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Mathematics 11

@ Functions of several variables
@ Matrix calculus

@ Antiderivative and the Riemann Integral
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V.1. R" as a linear and metric space

The set R”, n € N, is the set of all ordered n-tuples of real numbers, i.e.

R" = {[x1, .., 2] %1, .., %, € R}
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Exercise (2D)

Sketch the following points and connect them.
(14,5), (13,2), (12,0), (13, =3), (10, — 1), (4, —2), (3, —4),
(1,=3), (=4, =3}, (=6, =2), (=6,=T7), (=8, =5), (=9, =2);

(=13, 1), (—=11,0), (=14, 1), (=12,2), (=9,3), (=4, 3), (=2,7),
(0,3),(3,2),(9,1), (14,5).

https://mathcrush.com/geometry_worksheets/

Exercise (3D)
https://www.geogebra.org/classic/ydu8ait’7
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Exercise

Which picture(s) plots the point (2, 1, 1) correctly?

A. B. C.

(2.1,1)

T £€r

https://www.cpp.edu/conceptests/question-library/mat214.shtml
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V.1. R" as a linear and metric space

Forx = [x1,...,x,] € R,y = [y1,...,y,] € R" and @ € R we set
X+y=[x1+y1,.. %+, ax = [axy, . . ., ax,).

Further, we denote 0 = [0, . . ., 0] — the origin.

Find

A (1,2,3,4) + (=2,0,3,—1)
B —2(1,2,3,4)
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Definition

The Euclidean metric (distance) on R” is the function
p: R" x R" — [0, +-00) defined by

The number p(x,y) is called the distance of the point x from the point y

(72,92)
Y2 —

(w1,91) T2 —T1

https://rosalind.info/glossary/euclidean-distance/
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Exercise

Find the distance of the points

(-3, 4)
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https://www.summitlearning.org/guest/focusareas/862919
B (ly _273)7 (07 _37 _2)
C (-1,0,3,2),(1,-1,2,-3)
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Exercise

A p((1,2),(1,2))
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Exercise
A p((1,2),(1,2))
B p((1,2),(4,6)), p((4,6), (1,2))
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Exercise
C p((1,2),(4,6)), p((1,2), (1, 1)) + p((1, 1), (4,6))
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Exercise

D 2p((172)7 (476))’ p((27 4)7 (8’ 12))
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Exercise

E p((1,2),(4,6)), p((2,3),(5,7))
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Theorem 1 (properties of the Euclidean metric)

The Euclidean metric p has the following properties:

(i) Vx,y eR": p(x,y) =0 x =y,

(ii) Vx,y € R": p(x,3) = p(y,x), (symmetry)
(i) Vx,y,z € R": p(x,y) < p(x,z) + p(z,¥), (triangle inequality)
(iv) Vx,y € R VA € R: p(Ax, \y) = |A|p(x,y), (homogeneity)
v) Vx,y,z € R": p(x +2z,y +z) = p(x,y). (translation invariance))
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Letx € R", r € R,r > 0. The set B(x, r) defined by

B(x,r) = {y e R"; p(x,y) <r}

is called an open ball with radius r centred at x or the neighbourhood of x.

" Center |

{ |

\ / Center
3D ball 2D ball 1D ball

http://www.sciencedall.org/article/topology/
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N-sphere

https://commons.wikimedia.org/
https://en.wikipedia.org/wiki/ wiki/File:4dSphere. jpg



https://en.wikipedia.org/wiki/N-sphere
https://en.wikipedia.org/wiki/N-sphere
https://commons.wikimedia.org/wiki/File:4dSphere.jpg
https://commons.wikimedia.org/wiki/File:4dSphere.jpg

o 1 2 3 a4 #Dim

https://www.tinyepiphany.com/
2011/12/
visualizing-4-dimensions.html

https://cs.wikipedia.org/wiki/
%C4%8CtvrtsC3%BD_rozm%$C4%9Br
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Definition

Let M C R". We say that x € R” is an interior point of M, if there exists
r > 0 such that B(x,r) C M.

The set of all interior points of M is called the interior of M and is denoted
by Int M.

The set M C R" is open in R", if each point of M is an interior point of M,
ie. if M = Int M.

http://www.gtmath.com/2016/
07/how-close-is-close-enough-metric-spaces.html
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Exercise
Find the interior
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Theorem 2 (properties of open sets)

(1) The empty set and R" are open in R".
(ii) Let G, CR", o € A # (), be open in R". Then Uaca Ga is open in R™.
(iii) Let G; CR", i=1,...,m, be open in R". Then (-, G; is open in R".
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Remark

(ii) A union of an arbitrary system of open sets is an open set.
(iii) An intersection of a finitely many open sets is an open set.
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Definition

Let M C R" and x € R". We say that x is a boundary point of M if for each
r>0

B(x,r)NM #0 and B(x,r)N (R"\ M) # 0.

The boundary of M is the set of all boundary points of M (notation bd M).

https://en.wikipedia.org/wiki/File:Interior_illustration.svg
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Definition

The closure of M is the set M U bd M (notation M).

A set M C R” is said to be closed in R” if it contains all its boundary points,
i.e. if bd M C M, or in other words if M = M.

Exercise
Decide, if the set is closed or open, find the interior, the boundary, the
closure.

M={xy eR:1<x<23<y<5}
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Definition

Letx’ € R" for each j € Nand x € R". We say that a sequence {x'}°,
converges to x, if

lim p(x,x’) = 0.

Jj—oo

The vector x is called the limit of the sequence {x/}%2,.
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Definition

Letx’ € R" for each j € Nand x € R". We say that a sequence {x'}°,
converges to x, if ‘
lim p(x,x’) = 0.

Jj—oo
The vector x is called the limit of the sequence {x/}%2,.

The sequence {y/ }f; of points in R” is called convergent if there exists
y € R” such that {y/ }72, converges to y.
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Definition

Letx’ € R" for each j € Nand x € R". We say that a sequence {x'}°,
converges to x, if

lim p(x,x’) = 0.
The vector x is called the limit of the sequence {x/}%2,.
The sequence {y/ },O§1 of points in R” is called convergent if there exists
y € R” such that {y/ }22, converges to y.

, (1 2j+1>
.hm o9 5
J—0o0 ] ]

Exercise

.
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Theorem 3 (convergence is coordinatewise)

Letx’ € R" for each j € N and let x € R". The sequence {x/ }j’il converges
to x if and only if for each i € {1, ..., n} the sequence of real numbers
{xi}32, converges to the real number x;.

Remark

Theorem 3 says that the convergence in the space R” is the same as the
“coordinatewise” convergence. It follows that a sequence {x/ }22, has at most
one limit. If it exists, then we denote it by lim;_, x/. Sometimes we also
write simply ¥ — x instead of lim;_, o, ¥/ = x.

Exercise

Find the limits of ¥ = (l + %,3 - %,e’J) ¥ = ((—1Y,arctan(?))

'
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Theorem 4 (characterisation of closed sets)

Let M C R”. Then the following statements are equivalent:
(i) M is closed in R".
(ii) R"\ M is open in R".
(iii)) Any x € R" which is a limit of a sequence from M belongs to M.
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Theorem 4 (characterisation of closed sets)
Let M C R”. Then the following statements are equivalent:

(i) M is closed in R".
(ii) R"\ M is open in R".
(iii)) Any x € R" which is a limit of a sequence from M belongs to M. )

Exercise

Decide, if the sets are closed or open (or nothing)
1. (0,1)inR
2. (0,00)in R
3. (—0,2]in R
4. x> +y* < 4inR?
5. x2+y*>2inR?
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Theorem 5 (properties of closed sets)
(1) The empty set and the whole space R" are closed in R".

(i) Let Fy CR", oo € A # (), be closed in R™. Then (), Fo is closed

a€A
in R™.
(i) Let F; CR", i=1,...,m, be closed in R". Then U:"Zl F; is closed
in R™.
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(ii) An intersection of an arbitrary system of closed sets is closed.
(iii) A union of finitely many closed sets is closed.
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Theorem 6
Let M C R". Then the following holds:
(i) The set M is closed in R".
(i1) The set Int M is open in R".
(iii) The set M is open in R" if and only if M = Int M.
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Let M C R". Then the following holds:
(i) The set M is closed in R".
(i1) The set Int M is open in R".
(iii) The set M is open in R" if and only if M = Int M.

Remark

The set Int M is the largest open set contained in M in the following sense:
If G is a set open in R" and satisfying G C M, then G C Int M. Similarly M
is the smallest closed set containing M.
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Definition
We say that the set M C R" is bounded if there exists » > 0 such that

M C B(o,r). A sequence of points in R” is bounded if the set of its members
is bounded.
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We say that the set M C R" is bounded if there exists » > 0 such that

M C B(o,r). A sequence of points in R” is bounded if the set of its members
is bounded.

A set M C R" is bounded if and only if its closure M is bounded.
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Exercise

Find bounded sets
A xe[-1,3],0 <y <100
BxX+y"+22<5
Clx+y <6
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We say that a set M C R” is compact if for each sequence of elements of M
there exists a convergent subsequence with a limit in M.
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Definition

We say that a set M C R” is compact if for each sequence of elements of M
there exists a convergent subsequence with a limit in M.

Theorem 8 (characterisation of compact subsets of R") J

The set M C R" is compact if and only if M is bounded and closed.
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We say that a set M C R” is compact if for each sequence of elements of M
there exists a convergent subsequence with a limit in M.

Theorem 8 (characterisation of compact subsets of R")

The set M C R" is compact if and only if M is bounded and closed.

Exercise

Find compact sets
1. (0,1)
2. [1,2] x [—1,=3]
3.1<x*+(—-3)+72<4
4. xyz <1
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Map game




We define a function of two variables as a mapping f : M — R, where

M C R2. y
fry) =2+, k)R
f(x,y) = arccosy - arcsinx, Dy =[—1,1] x [-1,1]
f(x,y) = In(xy), Di={(x>0Ay>0)V(x<0Ay<O0)}
fry) =2, [y eR
fxy) =5 [x)]eR
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2 .
fx,y) = P f(x,y) =sinxcosy
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Exercise

Find the graph for the contourlines / l”\
1
0
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http://www.cpp.edu/~conceptests/question-library/mat214.shtml

Exercise

Find the contourlines for the graph.
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Exercise

Connect the contourlines and the functions

\

/ KON

\\\\\

T

Figure: Hughes Hallett et al ¢ 2009, John Wiley & Sons
A fx2+y2 C fxzfyz
B x* —y? D X2 +y?




We define a function of multiple variables as a mapping f : M — R, where
M C R

flx) = xeR
flx, )—)’SIHX [x,y] € R?
fx,3,2) =%+, [x,y,7) € R®
flxy, )—ewarcsmz, Df =R xR x [-1,1]
fxy,2) = [x,y,2] € R3
FO,y,z,u )—xeyzlnu Df:{[x,y,z,u]€R4:u>0}
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@ Length of the day

@ Length of your shadow.
@ Compound interest.

@ Storm radar.

@ Drivers license tests.

@ Google ads.
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https://math.stackexchange.com/questions/703443/
best-way-to-plot-a-4-dimensional-meshgrid
https://www.mathworks.com/matlabcentral/answers/
224648-plotting-4d-with-3-vectors—and-1l-matrix

Note: Mathematica animation
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Definition

We say that a function f of n variables has a limit at a point @ € R” equal to
A e R*if

VeeR,e>030 €R,6 >0Vx € B(a,d) \ {a}: f(x) € B(A,¢).
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Geometric Interpretation of a Limit of a Function of Two Variables
Z=L+¢

L+e ™
L . ]
) / A\
Loe\ %/—"ﬂ

g {a, by (xy)

The limit as (x, y) approaches (a, b) is L If for all ¢ > () there exists a & > (} such that if (x,y)
is in the domain of f and (x, y) is within § > (} of (a,b), then the subset of points from the

surface generated by the function f is contained between the two planesz=L+ ¢ andz=L-¢.

http:
//mathonline.wikidot.com/limits-of-functions-of-two-variables



http://mathonline.wikidot.com/limits-of-functions-of-two-variables
http://mathonline.wikidot.com/limits-of-functions-of-two-variables

Remark
@ Each function has at a given point at most one limit. We write
hmx—mf(x) =A.
@ The function f is continuous at @ if and only if lim,_,, f(x) = f(a).
@ For limits of functions of several variables one can prove similar

theorems as for limits of functions of one variable (arithmetics, the
sandwich theorem, ...).

Note: Mathematica animation
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Exercise

L limg, ) 2,1y a2 —2xy+32 —4x+3y—6

2. limgey)0,-1) fora

x2+xy
0,0) x+y

3. Hm(x,y)—)(
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In the table there are values of a function f(x, y). Does there exist the limit

lim  f(x,y)?
(x,y)—(0,0)

.':.'\y —1.0 —0.5 —-0.2 0 0.2 0.5 1.0
—1.0 0.00 0.60 0.92 1.00 0.92 0.60 0.00
—0.5 —0.60 0.00 0.72 1.00 0.72 0.00 —0.6
—0.2 —0.92 —0.72 0.00 1.00 0.00 —0.72 —0.92

0 —1.00 —1.00 —1.00 —1.00 —1.00 —1.00
0.2 —0.92 —0.72 0.00 1.00 0.00 —0.72 —0.92
0.5 —0.60 0.00 0.72 1.00 0.72 0.00 —0.6
1.0 0.00 0.60 0.92 1.00 0.92 0.60 0.00

https://www.cpp.edu/conceptests/question-library/mat214.shtml
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Theorem 9

Letr,s € N, a € R, and let 1, . .., @, be functions of s variables such that
lime o @j(x) =bj, j=1,...,r.Setb = [by,...,b,]. Let f be a function of r
variables which is continuous at the point b. If we define a compound
function F of s variables by

F(x) :f(<,01(x), gDz(x), 000y Sﬁr(x))a

then limy,_,, F(x) = f(b).

Exercise

lim i
E)—@D || x+y
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V.2. Continuous functions of several variables

Definition

LetM C R",x € M, and f: M — R. We say that f is continuous at x with
respect to M, if we

Ve eR,e >030 € R,0 >0Vy € B(x,d) NM: f(y) € B(f(x),¢).

We say that f is continuous at the point x if it is continuous at x with respect
to a neighbourhood of x, i.e.

VeeR,e>030 e R, 0 >0Vy € B(x,9): f(y) € B(f(x),¢e).
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Let M C R"andf: M — R. We say that f is continuous on M if it is
continuous at each point x € M with respect to M.

Remark

The functions 7;: R" — R, 7;(x) = xj, 1 < j < n, are continuous on R".
They are called coordinate projections.

Theorem 10

LetM CR xeM,f:M—R, g:M— R, andc € R.Iff and g are
continuous at the point x with respect to M, then the functions cf, f + g a fg
are continuous at x with respect to M. If the function g is nonzero at x, then
also the function f /g is continuous at x with respect to M.
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Theorem 11

Letr,sec N M CR’, L CR", andy € M. Let ¢y, . . ., p, be functions
defined on M, which are continuous aty with respect to M and
[p1(x),...,pr(x)] € Lforeachx € M. Let f: L — R be continuous at the

point [1(y), - .., 0-(y)] with respect to L. Then the compound function
F: M — R defined by

F(x) :f(<,01(x),~~~,80r(x))7 xeM,

is continuous at'y with respect to M.
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Where is continuous f(x, y) = cos 17
A Everywhere except at the origin
B Everywhere except along the x-axis.

C Everywhere except along the y-axis.

D Everywhere except along the line y = x.

Exercise

Where is continuous f(x,y) = sgnxy?
A Everywhere except along the axes.
B Everywhere except along the x-axis.

C Everywhere except at the origin.

D Everywhere except along the line y = x.
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Exercise

Find continuous functions (at R?)
A In(x* +y*+1)

X—y
oy

C ”’

D sm(Zx) + xcot (x> + 2y)
E sgn(x* +y*)
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Theorem 12

Let f be a continuous function on R" and ¢ € R. Then the following holds:
(i) The set {x € R"; f(x) < c} is open in R".

(i) The set {x € R"; f(x) > c} is open in R".

(iii) The set {x € R"; f(x) < c} is closed in R".

(iv) The set {x € R"; f(x) > c} is closed in R".

(v) The set {x € R"; f(x)

x) = c} is closed in R".

Example

fly) =2+,

Mathematica
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Partial derivatives

The tangent ling in the direction of x.

9

8.

74

[

g5

o

4

34

) 2

)

http://calcnet.cst.cmich.edu/

https://www.wikihow.com/ faculty/angelos/m533/lectures/
Take-Partial-Derivatives pderv.htm

Animation.
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Let f be a function, a € R.
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Let f be a function, a € R.

) i T@T D =@

t—0 t

Sete/ =[0,...,0, 1 ,0,...,0].

y Yy . 9
Jjth coordinate

Definition

Let f be a function of n variables, j € {1,...,n}, a € R". Then the number

U g — L@ 1) 1)
8Xj t—0 t
_ hmf(al,...,aj_l,aj+t,aj+],...,an) ff(al,...,an)
t—0 t

is called the partial derivative (of first order) of function f according to jth
variable at the point a (if the limit exists).
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Exercise

Find &L, if f(x,y) = * +3x%y — Sx = 7y’ +y — 5

9 %)
Al=3x2+6xy—5—7y3+y C—f:x3+3—21y2+1—5
Ox Ox
of p
B = =32+6xy—5 )
Ox vt Oy D—f:3x2—21y2+1

Ox
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Find &L, if f(x,y) = * +3x%y — Sx = 7y’ +y — 5
9 o)
Al=3x2+6xy—5—7y3+y C—f:x3+3—21y2+1—5
Ox ox
of p
B 2L =32+6xy—5 )
Ox vt Oy D—f:3x2—21y2+1
ox
Find &, if f(x,y) = #* In(x?y)
8f 2x 8f x2
= = c¥Y_*X
8y y dy
g & _1 o 1
i D
3y y dy  x%y
According to: https://www.wiley.com/college/hugheshallett/
0470089148 /conceptests/concept.pdf
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Exercise

The values of a function f(x, y) are z\y
in the table. Which statement is most
accurate?

(In the left columnt there is x, in the
first row there is y.)

W N =R Ol
O~ N W o
N W b 1=
»H OO NN
S N 0O ©OWw

Q = >

0.
D %

https://www.cpp.edu/conceptests/question-library/mat214.shtml
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Exercise

of
ox
of
ox
of
Ox

of
D 5

Q w »

>0,
<0,
>0,

<0,

of
Oy
of
Oy
of
Oy
of
Ay

>0
>0
<0

<0

https://www.cpp.edu/conceptests/question-library/mat214.shtml
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Parcialni derivace - ulohy

Exercise (True or false?)

Let f(x,y,z) = x> + z + 3. Then the partial derivative f is not defined,
because there is no y in the function.

2. Is there a function f(x, y) such that af = 3y? and % = 3x2?

Exercise

Find a function, which is not constant, but
of _

5, = 0 for every x.
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Definition

Let G C R” be a non-empty open set. If a function f: G — R has all partial
derivatives continuous at each point of the set G (i.e. the function x — 8f ( )
is continuous on G for eachj € {1,...,n}), then we say that f is of the class
C' on G. The set of all of these functlons is denoted by C!(G).
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Definition

Let G C R” be a non-empty open set. If a function f: G — R has all partial
derivatives continuous at each point of the set G (i.e. the function x — g—f; (x)
is continuous on G for eachj € {1,...,n}), then we say that f is of the class
C' on G. The set of all of these functions is denoted by C'(G).

Remark

If G C R" is a non-empty open set and and f, g € C!(G), then
f+g€CYG),f—gecC'(G),andfg € C'(G). If moreover g(x) # O for
eachx € G, thenf/g € C'(G).

Exercise

Find functions, which are C!(R?).

v sin(x—2y)
A eV C 5 +;§ +y’2
B /x2 +y? D InZ
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f6y) = V100 — x> —y?
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Example

flx,y) =2+ y?
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fx,y) =5v/x* +y?
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Definition

Let G C R" be an open set, a € G, and f € C'(G). Then the graph of the
function

x5 £(a) + (@)1 - ) + 6%2((1)()62 )
4+ 4 gi (@)(xn —ay), x€eRY

is called the tangent hyperplane to the graph of the function f at the point

la.f(a)].
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Find the tangent plane of a function f(x, y) = xy at the point (2, 3).
Az—6=x(x—2)+y(y—3)

B z—-6=yx-2)+x(y—3)
Cz—6=2(x—2)+3(y—23)
Dz—6=3x—2)+2(y—3)

Exercise

Find the tangent plane of a function f(x, y,z,u) = In(xy + z*> — u) at the
pointa = (1,0,2,3).

.
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Theorem 13 (tangent hyperplane)

Let G C R" be an open set, a € G, f € C'(G), and let T be a function whose
graph is the tangent hyperplane of the function f at the point |a,f(a)]. Then

o F0) = T@)

= 0.
x—a  p(x,a)
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Theorem 13 (tangent hyperplane)

Let G C R" be an open set, a € G, f € C'(G), and let T be a function whose
graph is the tangent hyperplane of the function f at the point |a,f(a)]. Then

i &) = T(x)
x—a  p(x,a)

=0.

Theorem 14

Let G C R" be an open non-empty set and f € C'(G). Then f is continuous
on G.
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Theorem 13 (tangent hyperplane)

Let G C R" be an open set, a € G, f € C'(G), and let T be a function whose
graph is the tangent hyperplane of the function f at the point |a,f(a)]. Then

i &) = T(x)
x—a  p(x,a)

=0.

Theorem 14

Let G C R" be an open non-empty set and f € C'(G). Then f is continuous
on G.

Remark

Existence of partial derivatives at a does not imply continuity at a.
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Theorem 15 (derivative of a composite function; chain rule)

Letr,s € Nand let G C R®, H C R" be open sets. Let 1, . .., o, € C'(G)
f € CY(H)and [p(x),...,0-(x)] € H for eachx € G. Then the compound

function F: G — R defined by

F(x) =f(p1(®),p2(%), ..., 9r(x)), x€G,
, r(a)]. Then for each

& |

is of the class C' on G. Leta € G and b = [p1(a), . ..
J€A{l,...,s} we have

OF N
5@~ X5, 05 @

68/120
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Remark

Let f(x,y, z) be a differentiable function, let x = g1 (u,v), y = g2(u, v),
z = g3(u,v), where g1, g2, g3 are differentiable functions. Then for
h(”v V) :f(gl (uv V)v g2(“a V)a g3(u7 v)) we have

oh 6f8x+8f8y+8faz
Ou  OxOu  Oydu ' 0z0u

Oh 8f8x+8f8y+8f81
v Oxdv  Oyov Oz 0v

http://mathinsight.org/media/image/image/chain_
rule_geometric_objects.png
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Let h(u,v) = sinxcosy, where x = (u — v)? and y = u*> — v*. Find 0h/0u a
Oh/0v.

Exercise

Let i(u,v) = xy, where x = ucosv and y = usinv. Then for Oh/0v we have

Oh

= —0

v

Oh

B = u® cos(2v)
h

C g— = —u’ sin® vcos v + u® sinvcos’ v
v

D Something else.

A
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Exercise
Let f(x, y) satisfies the Chain rule theorem assumptions. Show, that a
w

function h(uvv7 W) = % Inu+ uf (%, %), where x = ﬁ,y ==
satisfies the following condition
Oh Oh Oh uv

— — —=h+—.
uaquV@v +W8w + w
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V.4. Implicit function theorem and Lagrange multiplier
theorem
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V.4. Implicit function theorem and Lagrange multiplier
theorem
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V.4. Implicit function theorem and Lagrange multiplier
theorem
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Theorem 16 (implicit function)

Let G C R"™! be an openset, F: G — R, andx € R", y € R such that
[X,3] € G. Suppose that

(i) F e C'(G),

(i) F(¥,y) =0,

OF

iii) —(x,y) # 0.
& 5 (%,5) #
Then there exist a neighbourhood U C R" of the point X and a
neighbourhood V- C R of the point y such that for each x € U there exists a

unique y € V satisfying F(x,y) = 0. If we denote this y by p(x), then the
resulting function  is in C'(U) and

oF

8@ g(x,go(x)) .
—x)=—Ft——— forxeUje{l,...,n}
Oxj I x, ox
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Theorem

Let G C R"! be an open set, F: G — R, and X € R", y € R such that
[¥,3] € G. Suppose that

(i) F e C'(G),
(i) F(,5) =0,

... OF _ _
(iii) a—y(x,y) # 0.

Then there exists a neighbourhood . . .

Exercise

Which condition is NOT satisfied?
A X2 +y =4at(2,0)
B y— lsiny =xat(m,m)
C sin(xy) + x> +y* = l at (0,3)
D |x| + & =1at(0,0)
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Definition

Let G C R" be an open set, a € G, and f € C'(G). The gradient of f at the
point a is the vector

_ |
_8)(1

a
’ 8x2

of

7...,axn

Vf(a) (@), 5 ~(a)

(@)] .

Exercise

Find the gradient of f(x,y,z) = y cos®(x?z) at the point [2, 1, 0]:

A (1/5,0,1/5) C (0,1,0)
B (0,0,1/5) D (1,0,1/2)
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Remark

The gradient of f at a points in the direction of steepest growth of f at a. At
every point, the gradient is perpendicular to the contour of f.

Exercise

The bicyclist is on a trip up the hill, which can be described as

f(x,y) =25 — 2x* — 4y*. When she is at the point [1, 1, 19], it starts to rain,
so she decides to go down the hill as steeply as possible (so that she is down
quickly). In what direction will she start her decline?

A (—4x; —8y) C (—4;-8)
B (4x;8y) D (4;8)

Mathematics II - Functions of multiple variables 80/120



N
/
’”7"}\«4//////;;;;' "““ \
ST
AR L

IR A S P ENEEEEN G S S I I IVAVEVE S N N N NN
e s R NS S 2% Y ll“““\\\
Y Y YYLLLIININ =y vy LS ST
””Y&Lllill‘l“*“"\’\r\, % % %\
iyyy»& FEASEE AN P BT
Y YYSNA, X X > Y LR B
-I#y\;\,\, I [
4~ XA ¥ bt
ibEessstivedd il ey
A AAAA ARKA £ [
A AR RAR A [
AAARD ARR K 5= A A Ak b}
ARAAAPTTTTAR A < c =2 A REA L4 Y
AARARAPRTPTTTAA A A e+ 2 2 RAAJ Y
NNRR R T T TTAS A~ n AP T TR K5 iy
NN N AR T T T T A A r e e~ AR APTT TN iy gy

Mathematics II - Functions of multiple variables

81/120



Definition

Let M C R",x € M, and let f be a function defined at least on M (i.e.
M C Dy). We say that f attains at the point x its

o maximum on M if f(y) < f(x) for everyy € M,

@ local maximum with respect to M if there exists § > 0 such that
fy) <f(x)foreveryy € B(x,d) N M,

@ strict local maximum with respect to M if there exists 6 > 0 such that
fy) < f(x)foreveryy € (B(x,) \ {x}) N M.

The notions of a minimum, a local minimum, and a strict local minimum
with respect to M are defined in analogous way.
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Definition

Let M C R",x € M, and let f be a function defined at least on M (i.e.
M C Dy). We say that f attains at the point x its

o maximum on M if f(y) < f(x) for everyy € M,

@ local maximum with respect to M if there exists § > 0 such that
fy) <f(x) foreveryy € B(x,6) N M,

@ strict local maximum with respect to M if there exists 6 > 0 such that
fy) < f(x)foreveryy € (B(x,) \ {x}) N M.

The notions of a minimum, a local minimum, and a strict local minimum
with respect to M are defined in analogous way.

Definition

We say that a function f attains a local maximum at a pointx € R" ifx is a
local maximum with respect to some neighbourhood of x.

Similarly we define local minimum, strict local maximum and strict local
minimum.
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Let M C R" be a non-empty compact set and f: M — R a function
continuous on M. Then f attains its maximum and minimum on M.

e

Corollary

Let M C R" be a non-empty compact set and f: M — R a continuous
function on M. Then f is bounded on M.

e
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Theorem 18 (necessary condition of the existence of local extremum)

Let G C R”" be an open set, a € G, and suppose that a function f: G — R

has a local extremum (i.e. a local maximum or a local minimum) at the point
a. Then for eachj € {1, ... n} the following holds:

The partial derivative —— (a) either does not exist or it is equal to zero.

8x 'j
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Let G C R" be an open set, a € G, f € C'(G), and Vf(a) = o. Then the
point a is called a stationary (or critical) point of the function f.
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fly)=e*"
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fry) =x+2y—4
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f(x, ) = /x> +y2

II - Functions of mult



flx,y) =x* —y?
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Exercise
1. Consider the points A, B, C, D, E. Find the critical points.
2. Which of these points are probably points of

2.1 local maximum,
2.2 local minimum,
2.3 saddle poi

NN
\

Figure: Calculus, 6th Edition; Hughes-Hallett, Gleason, McCallum et al.
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Definition

Let G C R" be an open set, f: G — R, i,j € {1,...,n}, and suppose that
af ( ) exists finite for each x € G. Then the part1a1 derlvatlve of the second
order of the function f according to ith and jth variable at a pointa € G is

defined by
of
a2f 0 < Ox; ) (a)

8x,~8xj )= 8)(]‘

If i = j then we use the notation g’; (a).

Similarly we define higher order partial derivatives.

Exercise

Find the second partial derivatives of the function f(x,y) = x> + xy + y*.
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. 8*f . )
Find Wgy* iff(x,y) = e

A v

B yev

C x%e”

D e¥(xy+1)
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. 2 . )
Find aaTgy* iff(x,y) =¥

A ev

B ye©

C x?e™

D e¥(xy+1)

Find 21, if f(x,y) = ¢
A e
B ye?
C x%e™

D e¥(xy+ 1)
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Do D
In general it is not true that a?- é;x» (a) = 63 'afx- (a).
10%; GOx]
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Remark

2
In general it is not true that 5 gx (a) = 63 é;x- (a).
GOx]

Theorem 19 (interchanging of partial derivatives)

Leti,je{l,...,n}and suppose that a function f has both partial

62f
derivatives Dx0%, and

- on a neighbourhood of a point a € R" and that
these functions are contmuous ata. Then

% @)=
8x,-6xj a axjax,-
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Exercise

You follow the red route. Where is the highest point of your trip?

1093

T w ) o
— — S 1<H<mq
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Exercise

Where is the minimum and maximum of the function f(x,y) = y along the

curve?
https://www.cpp.edu/conceptests/question—-library/
mat214.shtml
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Theorem 20 (Lagrange multiplier theorem)

Let G C R? be an open set, f, g € C'(G), M = {[x,y] € G; g(x,y) = 0}
and let [x, 3] € M be a point of local extremum of f with respect to M. Then
at least one of the following conditions holds:

@D Vg(x,y) =o,
(L) there exists A € R satisfying

|

8f~~ g _
L5 +rE w9 =0,
of g

gy (69) + 45 (53) =0.
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Theorem 21 (Lagrange multipliers theorem)

Letm,n € N, m < n, G C R" an open set, f,g1,...,gm € C'(G),
M={z€G; g(z) =0,8(2) =0,...,8x(z) =0}

and let 7 € M be a point of local extremum of f with respect to the set M.
Then at least one of the following conditions holds:
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Theorem 21 (Lagrange multipliers theorem)

Letm,n € N, m < n, G C R" an open set, f,g1,...,gm € C'(G),
M={z€G; g(z) =0,8(2) =0,...,8x(z) =0}

and let 7 € M be a point of local extremum of f with respect to the set M.
Then at least one of the following conditions holds:

(D) the vectors

are linearly dependent,
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Theorem 21 (Lagrange multipliers theorem)

Letm,n € N, m < n, G C R" an open set, f,g1,...,gm € C'(G),
M={z€G; g(z) =0,8(2) =0,...,8x(z) =0}

and let 7 € M be a point of local extremum of f with respect to the set M.
Then at least one of the following conditions holds:

(D) the vectors

are linearly dependent,

(I1) there exist numbers \i, Az, . .., Am € R satisfying

V@) +MVgi(E) + MVg®) + -+ AaVen(E) =o.
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@ The notion of linearly dependent vectors will be defined later.
For m = 1: One vector is linearly dependent if it is the zero vector.
For m = 2: Two vectors are linearly dependent if one of them is a
multiple of the other one.

@ The numbers Ay, ..., \, are called the Lagrange multipliers.
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V.5. Concave and quasiconcave functions
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a=1-a4+0-b=a+0-(b—a




b=0-a+1-b=a+1-(b—a)
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tra+(1—t)-b=a+(1-1)-(b—a




Definition
Let M C R". We say that M is convex if

Vx,y e MVt € [0,1]: tx + (1 — 1)y € M.

M

Exercise

Find convex sets
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Exercise

Find convex sets

i

fge
L O
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Let M C R” be a convex set and f a function defined on M. We say that f is

@ concave on M if
Va,b € MVt € [0,1]: f(ta + (1 — 1)b) > tf(a) + (1 — 1)f (b),
@ strictly concave on M if

VYa,b € M,a # bVt e (0,1):
fta+ (1 —1)b) > tf(a) + (1 — 0)f (b).

Remark

By changing the inequalities to the opposite we obtain a definition of a
convex and a strictly convex function.
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Remark

A function f is convex (strictly convex) if and only if the function —f is
concave (strictly concave).

All the theorems in this section are formulated for concave and strictly
concave functions. They have obvious analogies that hold for convex and
strictly convex functions.
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Remark

o If a function f is strictly concave on M, then it is concave on M.

@ Let f be a concave function on M. Then f is strictly concave on M if
and only if the graph of f “does not contain a segment”, i.e.

—(3a,b € M,a #b, Vi € [0,1]:
flta+ (1 —0b) =1f(a) + (1 - 1)f (b))

4
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Th

Let f be a function concave on an open convex set G C R". Then f is
continuous on G.

em 22
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b
b

Theorem 22

Let f be a function concave on an open convex set G C R". Then f is
continuous on G.

Theorem 23 (characterisation of strictly concave functions of the class C')

Let G C R" be a convex open set and f € C'(G). Then the function f is
strictly concave on G if and only if

Vx,y € Gx £y: f(y) <f(x Z Vi = Xi).
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Theorem 24 (characterisation of concave functions of the class C')

Let G C R" be a convex open set and f € C'(G). Then the function f is
concave on G if and only if

Vx,y € G: f(y) < f(x Z — Xi).
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Theorem 24 (characterisation of concave functions of the class C')

Let G C R" be a convex open set and f € C'(G). Then the function f is
concave on G if and only if

Vx,y € G: f(y) < f(x) + Z %(x)(%’ = 3
i=1 '

Corollary 25

Let G C R" be a convex open set, f € C'(G), and leta € G be a critical

point of f (i.e. Vf(a) = o). If f is concave on G, then a is a maximum point
of f on G.

Mathematics II - Functions of multiple variables 1107120



Theorem 24 (characterisation of concave functions of the class C')

Let G C R" be a convex open set and f € C'(G). Then the function f is
concave on G if and only if

Vx,y € G: f(y) < f(x) + Z %(x)(%’ = 3
i=1 '

Corollary 25

Let G C R" be a convex open set, f € C'(G), and leta € G be a critical
point of f (i.e. Vf(a) = o). If f is concave on G, then a is a maximum point

of f on G. If f is strictly concave on G, then a is a strict maximum point of f
on G.
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orem 26 (level sets of concave functions)

Let f be a function concave on a convex set M C R". Then for each o € R
the set Q, = {x € M; f(x) > a} is convex.

cs 11 - Functions of multiple v. S 1117120



Let M C R” be a convex set and let f be a function defined on M. We say
that f is

@ quasiconcave on M if
Va,b € MVt € [0,1]: f(ta + (1 — 1)b) > min{f(a),f(B)},

@ strictly quasiconcave on M if

Va,b € M,a #b, Vi € (0,1):
f(ta+ (1 — 1)b) > min{f(a),f ()}

Remark

By changing the inequalities to the opposite and changing the minimum to a
maximum we obtain a definition of a quasiconvex and a strictly quasiconvex
function.
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Not quasiconcave

Mathematics II - Functions of multiple variables



Remark

A function f is quasiconvex (strictly quasiconvex) if and only if the
function —f is quasiconcave (strictly quasiconcave).

All the theorems in this section are formulated for quasiconcave and strictly
quasiconcave functions. They have obvious analogies that hold for
quasiconvex and strictly quasiconvex functions.
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Remark

A function f is quasiconvex (strictly quasiconvex) if and only if the
function —f is quasiconcave (strictly quasiconcave).

All the theorems in this section are formulated for quasiconcave and strictly
quasiconcave functions. They have obvious analogies that hold for
quasiconvex and strictly quasiconvex functions.

Remark

e If a function f is strictly quasiconcave on M, then it is quasiconcave on
M.

@ Letf be a quasiconcave function on M. Then f is strictly quasiconcave
on M if and only if the graph of f “does not contain a horizontal
segment”, i.e.

—(3a,b € M,a #b, Vi € [0,1]: f(ta+ (1 — 1)b) = f(a)).
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Let M C R”" be a convex set and f a function defined on M.

e If f is concave on M, then f is quasiconcave on M.

o If f is strictly concave on M, then f is strictly quasiconcave on M.

Mathematics II - Functions of multiple S 117/120



Remark
Let M C R” be a convex set and f a function defined on M.
e If f is concave on M, then f is quasiconcave on M.

o If f is strictly concave on M, then f is strictly quasiconcave on M.

Theorem 27 (characterization of quasiconcave functions using level sets)

Let M C R" be a convex set and f a function defined on M. Then f is
quasiconcave on M if and only if for each o € R the set
0., = {x € M; f(x) > a} is convex.
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Find quasiconcave functions:

b
©
=
5}
=




orem 28 (a uniqueness of an extremum)

Let f be a strictly quasiconcave function on a convex set M C R". Then there
exists at most one point of maximum of f.
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orem 28 (a uniqueness of an extremum)

Let f be a strictly quasiconcave function on a convex set M C R". Then there
exists at most one point of maximum of f.

Corollary

Let M C R" be a convex, closed, bounded and nonempty set and f a
continuous and strictly quasiconcave function on M. Then f attains its
maximum at exactly one point.
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Theorem 29 (sufficient condition for concave and convex functions in R?)

Let G C R? be convex and f € C*(G).

]faf <0, 2
on G.

2
o <0 ndﬂi—(azf) > 0 hold on G, then f is concave

Ox? 0y?
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2

Theorem 29 (sufficient condition for concave and convex functions in R*)

Let G C R? be convex and f € C*(G).
2
If o7 <0, & <0, and Ff Of _ ( e ) > 0 hold on G, then f is concave

ox? Oy? ox2 9y? Oxdy
on G. 5

o o f & o g
IfaTJ: >0, WJ; >0, and aTJ; ay’; — (Oxgy) > 0 hold on G, then f is convex
on G.

Exercise

Decide if the following functions are convex or concave on R.
A f(x,y) =2 +y?
B f(x,y) = —x* —y*
C flx,y) = —x*+)
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