Mathematics II - Functions of multiple variables

21/22

Mathematics II

- Functions of several variables
- Matrix calculus
- Antiderivative and the Riemann Integral

V.1. \mathbb{R}^n as a linear and metric space

Definition

The set \mathbb{R}^n , $n \in \mathbb{N}$, is the set of all ordered *n*-tuples of real numbers, i.e.

$$\mathbb{R}^n = \{ [x_1, \ldots, x_n] : x_1, \ldots, x_n \in \mathbb{R} \}.$$

https://en.wikipedia.org/wiki/File: Cartesian-coordinate-system.svg

Exercise (2D)

Sketch the following points and connect them.

$$(14,5), (13,2), (12,0), (13,-3), (10,-1), (4,-2), (3,-4),$$

$$(1,-3), (-4,-3), (-6,-2), (-6,-7), (-8,-5), (-9,-2),$$

$$(-13,-1), (-11,0), (-14,1), (-12,2), (-9,3), (-4,3), (-2,7),$$

$$(0,3), (3,2), (9,1), (14,5).$$

https://mathcrush.com/geometry_worksheets/

Exercise (3D)

https://www.geogebra.org/classic/ydu8a7t7

Which picture(s) plots the point (2, 1, 1) correctly?

https://www.cpp.edu/conceptests/question-library/mat214.shtml

V.1. \mathbb{R}^n as a linear and metric space

Definition

For $\mathbf{x} = [x_1, \dots, x_n] \in \mathbb{R}^n$, $\mathbf{y} = [y_1, \dots, y_n] \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ we set

$$\mathbf{x} + \mathbf{y} = [x_1 + y_1, \dots, x_n + y_n], \qquad \alpha \mathbf{x} = [\alpha x_1, \dots, \alpha x_n].$$

Further, we denote o = [0, ..., 0] – the origin.

Exercise

Find

$$\textbf{A}\ (1,2,3,4)+(-2,0,3,-1)$$

$$B -2(1,2,3,4)$$

The Euclidean metric (distance) on \mathbb{R}^n is the function $\rho \colon \mathbb{R}^n \times \mathbb{R}^n \to [0, +\infty)$ defined by

$$\rho(\mathbf{x},\mathbf{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

The number $\rho(x, y)$ is called the distance of the point x from the point y.

https://rosalind.info/glossary/euclidean-distance/

Find the distance of the points

Α

https://www.summitlearning.org/guest/focusareas/862919

B
$$(1,-2,3), (0,-3,-2)$$

$$C$$
 $(-1,0,3,2), (1,-1,2,-3)$

A $\rho((1,2),(1,2))$

A $\rho((1,2),(1,2))$

B $\rho((1,2),(4,6)), \rho((4,6),(1,2))$

 $C \rho((1,2),(4,6)), \rho((1,2),(1,1)) + \rho((1,1),(4,6))$

D $2\rho((1,2),(4,6)), \rho((2,4),(8,12))$

E $\rho((1,2),(4,6)), \rho((2,3),(5,7))$

Theorem 1 (properties of the Euclidean metric)

The Euclidean metric ρ *has the following properties:*

(i)
$$\forall x, y \in \mathbb{R}^n : \rho(x, y) = 0 \Leftrightarrow x = y$$
,

(ii)
$$\forall x, y \in \mathbb{R}^n : \rho(x, y) = \rho(y, x),$$
 (symmetry)

(iii)
$$\forall x, y, z \in \mathbb{R}^n : \rho(x, y) \le \rho(x, z) + \rho(z, y)$$
, (triangle inequality)

(iv)
$$\forall x, y \in \mathbb{R}^n, \forall \lambda \in \mathbb{R} : \rho(\lambda x, \lambda y) = |\lambda| \rho(x, y),$$
 (homogeneity)

(v)
$$\forall x, y, z \in \mathbb{R}^n : \rho(x + z, y + z) = \rho(x, y)$$
. (translation invariance)

Let $x \in \mathbb{R}^n$, $r \in \mathbb{R}$, r > 0. The set B(x, r) defined by

$$B(\mathbf{x},r) = \{ \mathbf{y} \in \mathbb{R}^n; \ \rho(\mathbf{x},\mathbf{y}) < r \}$$

is called an open ball with radius r centred at x or the neighbourhood of x.

http://www.science4all.org/article/topology/

https://en.wikipedia.org/wiki/

N-sphere

https://commons.wikimedia.org/ wiki/File:4dSphere.jpg

https://www.tinyepiphany.com/ 2011/12/ visualizing-4-dimensions.html

https://cs.wikipedia.org/wiki/ %C4%8Ctvrt%C3%BD_rozm%C4%9Br

Let $M \subset \mathbb{R}^n$. We say that $x \in \mathbb{R}^n$ is an interior point of M, if there exists r > 0 such that $B(x, r) \subset M$.

The set of all interior points of M is called the interior of M and is denoted by Int M.

The set $M \subset \mathbb{R}^n$ is open in \mathbb{R}^n , if each point of M is an interior point of M, i.e. if $M = \operatorname{Int} M$.

http://www.gtmath.com/2016/

07/how-close-is-close-enough-metric-spaces.html

Find the interior

Theorem 2 (properties of open sets)

- (i) The empty set and \mathbb{R}^n are open in \mathbb{R}^n .
- (ii) Let $G_{\alpha} \subset \mathbb{R}^n$, $\alpha \in A \neq \emptyset$, be open in \mathbb{R}^n . Then $\bigcup_{\alpha \in A} G_{\alpha}$ is open in \mathbb{R}^n .
- (iii) Let $G_i \subset \mathbb{R}^n$, i = 1, ..., m, be open in \mathbb{R}^n . Then $\bigcap_{i=1}^m G_i$ is open in \mathbb{R}^n .

Remark

- (ii) A union of an arbitrary system of open sets is an open set.
- (iii) An intersection of a finitely many open sets is an open set.

Let $M \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$. We say that x is a boundary point of M if for each r > 0

$$B(\mathbf{x},r) \cap M \neq \emptyset$$
 and $B(\mathbf{x},r) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$.

The boundary of M is the set of all boundary points of M (notation $\operatorname{bd} M$).

https://en.wikipedia.org/wiki/File:Interior_illustration.svg

The closure of M is the set $M \cup \operatorname{bd} M$ (notation \overline{M}).

A set $M \subset \mathbb{R}^n$ is said to be closed in \mathbb{R}^n if it contains all its boundary points, i.e. if $\operatorname{bd} M \subset M$, or in other words if $\overline{M} = M$.

Exercise

Decide, if the set is closed or open, find the interior, the boundary, the closure.

$$M = \{ [x, y] \in \mathbb{R}^2 : 1 < x \le 2, 3 \le y \le 5 \}.$$

Let $\mathbf{x}^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and $\mathbf{x} \in \mathbb{R}^n$. We say that a sequence $\{\mathbf{x}^j\}_{j=1}^{\infty}$ converges to \mathbf{x} , if

$$\lim_{j\to\infty}\rho(\pmb{x},\pmb{x}^j)=0.$$

The vector \mathbf{x} is called the limit of the sequence $\{\mathbf{x}^j\}_{j=1}^{\infty}$.

Let $\mathbf{x}^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and $\mathbf{x} \in \mathbb{R}^n$. We say that a sequence $\{\mathbf{x}^j\}_{j=1}^{\infty}$ converges to \mathbf{x} , if

$$\lim_{j\to\infty}\rho(\pmb{x},\pmb{x}^j)=0.$$

The vector x is called the limit of the sequence $\{x^j\}_{j=1}^{\infty}$.

The sequence $\{y^j\}_{j=1}^{\infty}$ of points in \mathbb{R}^n is called **convergent** if there exists $y \in \mathbb{R}^n$ such that $\{y^j\}_{j=1}^{\infty}$ converges to y.

Let $\mathbf{x}^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and $\mathbf{x} \in \mathbb{R}^n$. We say that a sequence $\{\mathbf{x}^j\}_{j=1}^{\infty}$ converges to \mathbf{x} , if

$$\lim_{j\to\infty}\rho(\pmb{x},\pmb{x}^j)=0.$$

The vector x is called the limit of the sequence $\{x^j\}_{j=1}^{\infty}$.

The sequence $\{y^j\}_{j=1}^{\infty}$ of points in \mathbb{R}^n is called **convergent** if there exists $y \in \mathbb{R}^n$ such that $\{y^j\}_{j=1}^{\infty}$ converges to y.

Exercise

$$\lim_{j \to \infty} \left(\frac{1}{j}, \frac{2j+1}{j} \right)$$

Theorem 3 (convergence is coordinatewise)

Let $\mathbf{x}^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and let $\mathbf{x} \in \mathbb{R}^n$. The sequence $\{\mathbf{x}^j\}_{j=1}^{\infty}$ converges to \mathbf{x} if and only if for each $i \in \{1, \dots, n\}$ the sequence of real numbers $\{x_i^j\}_{j=1}^{\infty}$ converges to the real number x_i .

Remark

Theorem 3 says that the convergence in the space \mathbb{R}^n is the same as the "coordinatewise" convergence. It follows that a sequence $\{x^j\}_{j=1}^{\infty}$ has at most one limit. If it exists, then we denote it by $\lim_{j\to\infty} x^j$. Sometimes we also write simply $x^j\to x$ instead of $\lim_{j\to\infty} x^j=x$.

Exercise

Find the limits of
$$x^{j} = \left(1 + \frac{1}{j}, 3 - \frac{2}{j^{2}}, e^{-j}\right) x^{j} = \left((-1)^{j}, \arctan(j^{3})\right)$$

Theorem 4 (characterisation of closed sets)

Let $M \subset \mathbb{R}^n$. Then the following statements are equivalent:

- (i) M is closed in \mathbb{R}^n .
- (ii) $\mathbb{R}^n \setminus M$ is open in \mathbb{R}^n .
- (iii) Any $x \in \mathbb{R}^n$ which is a limit of a sequence from M belongs to M.

Theorem 4 (characterisation of closed sets)

Let $M \subset \mathbb{R}^n$. Then the following statements are equivalent:

- (i) M is closed in \mathbb{R}^n .
- (ii) $\mathbb{R}^n \setminus M$ is open in \mathbb{R}^n .
- (iii) Any $\mathbf{x} \in \mathbb{R}^n$ which is a limit of a sequence from M belongs to M.

Exercise

Decide, if the sets are closed or open (or nothing)

- 1. (0,1) in \mathbb{R}
- 2. $(0,\infty)$ in \mathbb{R}
- 3. $(-\infty, 2]$ in \mathbb{R}
- 4. $x^2 + y^2 < 4$ in \mathbb{R}^2
- 5. $x^2 + y^2 \ge 2$ in \mathbb{R}^2

Theorem 5 (properties of closed sets)

- (i) The empty set and the whole space \mathbb{R}^n are closed in \mathbb{R}^n .
- (ii) Let $F_{\alpha} \subset \mathbb{R}^n$, $\alpha \in A \neq \emptyset$, be closed in \mathbb{R}^n . Then $\bigcap_{\alpha \in A} F_{\alpha}$ is closed in \mathbb{R}^n .
- (iii) Let $F_i \subset \mathbb{R}^n$, i = 1, ..., m, be closed in \mathbb{R}^n . Then $\bigcup_{i=1}^m F_i$ is closed in \mathbb{R}^n .

Remark

- (ii) An intersection of an arbitrary system of closed sets is closed.
- (iii) A union of finitely many closed sets is closed.

Theorem 6

Let $M \subset \mathbb{R}^n$. Then the following holds:

- (i) The set \overline{M} is closed in \mathbb{R}^n .
- (ii) The set Int M is open in \mathbb{R}^n .
- (iii) The set M is open in \mathbb{R}^n if and only if $M = \operatorname{Int} M$.

Theorem 6

Let $M \subset \mathbb{R}^n$. Then the following holds:

- (i) The set \overline{M} is closed in \mathbb{R}^n .
- (ii) The set Int M is open in \mathbb{R}^n .
- (iii) The set M is open in \mathbb{R}^n if and only if $M = \operatorname{Int} M$.

Remark

The set Int M is the largest open set contained in M in the following sense: If G is a set open in \mathbb{R}^n and satisfying $G \subset M$, then $G \subset \operatorname{Int} M$. Similarly \overline{M} is the smallest closed set containing M.

We say that the set $M \subset \mathbb{R}^n$ is bounded if there exists r > 0 such that $M \subset B(o, r)$. A sequence of points in \mathbb{R}^n is bounded if the set of its members is bounded.

We say that the set $M \subset \mathbb{R}^n$ is bounded if there exists r > 0 such that $M \subset B(o, r)$. A sequence of points in \mathbb{R}^n is bounded if the set of its members is bounded.

Theorem 7

A set $M \subset \mathbb{R}^n$ is bounded if and only if its closure \overline{M} is bounded.

Find bounded sets

A
$$x \in [-1, 3], 0 < y \le 100$$

B
$$x^2 + y^2 + z^2 \le 5$$

C
$$|x + y| < 6$$

We say that a set $M \subset \mathbb{R}^n$ is compact if for each sequence of elements of M there exists a convergent subsequence with a limit in M.

We say that a set $M \subset \mathbb{R}^n$ is compact if for each sequence of elements of M there exists a convergent subsequence with a limit in M.

Theorem 8 (characterisation of compact subsets of \mathbb{R}^n)

The set M $\subset \mathbb{R}^n$ *is compact if and only if M is bounded and closed.*

We say that a set $M \subset \mathbb{R}^n$ is compact if for each sequence of elements of M there exists a convergent subsequence with a limit in M.

Theorem 8 (characterisation of compact subsets of \mathbb{R}^n)

The set M \subset \mathbb{R}^n *is compact if and only if M is bounded and closed.*

Exercise

Find compact sets

- 1. (0,1)
- 2. $[1,2] \times [-1,-3]$
- 3. $1 < x^2 + (y-3)^2 + z^2 \le 4$
- 4. $xyz \le 1$

Map game

We define a function of two variables as a mapping $f : M \to \mathbb{R}$, where $M \subset \mathbb{R}^2$.

Example

$$f(x,y) = x^{2} + y^{2}, [x,y] \in \mathbb{R}^{2}$$

$$f(x,y) = \arccos y \cdot \arcsin x, D_{f} = [-1,1] \times [-1,1]$$

$$f(x,y) = \ln(xy), D_{f} = \{(x > 0 \land y > 0) \lor (x < 0 \land y < 0)\}$$

$$f(x,y) = x^{3}, [x,y] \in \mathbb{R}^{2}$$

$$f(x,y) = 5, [x,y] \in \mathbb{R}^{2}$$

Example $f(x,y) = \frac{x^2}{x^2 + y^2}$ $f(x,y) = \sin x \cos y$ 10 - 10 1.0 -10 1.0 € 0.5 0.0 0.5 - 0.5 -1.0

Example

$$f(x,y) = \sqrt{x^2 + y^2}$$

$$f(x,y) = \sqrt{x^2 + y^2}$$

$$f(x,y) = \sqrt{4 - (x^2 + y^2)}$$

Find the graph for the contourlines

http://www.cpp.edu/~conceptests/question-library/mat214.shtml

Find the contourlines for the graph.

(a) A

(b) B

Connect the contourlines and the functions

$$A - x^2 + y^2$$

$$C -x^2 - y$$

B
$$x^2 - y^2$$

D
$$x^{2} + y^{2}$$

We define a function of multiple variables as a mapping $f: M \to \mathbb{R}$, where $M \subset \mathbb{R}^n$.

Example

$$f(x) = x^{3},$$
 $x \in \mathbb{R}$
 $f(x, y) = y \sin x,$ $[x, y] \in \mathbb{R}^{2}$
 $f(x, y, z) = x^{2} + y^{2}z,$ $[x, y, z] \in \mathbb{R}^{3}$
 $f(x, y, z) = e^{xy} \arcsin z,$ $D_{f} = \mathbb{R} \times \mathbb{R} \times [-1, 1]$
 $f(x, y, z) = 5,$ $[x, y, z] \in \mathbb{R}^{3}$
 $f(x, y, z, u) = xe^{yz} \ln u,$ $D_{f} = \{[x, y, z, u] \in \mathbb{R}^{4} : u > 0\}$

Example

- Length of the day
- Length of your shadow.
- Compound interest.
- Storm radar.
- Drivers license tests.
- Google ads.

https://math.stackexchange.com/questions/703443/best-way-to-plot-a-4-dimensional-meshgrid https://www.mathworks.com/matlabcentral/answers/224648-plotting-4d-with-3-vectors-and-1-matrix

Note: Mathematica animation

We say that a function f of n variables has a limit at a point $\mathbf{a} \in \mathbb{R}^n$ equal to $A \in \mathbb{R}^*$ if

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall \mathbf{x} \in B(\mathbf{a}, \delta) \setminus \{\mathbf{a}\} : f(\mathbf{x}) \in B(A, \varepsilon).$$

Geometric Interpretation of a Limit of a Function of Two Variables

The limit as (x,y) approaches (a,b) is L If for all $\varepsilon>\theta$ there exists a $\delta>\theta$ such that if (x,y) is in the domain of f and (x,y) is within $\delta>\theta$ of (a,b), then the subset of points from the surface generated by the function f is contained between the two planes $z=L+\varepsilon$ and $z=L-\varepsilon$.

http:

//mathonline.wikidot.com/limits-of-functions-of-two-variables

Remark

- Each function has at a given point at most one limit. We write $\lim_{x\to a} f(x) = A$.
- The function f is continuous at a if and only if $\lim_{x\to a} f(x) = f(a)$.
- For limits of functions of several variables one can prove similar theorems as for limits of functions of one variable (arithmetics, the sandwich theorem, ...).

Note: Mathematica animation

- 1. $\lim_{(x,y)\to(2,-1)} x^2 2xy + 3y^2 4x + 3y 6$
- 2. $\lim_{(x,y)\to(2,-1)} \frac{2x+3y}{4x-3y}$
- 3. $\lim_{(x,y)\to(0,0)} \frac{x^2+xy}{x+y}$

In the table there are values of a function f(x, y). Does there exist the limit

$$\lim_{(x,y)\to(0,0)} f(x,y)?$$

$x \setminus y$	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.00	0.60	0.92	1.00	0.92	0.60	0.00
-0.5	-0.60	0.00	0.72	1.00	0.72	0.00	-0.6
-0.2	-0.92	-0.72	0.00	1.00	0.00	-0.72	-0.92
0	-1.00	-1.00	-1.00		-1.00	-1.00	-1.00
0.2	-0.92	-0.72	0.00	1.00	0.00	-0.72	-0.92
0.5	-0.60	0.00	0.72	1.00	0.72	0.00	-0.6
1.0	0.00	0.60	0.92	1.00	0.92	0.60	0.00

https://www.cpp.edu/conceptests/question-library/mat214.shtml

Theorem 9

Let $r, s \in \mathbb{N}$, $\mathbf{a} \in \mathbb{R}^s$, and let $\varphi_1, \ldots, \varphi_r$ be functions of s variables such that $\lim_{\mathbf{x} \to \mathbf{a}} \varphi_j(\mathbf{x}) = b_j$, $j = 1, \ldots, r$. Set $\mathbf{b} = [b_1, \ldots, b_r]$. Let f be a function of r variables which is continuous at the point \mathbf{b} . If we define a compound function F of s variables by

$$F(\mathbf{x}) = f(\varphi_1(\mathbf{x}), \varphi_2(\mathbf{x}), \dots, \varphi_r(\mathbf{x})),$$

then $\lim_{x\to a} F(x) = f(b)$.

Exercise

$$\lim_{(x,y)\to(4,1)} \sqrt{\frac{x^2 - 3xy}{x + y}}$$

V.2. Continuous functions of several variables

Definition

Let $M \subset \mathbb{R}^n$, $x \in M$, and $f : M \to \mathbb{R}$. We say that f is continuous at x with respect to M, if we

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall \mathbf{y} \in B(\mathbf{x}, \delta) \cap M : f(\mathbf{y}) \in B(f(\mathbf{x}), \varepsilon).$$

We say that f is continuous at the point x if it is continuous at x with respect to a neighbourhood of x, i.e.

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall \mathbf{y} \in B(\mathbf{x}, \delta) : f(\mathbf{y}) \in B(f(\mathbf{x}), \varepsilon).$$

Let $M \subset \mathbb{R}^n$ and $f: M \to \mathbb{R}$. We say that f is continuous on M if it is continuous at each point $x \in M$ with respect to M.

Remark

The functions $\pi_j : \mathbb{R}^n \to \mathbb{R}$, $\pi_j(\mathbf{x}) = x_j$, $1 \le j \le n$, are continuous on \mathbb{R}^n . They are called coordinate projections.

Theorem 10

Let $M \subset \mathbb{R}^n$, $\mathbf{x} \in M$, $f: M \to \mathbb{R}$, $g: M \to \mathbb{R}$, and $c \in \mathbb{R}$. If f and g are continuous at the point \mathbf{x} with respect to M, then the functions cf, f+g a fg are continuous at \mathbf{x} with respect to M. If the function g is nonzero at \mathbf{x} , then also the function f/g is continuous at \mathbf{x} with respect to M.

Theorem 11

Let $r, s \in \mathbb{N}$, $M \subset \mathbb{R}^s$, $L \subset \mathbb{R}^r$, and $\mathbf{y} \in M$. Let $\varphi_1, \ldots, \varphi_r$ be functions defined on M, which are continuous at \mathbf{y} with respect to M and $[\varphi_1(\mathbf{x}), \ldots, \varphi_r(\mathbf{x})] \in L$ for each $\mathbf{x} \in M$. Let $f: L \to \mathbb{R}$ be continuous at the point $[\varphi_1(\mathbf{y}), \ldots, \varphi_r(\mathbf{y})]$ with respect to L. Then the compound function $F: M \to \mathbb{R}$ defined by

$$F(\mathbf{x}) = f(\varphi_1(\mathbf{x}), \dots, \varphi_r(\mathbf{x})), \quad \mathbf{x} \in M,$$

is continuous at y with respect to M.

Where is continuous $f(x, y) = \cos \frac{x}{y}$?

- A Everywhere except at the origin
- B Everywhere except along the *x*-axis.
- C Everywhere except along the *y*-axis.
- D Everywhere except along the line y = x.

Exercise

Where is continuous $f(x, y) = \operatorname{sgn} xy$?

- A Everywhere except along the axes.
- B Everywhere except along the *x*-axis.
- C Everywhere except at the origin.
- D Everywhere except along the line y = x.

Find continuous functions (at \mathbb{R}^2)

A
$$\ln(x^2 + y^2 + 1)$$

$$\mathbf{B} \ \frac{x-y}{e^{xy}}$$

C
$$\frac{\sqrt{y-1}}{x^2}$$

$$D \sin(2x) + x \cot(x^3 + 2y)$$

$$E \operatorname{sgn}(x^4 + y^4)$$

Theorem 12

Let f be a continuous function on \mathbb{R}^n and $c \in \mathbb{R}$. Then the following holds:

- (i) The set $\{x \in \mathbb{R}^n; f(x) < c\}$ is open in \mathbb{R}^n .
- (ii) The set $\{x \in \mathbb{R}^n; f(x) > c\}$ is open in \mathbb{R}^n .
- (iii) The set $\{x \in \mathbb{R}^n; f(x) \leq c\}$ is closed in \mathbb{R}^n .
- (iv) The set $\{x \in \mathbb{R}^n; f(x) \ge c\}$ is closed in \mathbb{R}^n .
- (v) The set $\{x \in \mathbb{R}^n; f(x) = c\}$ is closed in \mathbb{R}^n .

Example

$$f(x,y) = x^2 + y^2,$$

Mathematica

Partial derivatives

https://www.wikihow.com/ Take-Partial-Derivatives

http://calcnet.cst.cmich.edu/
faculty/angelos/m533/lectures/
pderv.htm

Animation.

Let f be a function, $a \in \mathbb{R}$.

$$f'(a) = \lim_{t \to 0} \frac{f(a+t) - f(a)}{t}.$$

Let f be a function, $a \in \mathbb{R}$.

$$f'(a) = \lim_{t \to 0} \frac{f(a+t) - f(a)}{t}.$$

Set
$$e^j = [0, \dots, 0, \frac{1}{\text{ith coordinate}}, 0, \dots, 0].$$

Definition

Let f be a function of n variables, $j \in \{1, ..., n\}$, $\boldsymbol{a} \in \mathbb{R}^n$. Then the number

$$\frac{\partial f}{\partial x_j}(\boldsymbol{a}) = \lim_{t \to 0} \frac{f(\boldsymbol{a} + t\boldsymbol{e}^j) - f(\boldsymbol{a})}{t}$$

$$= \lim_{t \to 0} \frac{f(a_1, \dots, a_{j-1}, a_j + t, a_{j+1}, \dots, a_n) - f(a_1, \dots, a_n)}{t}$$

is called the partial derivative (of first order) of function f according to jth variable at the point a (if the limit exists).

Find
$$\frac{\partial f}{\partial x}$$
, if $f(x, y) = x^3 + 3x^2y - 5x - 7y^3 + y - 5$

A
$$\frac{\partial f}{\partial x} = 3x^2 + 6xy - 5 - 7y^3 + y$$
 C $\frac{\partial f}{\partial x} = x^3 + 3 - 21y^2 + 1 - 5$
B $\frac{\partial f}{\partial x} = 3x^2 + 6xy - 5$ D $\frac{\partial f}{\partial x} = 3x^2 - 21y^2 + 1$

$$C \frac{\partial f}{\partial x} = x^3 + 3 - 21y^2 + 1 -$$

$$B \frac{\partial f}{\partial x} = 3x^2 + 6xy - 5$$

$$D \frac{\partial f}{\partial x} = 3x^2 - 21y^2 + 1$$

Find
$$\frac{\partial f}{\partial x}$$
, if $f(x, y) = x^3 + 3x^2y - 5x - 7y^3 + y - 5$

A
$$\frac{\partial f}{\partial x} = 3x^2 + 6xy - 5 - 7y^3 + y$$
 C $\frac{\partial f}{\partial x} = x^3 + 3 - 21y^2 + 1 - 5$

B
$$\frac{\partial f}{\partial x} = 3x^2 + 6xy - 5$$
 D $\frac{\partial f}{\partial x} = 3x^2 - 21y^2 + 1$

Find
$$\frac{\partial f}{\partial y}$$
, if $f(x, y) = x^2 \ln(x^2 y)$

A
$$\frac{\partial f}{\partial y} = \frac{2x}{y}$$
 $C \frac{\partial f}{\partial y} = \frac{x^2}{y}$

$$\mathbf{B} \ \frac{\partial f}{\partial y} = \frac{1}{y} \qquad \qquad \mathbf{D} \ \frac{\partial f}{\partial y} = \frac{1}{x^2 y}$$

According to: https://www.wiley.com/college/hugheshallett/0470089148/conceptests/concept.pdf

The values of a function f(x, y) are in the table. Which statement is most accurate? (In the left columnt there is x, in the first row there is y.)

$x \backslash y$	0	1	2	3
0	3	5	7	9
1	2	4	6	8
2	1	3	5	7
3	0	2	4	6

A
$$\frac{\partial f}{\partial x}(1,2) \approx -1$$

B
$$\frac{\partial f}{\partial y}(1,2) \approx 2$$

$$\mathbf{C} \frac{\partial f}{\partial x}(3,2) \approx 1$$

$$\mathbf{D} \ \frac{\partial f}{\partial y}(3,2) \approx 4$$

https://www.cpp.edu/conceptests/question-library/mat214.shtml

Exercise

A
$$\frac{\partial f}{\partial x} > 0, \frac{\partial f}{\partial y} > 0$$

$$\mathbf{B} \ \frac{\partial f}{\partial x} < 0, \frac{\partial f}{\partial y} > 0$$

C
$$\frac{\partial f}{\partial x} > 0, \frac{\partial f}{\partial y} < 0$$

D
$$\frac{\partial f}{\partial x} < 0, \frac{\partial f}{\partial y} < 0$$

https://www.cpp.edu/conceptests/question-library/mat214.shtml

Parciální derivace - úlohy

Exercise (True or false?)

- 1. Let $f(x, y, z) = x^2 + z + 3$. Then the partial derivative $\frac{\partial f}{\partial y}$ is not defined, because there is no y in the function.
- 2. Is there a function f(x, y) such that $\frac{\partial f}{\partial y} = 3y^2$ and $\frac{\partial f}{\partial x} = 3x^2$?

Exercise

Find a function, which is not constant, but $\frac{\partial f}{\partial x} = 0.5$

$$\frac{\partial f}{\partial x} = 0$$
 for every x .

Let $G \subset \mathbb{R}^n$ be a non-empty open set. If a function $f \colon G \to \mathbb{R}$ has all partial derivatives continuous at each point of the set G (i.e. the function $\mathbf{x} \mapsto \frac{\partial f}{\partial x_j}(\mathbf{x})$ is continuous on G for each $j \in \{1, \dots, n\}$), then we say that f is of the class C^1 on G. The set of all of these functions is denoted by $C^1(G)$.

Let $G \subset \mathbb{R}^n$ be a non-empty open set. If a function $f \colon G \to \mathbb{R}$ has all partial derivatives continuous at each point of the set G (i.e. the function $\mathbf{x} \mapsto \frac{\partial f}{\partial x_j}(\mathbf{x})$ is continuous on G for each $j \in \{1, \dots, n\}$), then we say that f is of the class \mathcal{C}^1 on G. The set of all of these functions is denoted by $\mathcal{C}^1(G)$.

Remark

If $G \subset \mathbb{R}^n$ is a non-empty open set and and $f, g \in \mathcal{C}^1(G)$, then $f+g \in \mathcal{C}^1(G), f-g \in \mathcal{C}^1(G)$, and $fg \in \mathcal{C}^1(G)$. If moreover $g(\mathbf{x}) \neq 0$ for each $\mathbf{x} \in G$, then $f/g \in \mathcal{C}^1(G)$.

Exercise

Find functions, which are $C^1(\mathbb{R}^2)$.

$$A e^{xy}$$

B
$$\sqrt[3]{x^2 + y^2}$$

$$C \frac{\sin(x-2y)}{2 + x^2 + y^2}$$

$$D \ln \frac{y}{r}$$

Example

$$f(x,y) = \sqrt{100 - x^2 - y^2}$$

Example

$$f(x,y) = x^2 + y^2$$

Example

$$f(x,y) = 5\sqrt{x^2 + y^2}$$

Let $G \subset \mathbb{R}^n$ be an open set, $\mathbf{a} \in G$, and $f \in C^1(G)$. Then the graph of the function

$$T: \mathbf{x} \mapsto f(\mathbf{a}) + \frac{\partial f}{\partial x_1}(\mathbf{a})(x_1 - a_1) + \frac{\partial f}{\partial x_2}(\mathbf{a})(x_2 - a_2) + \dots + \frac{\partial f}{\partial x_n}(\mathbf{a})(x_n - a_n), \quad \mathbf{x} \in \mathbb{R}^n,$$

is called the tangent hyperplane to the graph of the function f at the point [a, f(a)].

Exercise

Find the tangent plane of a function f(x, y) = xy at the point (2, 3).

A
$$z - 6 = x(x - 2) + y(y - 3)$$

B
$$z - 6 = y(x - 2) + x(y - 3)$$

C
$$z - 6 = 2(x - 2) + 3(y - 3)$$

D
$$z - 6 = 3(x - 2) + 2(y - 3)$$

Exercise

Find the tangent plane of a function $f(x, y, z, u) = \ln(xy + z^2 - u)$ at the point a = (1, 0, 2, 3).

Theorem 13 (tangent hyperplane)

Let $G \subset \mathbb{R}^n$ be an open set, $\mathbf{a} \in G$, $f \in C^1(G)$, and let T be a function whose graph is the tangent hyperplane of the function f at the point $[\mathbf{a}, f(\mathbf{a})]$. Then

$$\lim_{x\to a}\frac{f(x)-T(x)}{\rho(x,a)}=0.$$

Theorem 13 (tangent hyperplane)

Let $G \subset \mathbb{R}^n$ be an open set, $\mathbf{a} \in G$, $f \in C^1(G)$, and let T be a function whose graph is the tangent hyperplane of the function f at the point $[\mathbf{a}, f(\mathbf{a})]$. Then

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{f(\mathbf{x})-T(\mathbf{x})}{\rho(\mathbf{x},\mathbf{a})}=0.$$

Theorem 14

Let $G \subset \mathbb{R}^n$ be an open non-empty set and $f \in C^1(G)$. Then f is continuous on G.

Theorem 13 (tangent hyperplane)

Let $G \subset \mathbb{R}^n$ be an open set, $\mathbf{a} \in G$, $f \in C^1(G)$, and let T be a function whose graph is the tangent hyperplane of the function f at the point $[\mathbf{a}, f(\mathbf{a})]$. Then

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{f(\mathbf{x})-T(\mathbf{x})}{\rho(\mathbf{x},\mathbf{a})}=0.$$

Theorem 14

Let $G \subset \mathbb{R}^n$ be an open non-empty set and $f \in C^1(G)$. Then f is continuous on G.

Remark

Existence of partial derivatives at a does not imply continuity at a.

Theorem 15 (derivative of a composite function; chain rule)

Let $r, s \in \mathbb{N}$ and let $G \subset \mathbb{R}^s$, $H \subset \mathbb{R}^r$ be open sets. Let $\varphi_1, \ldots, \varphi_r \in C^1(G)$, $f \in C^1(H)$ and $[\varphi_1(\mathbf{x}), \ldots, \varphi_r(\mathbf{x})] \in H$ for each $\mathbf{x} \in G$. Then the compound function $F \colon G \to \mathbb{R}$ defined by

$$F(\mathbf{x}) = f(\varphi_1(\mathbf{x}), \varphi_2(\mathbf{x}), \dots, \varphi_r(\mathbf{x})), \quad \mathbf{x} \in G,$$

is of the class C^1 on G. Let $\mathbf{a} \in G$ and $\mathbf{b} = [\varphi_1(\mathbf{a}), \dots, \varphi_r(\mathbf{a})]$. Then for each $j \in \{1, \dots, s\}$ we have

$$\frac{\partial F}{\partial x_j}(\boldsymbol{a}) = \sum_{i=1}^r \frac{\partial f}{\partial y_i}(\boldsymbol{b}) \frac{\partial \varphi_i}{\partial x_j}(\boldsymbol{a}).$$

Remark

Let f(x, y, z) be a differentiable function, let $x = g_1(u, v)$, $y = g_2(u, v)$, $z = g_3(u, v)$, where g_1, g_2, g_3 are differentiable functions. Then for $h(u, v) = f(g_1(u, v), g_2(u, v), g_3(u, v))$ we have

$$\frac{\partial h}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u}$$
$$\frac{\partial h}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial v}$$

$$\frac{d}{d} = \frac{d}{d} \times \frac{d}{d}$$

http://mathinsight.org/media/image/image/chain_
rule geometric objects.png

Exercise

Let $h(u, v) = \sin x \cos y$, where $x = (u - v)^2$ and $y = u^2 - v^2$. Find $\partial h/\partial u$ a $\partial h/\partial v$.

Exercise

Let h(u, v) = xy, where $x = u \cos v$ and $y = u \sin v$. Then for $\partial h/\partial v$ we have

$$\mathbf{A} \ \frac{\partial h}{\partial v} = 0$$

$$\mathbf{B} \ \frac{\partial h}{\partial v} = u^2 \cos(2v)$$

$$C \frac{\partial h}{\partial v} = -u^3 \sin^2 v \cos v + u^3 \sin v \cos^2 v$$

D Something else.

Exercise

Let f(x, y) satisfies the Chain rule theorem assumptions. Show, that a function $h(u, v, w) = \frac{uv}{w} \ln u + uf\left(\frac{v}{u}, \frac{w}{u}\right)$, where $x = \frac{v}{u}, y = \frac{w}{u}$ satisfies the following condition

$$u\frac{\partial h}{\partial u}+v\frac{\partial h}{\partial v}+w\frac{\partial h}{\partial w}=h+\frac{uv}{w}.$$

V.4. Implicit function theorem and Lagrange multiplier theorem

V.4. Implicit function theorem and Lagrange multiplier theorem

V.4. Implicit function theorem and Lagrange multiplier theorem

$$f(x,y) = x^2 + y^2 - 1 - y\sqrt[3]{x^2}$$

$$f(x,y) = x^2 + y^2 - 1 - y\sqrt[3]{x^2}$$

Theorem 16 (implicit function)

Let $G \subset \mathbb{R}^{n+1}$ be an open set, $F \colon G \to \mathbb{R}$, and $\tilde{\mathbf{x}} \in \mathbb{R}^n$, $\tilde{\mathbf{y}} \in \mathbb{R}$ such that $[\tilde{\mathbf{x}}, \tilde{\mathbf{y}}] \in G$. Suppose that

- (i) $F \in C^1(G)$,
- (ii) $F(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) = 0$,
- (iii) $\frac{\partial F}{\partial y}(\tilde{\boldsymbol{x}}, \tilde{y}) \neq 0.$

Then there exist a neighbourhood $U \subset \mathbb{R}^n$ of the point $\tilde{\mathbf{x}}$ and a neighbourhood $V \subset \mathbb{R}$ of the point $\tilde{\mathbf{y}}$ such that for each $\mathbf{x} \in U$ there exists a unique $y \in V$ satisfying $F(\mathbf{x}, y) = 0$. If we denote this y by $\varphi(\mathbf{x})$, then the resulting function φ is in $C^1(U)$ and

$$\frac{\partial \varphi}{\partial x_j}(\mathbf{x}) = -\frac{\frac{\partial F}{\partial x_j}(\mathbf{x}, \varphi(\mathbf{x}))}{\frac{\partial F}{\partial y}(\mathbf{x}, \varphi(\mathbf{x}))} \quad \text{for } \mathbf{x} \in U, j \in \{1, \dots, n\}.$$

Theorem

Let $G \subset \mathbb{R}^{n+1}$ be an open set, $F \colon G \to \mathbb{R}$, and $\tilde{\mathbf{x}} \in \mathbb{R}^n$, $\tilde{\mathbf{y}} \in \mathbb{R}$ such that $[\tilde{\mathbf{x}}, \tilde{\mathbf{y}}] \in G$. Suppose that

- (i) $F \in C^1(G)$,
- (ii) $F(\tilde{\boldsymbol{x}}, \tilde{\mathbf{y}}) = 0$,
- (iii) $\frac{\partial F}{\partial y}(\tilde{\boldsymbol{x}}, \tilde{y}) \neq 0.$

Then there exists a neighbourhood ...

Exercise

Which condition is NOT satisfied?

A
$$x^2 + y^3 = 4$$
 at $(2,0)$

$$\mathbf{B} \ y - \frac{1}{2}\sin y = x \text{ at } (\pi, \pi)$$

$$C \sin(xy) + x^2 + y^2 = 1$$
 at $(0,3)$

D
$$|x| + e^{x+y} = 1$$
 at $(0,0)$

Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, and $f \in C^1(G)$. The gradient of f at the point a is the vector

$$\nabla f(\boldsymbol{a}) = \left[\frac{\partial f}{\partial x_1}(\boldsymbol{a}), \frac{\partial f}{\partial x_2}(\boldsymbol{a}), \dots, \frac{\partial f}{\partial x_n}(\boldsymbol{a})\right].$$

Exercise

Find the gradient of $f(x, y, z) = y \cos^3(x^2 z)$ at the point [2, 1, 0]:

A (1/5, 0, 1/5)

 \mathbf{C} (0, 1, 0)

 $\mathbf{B} (0,0,1/5)$

D (1, 0, 1/2)

Remark

The gradient of f at a points in the direction of steepest growth of f at a. At every point, the gradient is perpendicular to the contour of f.

Exercise

The bicyclist is on a trip up the hill, which can be described as $f(x,y) = 25 - 2x^2 - 4y^2$. When she is at the point [1, 1, 19], it starts to rain, so she decides to go down the hill as steeply as possible (so that she is down quickly). In what direction will she start her decline?

A
$$(-4x; -8y)$$

$$C(-4; -8)$$

B
$$(4x; 8y)$$

990

Let $M \subset \mathbb{R}^n$, $x \in M$, and let f be a function defined at least on M (i.e. $M \subset D_f$). We say that f attains at the point x its

- maximum on M if $f(y) \le f(x)$ for every $y \in M$,
- local maximum with respect to M if there exists $\delta > 0$ such that $f(y) \le f(x)$ for every $y \in B(x, \delta) \cap M$,
- strict local maximum with respect to M if there exists $\delta > 0$ such that f(y) < f(x) for every $y \in (B(x, \delta) \setminus \{x\}) \cap M$.

The notions of a minimum, a local minimum, and a strict local minimum with respect to M are defined in analogous way.

Let $M \subset \mathbb{R}^n$, $x \in M$, and let f be a function defined at least on M (i.e. $M \subset D_f$). We say that f attains at the point x its

- maximum on M if $f(y) \le f(x)$ for every $y \in M$,
- local maximum with respect to M if there exists $\delta > 0$ such that $f(y) \le f(x)$ for every $y \in B(x, \delta) \cap M$,
- strict local maximum with respect to M if there exists $\delta > 0$ such that f(y) < f(x) for every $y \in (B(x, \delta) \setminus \{x\}) \cap M$.

The notions of a minimum, a local minimum, and a strict local minimum with respect to M are defined in analogous way.

Definition

We say that a function f attains a local maximum at a point $x \in \mathbb{R}^n$ if x is a local maximum with respect to some neighbourhood of x.

Similarly we define local minimum, strict local maximum and strict local minimum.

Theorem 17 (attaining extrema)

Let $M \subset \mathbb{R}^n$ be a non-empty compact set and $f: M \to \mathbb{R}$ a function continuous on M. Then f attains its maximum and minimum on M.

Corollary

Let $M \subset \mathbb{R}^n$ be a non-empty compact set and $f: M \to \mathbb{R}$ a continuous function on M. Then f is bounded on M.

Theorem 18 (necessary condition of the existence of local extremum)

Let $G \subset \mathbb{R}^n$ be an open set, $\mathbf{a} \in G$, and suppose that a function $f: G \to \mathbb{R}$ has a local extremum (i.e. a local maximum or a local minimum) at the point \mathbf{a} . Then for each $j \in \{1, \ldots, n\}$ the following holds:

The partial derivative $\frac{\partial f}{\partial x_i}(\mathbf{a})$ either does not exist or it is equal to zero.

Definition

Let $G \subset \mathbb{R}^n$ be an open set, $\mathbf{a} \in G, f \in C^1(G)$, and $\nabla f(\mathbf{a}) = \mathbf{o}$. Then the point \mathbf{a} is called a stationary (or critical) point of the function f.

Example

$$f(x,y) = x^2 + y^2$$

Example
$$f(x, y) = e^{-x^2 - y^2}$$

Example

$$f(x,y) = x + 2y - 4$$

Example
$$f(x,y) = \sqrt{x^2 + y^2}$$

Example

$$f(x,y) = x^2 - y^2$$

- 1. Consider the points A, B, C, D, E. Find the critical points.
- 2. Which of these points are probably points of
 - 2.1 local maximum,
 - 2.2 local minimum,
 - 2.3 saddle poi

Figure: Calculus, 6th Edition; Hughes-Hallett, Gleason, McCallum et al.

Definition

Let $G \subset \mathbb{R}^n$ be an open set, $f: G \to \mathbb{R}$, $i,j \in \{1,\ldots,n\}$, and suppose that $\frac{\partial f}{\partial x_i}(x)$ exists finite for each $x \in G$. Then the partial derivative of the second order of the function f according to ith and jth variable at a point $a \in G$ is defined by

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{a}) = \frac{\partial \left(\frac{\partial f}{\partial x_i}\right)}{\partial x_j}(\boldsymbol{a})$$

If i = j then we use the notation $\frac{\partial^2 f}{\partial x_i^2}(\boldsymbol{a})$.

Similarly we define higher order partial derivatives.

Exercise

Find the second partial derivatives of the function $f(x, y) = x^2 + xy + y^2$.

Find
$$\frac{\partial^2 f}{\partial x \partial y}$$
, if $f(x, y) = e^{xy}$

- A e^{xy}
- B ye^{xy}
- $\mathbf{C} x^2 e^{xy}$
- $\mathbf{D} \ e^{xy}(xy+1)$

Find
$$\frac{\partial^2 f}{\partial x \partial y}$$
, if $f(x, y) = e^{xy}$

- A e^{xy}
- $\mathbf{B} y e^{xy}$
- $\mathbf{C} x^2 e^{xy}$
- $\mathbf{D} e^{xy}(xy+1)$

Exercise

Find
$$\frac{\partial^2 f}{\partial y \partial x}$$
, if $f(x, y) = e^{xy}$

- A e^{xy}
- $\mathbf{B} y e^{xy}$
- $\mathbf{C} x^2 e^{xy}$
- D $e^{xy}(xy+1)$

Remark

In general it is not true that $\frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{a}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\boldsymbol{a})$.

Remark

In general it is not true that $\frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{a}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\boldsymbol{a})$.

Theorem 19 (interchanging of partial derivatives)

Let $i, j \in \{1, \dots, n\}$ and suppose that a function f has both partial derivatives $\frac{\partial^2 f}{\partial x_i \partial x_j}$ and $\frac{\partial^2 f}{\partial x_j \partial x_i}$ on a neighbourhood of a point $\mathbf{a} \in \mathbb{R}^n$ and that these functions are continuous at \mathbf{a} . Then

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{a}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\boldsymbol{a}).$$

Where is the minimum and maximum of the function f(x, y) = y along the

curve?

https://www.cpp.edu/conceptests/question-library/
mat214.shtml

Theorem 20 (Lagrange multiplier theorem)

Let $G \subset \mathbb{R}^2$ be an open set, $f, g \in C^1(G)$, $M = \{[x, y] \in G; g(x, y) = 0\}$ and let $[\tilde{x}, \tilde{y}] \in M$ be a point of local extremum of f with respect to M. Then at least one of the following conditions holds:

- (I) $\nabla g(\tilde{x}, \tilde{y}) = \boldsymbol{o}$,
- (II) there exists $\lambda \in \mathbb{R}$ satisfying

$$\begin{split} &\frac{\partial f}{\partial x}(\tilde{x},\tilde{y}) + \lambda \frac{\partial g}{\partial x}(\tilde{x},\tilde{y}) = 0,\\ &\frac{\partial f}{\partial y}(\tilde{x},\tilde{y}) + \lambda \frac{\partial g}{\partial y}(\tilde{x},\tilde{y}) = 0. \end{split}$$

Theorem 21 (Lagrange multipliers theorem)

Let $m, n \in \mathbb{N}$, m < n, $G \subset \mathbb{R}^n$ an open set, $f, g_1, \ldots, g_m \in C^1(G)$,

$$M = \{z \in G; g_1(z) = 0, g_2(z) = 0, \dots, g_m(z) = 0\}$$

and let $\tilde{z} \in M$ be a point of local extremum of f with respect to the set M. Then at least one of the following conditions holds:

Theorem 21 (Lagrange multipliers theorem)

Let $m, n \in \mathbb{N}$, m < n, $G \subset \mathbb{R}^n$ an open set, $f, g_1, \ldots, g_m \in C^1(G)$,

$$M = \{z \in G; \ g_1(z) = 0, g_2(z) = 0, \dots, g_m(z) = 0\}$$

and let $\tilde{z} \in M$ be a point of local extremum of f with respect to the set M. Then at least one of the following conditions holds:

(I) the vectors

$$\nabla g_1(\tilde{z}), \nabla g_2(\tilde{z}), \ldots, \nabla g_m(\tilde{z})$$

are linearly dependent,

Theorem 21 (Lagrange multipliers theorem)

Let $m, n \in \mathbb{N}$, m < n, $G \subset \mathbb{R}^n$ an open set, $f, g_1, \ldots, g_m \in C^1(G)$,

$$M = \{z \in G; g_1(z) = 0, g_2(z) = 0, \dots, g_m(z) = 0\}$$

and let $\tilde{z} \in M$ be a point of local extremum of f with respect to the set M. Then at least one of the following conditions holds:

(I) the vectors

$$\nabla g_1(\tilde{z}), \nabla g_2(\tilde{z}), \ldots, \nabla g_m(\tilde{z})$$

are linearly dependent,

(II) there exist numbers $\lambda_1, \lambda_2, \dots, \lambda_m \in \mathbb{R}$ satisfying

$$\nabla f(\tilde{z}) + \lambda_1 \nabla g_1(\tilde{z}) + \lambda_2 \nabla g_2(\tilde{z}) + \cdots + \lambda_m \nabla g_m(\tilde{z}) = o.$$

Remark

- The notion of linearly dependent vectors will be defined later.
 For m = 1: One vector is linearly dependent if it is the zero vector.
 For m = 2: Two vectors are linearly dependent if one of them is a multiple of the other one.
- The numbers $\lambda_1, \ldots, \lambda_m$ are called the Lagrange multipliers.

V.5. Concave and quasiconcave functions

e A

$$\boldsymbol{b} = 0 \cdot \boldsymbol{a} + 1 \cdot \boldsymbol{b} = \boldsymbol{a} + 1 \cdot (\boldsymbol{b} - \boldsymbol{a})$$

$$t \cdot \boldsymbol{a} + (1-t) \cdot \boldsymbol{b} = \boldsymbol{a} + (1-t) \cdot (\boldsymbol{b} - \boldsymbol{a})$$

Definition

Let $M \subset \mathbb{R}^n$. We say that M is convex if

$$\forall x, y \in M \ \forall t \in [0, 1] \colon tx + (1 - t)y \in M.$$

Exercise

Find convex sets

Exercise

Find convex sets

Definition

Let $M \subset \mathbb{R}^n$ be a convex set and f a function defined on M. We say that f is

• concave on M if

$$\forall \boldsymbol{a}, \boldsymbol{b} \in M \ \forall t \in [0, 1] : f(t\boldsymbol{a} + (1 - t)\boldsymbol{b}) \ge tf(\boldsymbol{a}) + (1 - t)f(\boldsymbol{b}),$$

• strictly concave on M if

$$\forall \boldsymbol{a}, \boldsymbol{b} \in M, \boldsymbol{a} \neq \boldsymbol{b} \ \forall t \in (0, 1):$$

$$f(t\boldsymbol{a} + (1 - t)\boldsymbol{b}) > tf(\boldsymbol{a}) + (1 - t)f(\boldsymbol{b}).$$

Remark

By changing the inequalities to the opposite we obtain a definition of a *convex* and a *strictly convex* function.

A function f is convex (strictly convex) if and only if the function -f is concave (strictly concave).

All the theorems in this section are formulated for concave and strictly concave functions. They have obvious analogies that hold for convex and strictly convex functions.

- If a function f is strictly concave on M, then it is concave on M.
- Let f be a concave function on M. Then f is strictly concave on M if and only if the graph of f "does not contain a segment", i.e.

$$\neg (\exists \boldsymbol{a}, \boldsymbol{b} \in M, \boldsymbol{a} \neq \boldsymbol{b}, \ \forall t \in [0, 1]:$$
$$f(t\boldsymbol{a} + (1 - t)\boldsymbol{b}) = tf(\boldsymbol{a}) + (1 - t)f(\boldsymbol{b}))$$

107/120

Theorem 22

Let f be a function concave on an open convex set $G \subset \mathbb{R}^n$. Then f is continuous on G.

Theorem 22

Let f be a function concave on an open convex set $G \subset \mathbb{R}^n$. Then f is continuous on G.

Theorem 23 (characterisation of strictly concave functions of the class \mathcal{C}^1)

Let $G \subset \mathbb{R}^n$ be a convex open set and $f \in C^1(G)$. Then the function f is strictly concave on G if and only if

$$\forall \mathbf{x}, \mathbf{y} \in G, \mathbf{x} \neq \mathbf{y} : f(\mathbf{y}) < f(\mathbf{x}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{x})(y_i - x_i).$$

Theorem 24 (characterisation of concave functions of the class C^1)

Let $G \subset \mathbb{R}^n$ be a convex open set and $f \in C^1(G)$. Then the function f is concave on G if and only if

$$\forall x, y \in G: f(y) \leq f(x) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x)(y_i - x_i).$$

Theorem 24 (characterisation of concave functions of the class C^1)

Let $G \subset \mathbb{R}^n$ be a convex open set and $f \in C^1(G)$. Then the function f is concave on G if and only if

$$\forall x, y \in G: f(y) \leq f(x) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x)(y_i - x_i).$$

Corollary 25

Let $G \subset \mathbb{R}^n$ be a convex open set, $f \in C^1(G)$, and let $\mathbf{a} \in G$ be a critical point of f (i.e. $\nabla f(\mathbf{a}) = \mathbf{o}$). If f is concave on G, then \mathbf{a} is a maximum point of f on G.

Theorem 24 (characterisation of concave functions of the class C^1)

Let $G \subset \mathbb{R}^n$ be a convex open set and $f \in C^1(G)$. Then the function f is concave on G if and only if

$$\forall x, y \in G: f(y) \leq f(x) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x)(y_i - x_i).$$

Corollary 25

Let $G \subset \mathbb{R}^n$ be a convex open set, $f \in C^1(G)$, and let $\mathbf{a} \in G$ be a critical point of f (i.e. $\nabla f(\mathbf{a}) = \mathbf{o}$). If f is concave on G, then \mathbf{a} is a maximum point of f on G. If f is strictly concave on G, then \mathbf{a} is a strict maximum point of f on G.

Theorem 26 (level sets of concave functions)

Let f be a function concave on a convex set $M \subset \mathbb{R}^n$. Then for each $\alpha \in \mathbb{R}$ the set $Q_{\alpha} = \{x \in M; f(x) \geq \alpha\}$ is convex.

Definition

Let $M \subset \mathbb{R}^n$ be a convex set and let f be a function defined on M. We say that f is

• quasiconcave on M if

$$\forall \boldsymbol{a}, \boldsymbol{b} \in M \ \forall t \in [0, 1] : f(t\boldsymbol{a} + (1 - t)\boldsymbol{b}) \ge \min\{f(\boldsymbol{a}), f(\boldsymbol{b})\},\$$

• strictly quasiconcave on M if

$$\forall \boldsymbol{a}, \boldsymbol{b} \in M, \boldsymbol{a} \neq \boldsymbol{b}, \ \forall t \in (0, 1):$$

$$f(t\boldsymbol{a} + (1 - t)\boldsymbol{b}) > \min\{f(\boldsymbol{a}), f(\boldsymbol{b})\}.$$

Remark

By changing the inequalities to the opposite and changing the minimum to a maximum we obtain a definition of a *quasiconvex* and a *strictly quasiconvex* function.

Not quasiconcave

A function f is quasiconvex (strictly quasiconvex) if and only if the function -f is quasiconcave (strictly quasiconcave).

All the theorems in this section are formulated for quasiconcave and strictly quasiconcave functions. They have obvious analogies that hold for quasiconvex and strictly quasiconvex functions.

A function f is quasiconvex (strictly quasiconvex) if and only if the function -f is quasiconcave (strictly quasiconcave).

All the theorems in this section are formulated for quasiconcave and strictly quasiconcave functions. They have obvious analogies that hold for quasiconvex and strictly quasiconvex functions.

Remark

- If a function f is strictly quasiconcave on M, then it is quasiconcave on M.
- Let *f* be a quasiconcave function on *M*. Then *f* is strictly quasiconcave on *M* if and only if the graph of *f* "does not contain a horizontal segment", i.e.

$$\neg (\exists \boldsymbol{a}, \boldsymbol{b} \in M, \boldsymbol{a} \neq \boldsymbol{b}, \ \forall t \in [0, 1]: f(t\boldsymbol{a} + (1 - t)\boldsymbol{b}) = f(\boldsymbol{a})).$$

Let $M \subset \mathbb{R}^n$ be a convex set and f a function defined on M.

- If f is concave on M, then f is quasiconcave on M.
- If f is strictly concave on M, then f is strictly quasiconcave on M.

Let $M \subset \mathbb{R}^n$ be a convex set and f a function defined on M.

- If f is concave on M, then f is quasiconcave on M.
- If f is strictly concave on M, then f is strictly quasiconcave on M.

Theorem 27 (characterization of quasiconcave functions using level sets)

Let $M \subset \mathbb{R}^n$ be a convex set and f a function defined on M. Then f is quasiconcave on M if and only if for each $\alpha \in \mathbb{R}$ the set $Q_{\alpha} = \{x \in M; f(x) \geq \alpha\}$ is convex.

Exercise

Find quasiconcave functions:

Theorem 28 (a uniqueness of an extremum)

Let f be a strictly quasiconcave function on a convex set $M \subset \mathbb{R}^n$. Then there exists at most one point of maximum of f.

Theorem 28 (a uniqueness of an extremum)

Let f be a strictly quasiconcave function on a convex set $M \subset \mathbb{R}^n$. Then there exists at most one point of maximum of f.

Corollary

Let $M \subset \mathbb{R}^n$ be a convex, closed, bounded and nonempty set and f a continuous and strictly quasiconcave function on M. Then f attains its maximum at exactly one point.

Theorem 29 (sufficient condition for concave and convex functions in \mathbb{R}^2)

Let $G \subset \mathbb{R}^2$ be convex and $f \in C^2(G)$.

If $\frac{\partial^2 f}{\partial x^2} \leq 0$, $\frac{\partial^2 f}{\partial y^2} \leq 0$, and $\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 \geq 0$ hold on G, then f is concave on G.

Theorem 29 (sufficient condition for concave and convex functions in \mathbb{R}^2)

Let $G \subset \mathbb{R}^2$ be convex and $f \in C^2(G)$.

If
$$\frac{\partial^2 f}{\partial x^2} \leq 0$$
, $\frac{\partial^2 f}{\partial y^2} \leq 0$, and $\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 \geq 0$ hold on G , then f is concave on G .

If $\frac{\partial^2 f}{\partial x^2} \ge 0$, $\frac{\partial^2 f}{\partial y^2} \ge 0$, and $\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 \ge 0$ hold on G, then f is convex on G.

Exercise

Decide if the following functions are convex or concave on \mathbb{R}^2 .

A
$$f(x, y) = x^2 + y^2$$

B
$$f(x, y) = -x^4 - y^4$$

$$C f(x, y) = -x^2 + y^2$$

