Homework 8

Please hand in the solutions per mail to schwarz@karlin.mff.cuni.cz until Sunday the 6th of December.

1. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=e^{x}$ for $x>0$ and $f(x)=x$ for $x \leq 0$.
i Is the function continuous (at 0)?
ii Is the function differentiable (at 0)? (Use difference quotients.)
iii Does the function possess a global minimum or maximum in \mathbb{R} ?
2. Consider arccos : $[-1,1] \rightarrow \mathbb{R}$ as the inverse function of $\cos :[0, \pi] \rightarrow[-1,1]$.
i Prove that $\arccos ^{\prime}(x)=\frac{-1}{\sqrt{1-x^{2}}}$ for $x \in=(-1,1)$.
ii $\arccos (1)=0$ and $\arccos (-1)=\pi$. Does the function posses a left/right derivative at -1 and 1 ?
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=|x|$ in $[-1,1], f(x)=x^{2}$ for $x>1$.
i For which $x \in[-1, \infty)$ is the function differentiable?
ii Calculate its derivative at the points where it exists?
iii Does this function posses a global minimum?
