Homework 8

Please hand in the solutions per mail to schwarz@karlin.mff.cuni.cz until Sunday the 6th of December.

- **1.** Consider the function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$ for x > 0 and f(x) = x for $x \le 0$.
 - i Is the function continuous (at 0)?
 - ii Is the function differentiable (at 0)? (Use difference quotients.)
 - iii Does the function possess a global minimum or maximum in \mathbb{R} ?
- **2.** Consider $\arccos : [-1,1] \to \mathbb{R}$ as the inverse function of $\cos : [0,\pi] \to [-1,1]$.

 - i Prove that $\arccos'(x) = \frac{-1}{\sqrt{1-x^2}}$ for $x \in (-1,1)$. ii $\arccos(1) = 0$ and $\arccos(-1) = \pi$. Does the function posses a left/right derivative at -1and 1?
- **3.** Let $f : \mathbb{R} \to \mathbb{R}$, f(x) = |x| in [-1, 1], $f(x) = x^2$ for x > 1.
 - i For which $x \in [-1, \infty)$ is the function differentiable?
 - ii Calculate its derivative at the points where it exists?
 - iii Does this function posses a global minimum?