)}{Q(x)} = \frac{A_1^1}{(x-x_1)} + \dots + \frac{A_{p_1}^1}{(x-x_1)^{p_1}} + \dots$$

Let P,Q be polynomials with real coefficients such that  $\deg P < \deg Q$  and let

$$Q(x) = a_n(x - x_1)^{p_1} \cdots (x - x_k)^{p_k} (x^2 + \alpha_1 x + \beta_1)^{q_1} \cdots (x^2 + \alpha_l x + \beta_l)^{q_l}$$

be a factorisation of from Theorem 9. Then there exist unique real numbers

$$A_1^1,\ldots,A_{p_1}^1,\ldots,A_1^k,\ldots,A_{p_k}^k,$$

$$B_1^1, C_1^1, \ldots, B_{q_1}^1, C_{q_1}^1, \ldots, B_1^l, C_1^l, \ldots, B_{q_l}^l, C_{q_l}^l$$
 such that

$$\frac{P(x)}{Q(x)} = \frac{A_1^1}{(x-x_1)} + \dots + \frac{A_{p_1}^1}{(x-x_1)^{p_1}} + \dots + \frac{A_1^k}{(x-x_k)} + \dots + \frac{A_{p_k}^k}{(x-x_k)^{p_k}} + \dots$$

Let P,Q be polynomials with real coefficients such that  $\deg P < \deg Q$  and let

$$Q(x) = a_n(x - x_1)^{p_1} \cdots (x - x_k)^{p_k} (x^2 + \alpha_1 x + \beta_1)^{q_1} \cdots (x^2 + \alpha_l x + \beta_l)^{q_l}$$

be a factorisation of from Theorem 9. Then there exist unique real numbers

$$A_1^1,\ldots,A_{p_1}^1,\ldots,A_1^k,\ldots,A_{p_k}^k,$$

$$B_1^1, C_1^1, \dots, B_{q_1}^1, C_{q_1}^1, \dots, B_1^l, C_1^l, \dots, B_{q_l}^l, C_{q_l}^l$$
 such that

# Theorem 10 (decomposition to partial fractions)

Let P, Q be polynomials with real coefficients such that  $\deg P < \deg Q$  and let

$$Q(x) = a_n(x - x_1)^{p_1} \cdots (x - x_k)^{p_k} (x^2 + \alpha_1 x + \beta_1)^{q_1} \cdots (x^2 + \alpha_l x + \beta_l)^{q_l}$$

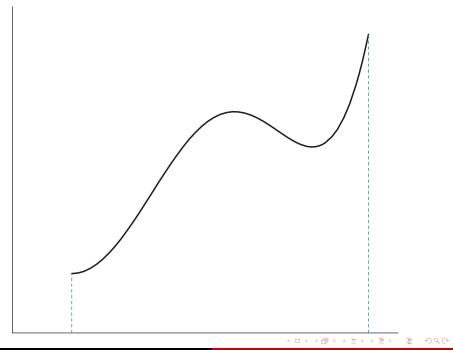
be a factorisation of from Theorem 9. Then there exist unique real numbers  $A_1^1, \ldots, A_n^1, \ldots, A_n^k, \ldots, A_n^k$ ,

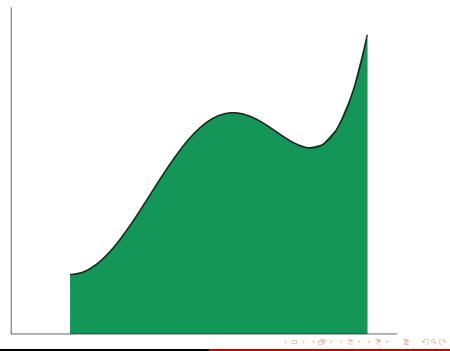
$$B_1^1, C_1^1, \dots, B_{q_1}^1, C_{q_1}^1, \dots, B_1^{l}, C_1^l, \dots, B_{q_l}^l, C_{q_l}^l$$
 such that

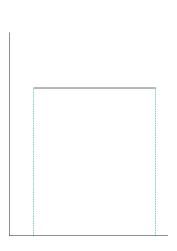
$$\frac{P(x)}{Q(x)} = \frac{A_1^1}{(x-x_1)} + \dots + \frac{A_{p_1}^1}{(x-x_1)^{p_1}} + \dots + \frac{A_1^k}{(x-x_k)} + \dots + \frac{A_{p_k}^k}{(x-x_k)^{p_k}} + \\
+ \frac{B_1^1 x + C_1^1}{(x^2 + \alpha_1 x + \beta_1)} + \dots + \frac{B_{q_1}^1 x + C_{q_1}^1}{(x^2 + \alpha_1 x + \beta_1)^{q_1}} + \dots + \\
+ \frac{B_1^t x + C_1^t}{(x^2 + \alpha_1 x + \beta_1)} + \dots + \frac{B_{q_1}^t x + C_{q_1}^t}{(x^2 + \alpha_1 x + \beta_1)^{q_1}}, x \in \mathbb{R} \setminus \{x_1, \dots, x_k\}.$$

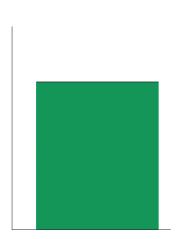
https://www.geogebra.org/calculator/aw2yjsjx

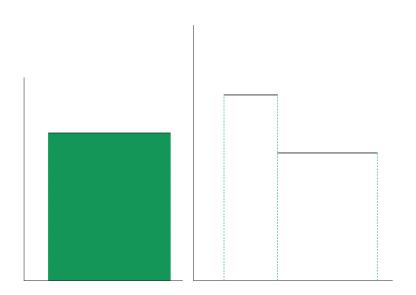
# VII.2. Riemann integral

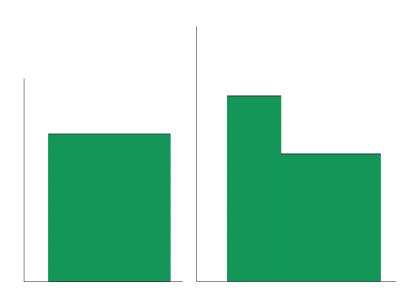


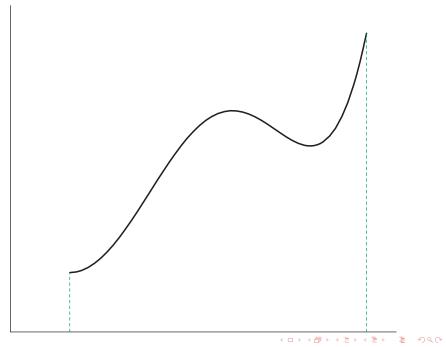




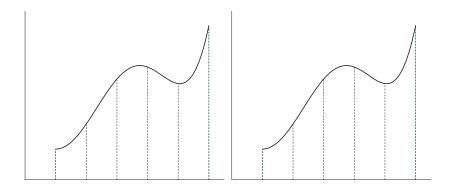


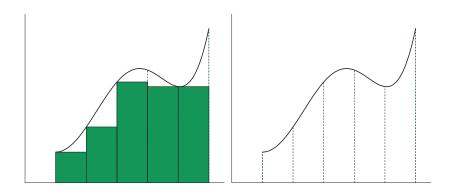


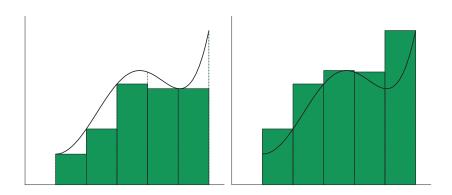


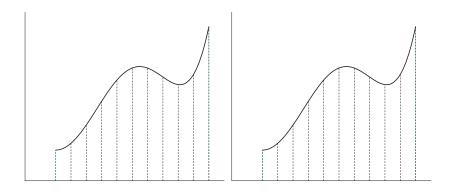


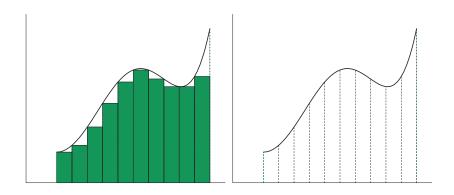


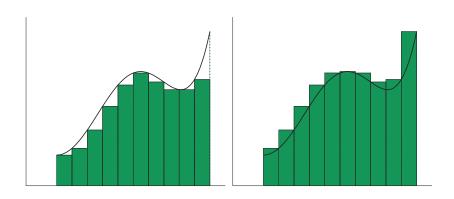












A finite sequence  $\{x_j\}_{j=0}^n$  is called a partition of the interval [a,b] if

$$a = x_0 < x_1 < \cdots < x_n = b.$$

The points  $x_0, \ldots, x_n$  are called the partition points.

A finite sequence  $\{x_j\}_{j=0}^n$  is called a partition of the interval [a,b] if

$$a = x_0 < x_1 < \cdots < x_n = b.$$

The points  $x_0, \ldots, x_n$  are called the partition points.

We say that a partition D' of an interval [a,b] is a refinement of the partition D of [a,b] if each partition point of D is also a partition point of D'.



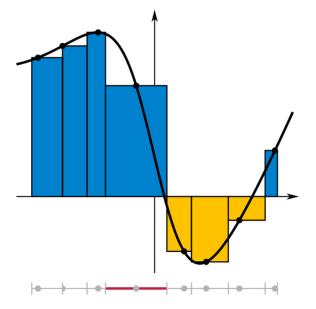


Figure: https://en.wikipedia.org/wiki/Integral

Suppose that  $a, b \in \mathbb{R}$ , a < b, the function f is bounded on [a, b], and  $D = \{x_j\}_{j=0}^n$  is a partition of [a, b]. Denote

$$\overline{S}(f,D) = \sum_{i=1}^{n} M_j(x_j - x_{j-1}), \text{ where } M_j = \sup\{f(x); x \in [x_{j-1}, x_j]\},$$

Suppose that  $a, b \in \mathbb{R}$ , a < b, the function f is bounded on [a, b], and  $D = \{x_j\}_{j=0}^n$  is a partition of [a, b]. Denote

$$\overline{S}(f,D) = \sum_{j=1}^{n} M_j(x_j - x_{j-1}), \text{ where } M_j = \sup\{f(x); x \in [x_{j-1}, x_j]\},$$

$$\underline{S}(f,D) = \sum_{i=1}^{n} m_j(x_j - x_{j-1}), \text{ where } m_j = \inf\{f(x); x \in [x_{j-1}, x_j]\},$$

Suppose that  $a, b \in \mathbb{R}$ , a < b, the function f is bounded on [a, b], and  $D = \{x_j\}_{j=0}^n$  is a partition of [a, b]. Denote

$$\overline{S}(f,D) = \sum_{i=1}^{n} M_j(x_j - x_{j-1}), \text{ where } M_j = \sup\{f(x); x \in [x_{j-1}, x_j]\},$$

$$\underline{S}(f,D) = \sum_{j=1}^{n} m_j(x_j - x_{j-1}), \text{ where } m_j = \inf\{f(x); x \in [x_{j-1}, x_j]\},$$

$$\overline{\int_a^b} f = \inf \{ \overline{S}(f, D); D \text{ is a partition of } [a, b] \},$$

$$\int_a^b f = \sup \{ \underline{S}(f, D); D \text{ is a partition of } [a, b] \}.$$

 $\underline{\underline{We}}$  say that a function f has the Riemann integral over the interval [a,b] if

$$\overline{\int_a^b} f = \underline{\int_a^b} f.$$

We say that a function f has the Riemann integral over the interval [a,b] if  $\int_a^b f = \int_a^b f$ . The value of the integral of f over [a,b] is then equal to the common value of  $\overline{\int_a^b} f = \int_a^b f$ . We denote it by  $\int_a^b f = \int_a^b f =$ 

We say that a function f has the Riemann integral over the interval [a,b] if  $\int_a^b f = \underline{\int_a^b} f$ . The value of the integral of f over [a,b] is then equal to the common value of  $\overline{\int_a^b} f = \underline{\int_a^b} f$ . We denote it by  $\int_a^b f = \int_a^b f f$ .

If a > b, then we define  $\int_a^b f = -\int_b^a f$ , and in case that a = b we put  $\int_a^b f = 0$ .

#### Exercise

Use the Riemann sums and estimate the integral

$$\int_0^{15} f(x) \, \mathrm{d}x.$$

Check the table for some values of f:

Table: Applied Calculus, 6th Edition, Deborah Hughes-Hallett and col.

# Theorem 11 (Newton-Leibniz formula)

Let f be a function continuous on an interval  $(a - \varepsilon, b + \varepsilon)$ ,  $a, b \in \mathbb{R}$ , a < b,  $\varepsilon > 0$  and let F be an antiderivative of f on  $(a - \varepsilon, b + \varepsilon)$ . Then

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a). \tag{1}$$

# Theorem 11 (Newton-Leibniz formula)

Let f be a function continuous on an interval  $(a - \varepsilon, b + \varepsilon)$ ,  $a, b \in \mathbb{R}$ , a < b,  $\varepsilon > 0$  and let F be an antiderivative of f on  $(a - \varepsilon, b + \varepsilon)$ . Then

$$\int_{a}^{b} f(x) dx = F(b) - F(a). \tag{1}$$

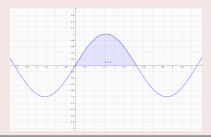
#### Remark

The Newton-Leibniz formula (1) holds even if b < a (if F' = f on  $(b - \varepsilon, a + \varepsilon)$ ). Let us denote

$$[F]_a^b = F(b) - F(a).$$

# Example

$$\int_0^{\pi} \sin x \, dx = [-\cos x]_0^{\pi} = -\cos \pi - (-\cos 0) = 1 + 1 = 2$$



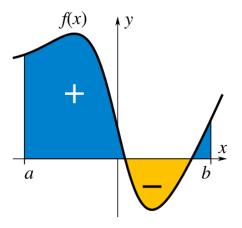
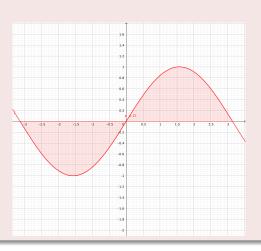


Figure: https://en.wikipedia.org/wiki/Integral

# Example

$$\int_{-\pi}^{\pi} \sin x \, \mathrm{d}x = \left[ -\cos x \right]_{-\pi}^{\pi} = -\cos \pi - (-\cos -\pi) = 1 - 1 = 0$$



# Theorem 12 (integration by parts)

Suppose that the functions f, g, f' a g' are continuous on an interval [a,b]. Then

$$\int_a^b f'g = [fg]_a^b - \int_a^b fg'.$$

# Theorem 12 (integration by parts)

Suppose that the functions f, g, f' a g' are continuous on an interval [a,b]. Then

$$\int_a^b f'g = [fg]_a^b - \int_a^b fg'.$$

# Theorem 13 (substitution)

Let the function f be continuous on an interval [a,b]. Suppose that the function  $\varphi$  has a continuous derivative on  $[\alpha,\beta]$  and  $\varphi$  maps  $[\alpha,\beta]$  into the interval [a,b]. Then

$$\int_{\alpha}^{\beta} f(\varphi(x))\varphi'(x) dx = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt.$$

https://www.geogebra.org/calculator/frvx4mtr https://www.geogebra.org/calculator/cjuvxazd

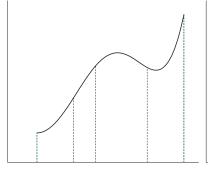


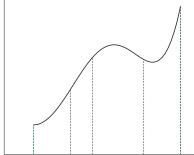
# Remark

Let D, D' be partitions of [a, b], D' refines D, and let f be a bounded function on [a, b]. Then

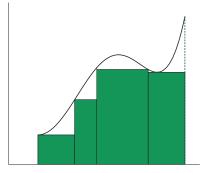
$$\underline{S}(f,D) \leq \underline{S}(f,D') \leq \overline{S}(f,D') \leq \overline{S}(f,D).$$

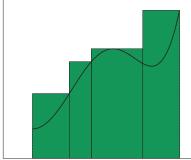
$$\underline{S}(f,D) \leq \underline{S}(f,D') \leq \overline{S}(f,D') \leq \overline{S}(f,D).$$



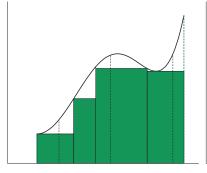


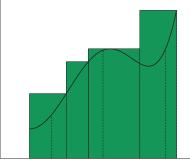
$$\underline{S}(f,D) \leq \underline{S}(f,D') \leq \overline{S}(f,D') \leq \overline{S}(f,D).$$



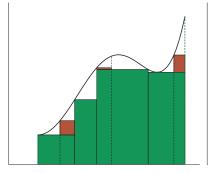


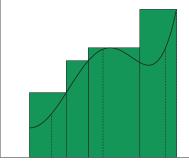
$$\underline{S}(f,D) \leq \underline{S}(f,D') \leq \overline{S}(f,D') \leq \overline{S}(f,D).$$



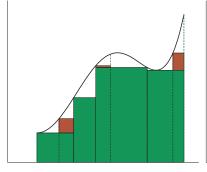


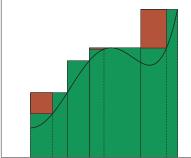
$$\underline{S}(f,D) \leq \underline{S}(f,D') \leq \overline{S}(f,D') \leq \overline{S}(f,D).$$





$$\underline{S}(f,D) \leq \underline{S}(f,D') \leq \overline{S}(f,D') \leq \overline{S}(f,D).$$





# Remark

Let D, D' be partitions of [a,b], D' refines D, and let f be a bounded function on [a,b]. Then

$$\underline{S}(f,D) \leq \underline{S}(f,D') \leq \overline{S}(f,D') \leq \overline{S}(f,D).$$

## Remark

Let D, D' be partitions of [a, b], D' refines D, and let f be a bounded function on [a, b]. Then

$$\underline{S}(f,D) \leq \underline{S}(f,D') \leq \overline{S}(f,D') \leq \overline{S}(f,D).$$

Suppose that  $D_1, D_2$  are partitions of [a, b] and a partition D' refines both  $D_1$  and  $D_2$ . Then

$$\underline{S}(f, D_1) \leq \underline{S}(f, D') \leq \overline{S}(f, D') \leq \overline{S}(f, D_2).$$

### Remark

Let D, D' be partitions of [a, b], D' refines D, and let f be a bounded function on [a, b]. Then

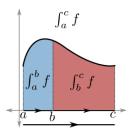
$$\underline{S}(f,D) \leq \underline{S}(f,D') \leq \overline{S}(f,D') \leq \overline{S}(f,D).$$

Suppose that  $D_1, D_2$  are partitions of [a, b] and a partition D' refines both  $D_1$  and  $D_2$ . Then

$$\underline{S}(f, D_1) \leq \underline{S}(f, D') \leq \overline{S}(f, D') \leq \overline{S}(f, D_2).$$

It easily follows that  $\int_a^b f \leq \overline{\int_a^b} f$ .

(i) Suppose that f has the Riemann integral over [a,b] and let  $[c,d] \subset [a,b]$ . Then f has the Riemann integral also over [c,d].

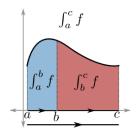


# Figure:

http://calculus.seas.upenn.edu/?n=Main.DefiniteIntegrals

- (i) Suppose that f has the Riemann integral over [a,b] and let  $[c,d] \subset [a,b]$ . Then f has the Riemann integral also over [c,d].
- (ii) Suppose that  $c \in (a,b)$  and f has the Riemann integral over the intervals [a,c] and [c,b]. Then f has the Riemann integral over [a,b] and

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f. \tag{2}$$



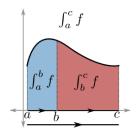
# Figure:

http://calculus.seas.upenn.edu/?n=Main.DefiniteIntegrals



- (i) Suppose that f has the Riemann integral over [a,b] and let  $[c,d] \subset [a,b]$ . Then f has the Riemann integral also over [c,d].
- (ii) Suppose that  $c \in (a,b)$  and f has the Riemann integral over the intervals [a,c] and [c,b]. Then f has the Riemann integral over [a,b] and

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f. \tag{2}$$



# Figure:

http://calculus.seas.upenn.edu/?n=Main.DefiniteIntegrals



(i) Suppose that f has the Riemann integral over [a,b] and let  $[c,d] \subset [a,b]$ . Then f has the Riemann integral also over [c,d].

## Remark

The formula (3) holds for all  $a, b, c \in \mathbb{R}$  if the integral of f exists over the interval  $[\min\{a, b, c\}, \max\{a, b, c\}]$ .

- (i) Suppose that f has the Riemann integral over [a,b] and let  $[c,d] \subset [a,b]$ . Then f has the Riemann integral also over [c,d].
- (ii) Suppose that  $c \in (a,b)$  and f has the Riemann integral over the intervals [a,c] and [c,b]. Then f has the Riemann integral over [a,b] and

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f. \tag{3}$$

#### Remark

The formula (3) holds for all  $a, b, c \in \mathbb{R}$  if the integral of f exists over the interval  $[\min\{a, b, c\}, \max\{a, b, c\}]$ .

# Theorem 16 (linearity of the Riemann integral)

Let f and g be functions with Riemann integral over [a,b] and let  $\alpha \in \mathbb{R}$ . Then

(i) the function  $\alpha f$  has the Riemann integral over [a,b] and

$$\int_{a}^{b} \alpha f = \alpha \int_{a}^{b} f,$$

# Theorem 16 (linearity of the Riemann integral)

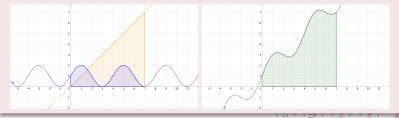
Let f and g be functions with Riemann integral over [a,b] and let  $\alpha \in \mathbb{R}$ . Then

(i) the function  $\alpha f$  has the Riemann integral over [a,b] and

$$\int_{a}^{b} \alpha f = \alpha \int_{a}^{b} f,$$

(ii) the function f + g has the Riemann integral over [a,b] and

$$\int_{a}^{b} f + g = \int_{a}^{b} f + \int_{a}^{b} g.$$



Let  $a, b \in \mathbb{R}$ , a < b, and let f and g be functions with Riemann integral over [a, b]. Then:

(i) If  $f(x) \leq g(x)$  for each  $x \in [a, b]$ , then

$$\int_{a}^{b} f \le \int_{a}^{b} g.$$



Let  $a, b \in \mathbb{R}$ , a < b, and let f and g be functions with Riemann integral over [a, b]. Then:

(i) If  $f(x) \leq g(x)$  for each  $x \in [a, b]$ , then

$$\int_{a}^{b} f \le \int_{a}^{b} g.$$



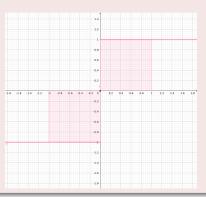
(ii) The function |f| has the Riemann integral over [a, b] and

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|.$$

Let f be a function continuous on an interval [a,b],  $a,b \in \mathbb{R}$ . Then f has the Riemann integral on [a,b].

# Remark

Compare with  $\operatorname{sgn} x$ :



Let f be a function continuous on an interval (a,b) and let  $c \in (a,b)$ . If we denote  $F(x) = \int_{c}^{x} f(t) dt$  for  $x \in (a,b)$ , then F'(x) = f(x) for each  $x \in (a,b)$ . In other words, F is an antiderivative of f on (a,b).

# Exercise (True – False)

A Let f be a function. Then  $\int_0^2 f(x) dx \le \int_0^3 f(x) dx$ .

**B** If  $\int_{2}^{6} g(x) dx \le \int_{2}^{6} f(x) dx$ , then  $g(x) \le f(x)$  for all  $2 \le x \le 6$ .

# Exercise

Let f be an odd function such that  $\int_{-2}^{0} f(x) dx = 4$ . Find

- 1.  $\int_0^2 f(x) \, dx$
- 2.  $\int_{-2}^{2} f(x) dx$

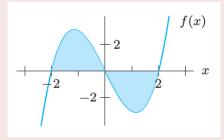


Figure: Applied Calculus, 6th Edition, Deborah Hughes-Hallett and col.

# Exercise

Decide, if the integrals are

$$\mathbf{A} \int_{-\pi}^{0} \sin x \, \mathrm{d}x$$

$$\mathbf{B} \int_{0}^{\pi} \cos x \, \mathrm{d}x$$

$$\mathbf{B} \int_0^{\pi} \cos x \, \mathrm{d}x$$

$$\mathbf{C} \int_{-\pi}^{\pi} \sin x \, \mathrm{d}x$$

D 
$$\int_{-\pi/2}^{\pi/2} \cos x \, dx$$
E 
$$\int_{0}^{2\pi} e^{-x} \sin x \, dx$$

$$\mathsf{E} \int_0^{2\pi} e^{-x} \sin x \, \mathrm{d}x$$

- 1. positive
- 2. 0
- 3. negative

### Exercise

The half-life of phosphorous  $^{32}P$ , which is used for biological experiments, is 14,3 days.

Suppose, that you have a sample, which emits 300 mREM/day. (1 REM=0,01 Sv)

How long can a laboratory assistant work with this sample, if according to the safety regulations she can receive only 5 000 mREM/year.

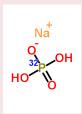


Figure: https://www.guidechem.com/cas/680178408.html

From:https://jmahaffy.sdsu.edu/courses/f14/math124/beamer\_ lectures/def\_int.pdf

