17th lesson

https://www2.karlin.mff.cuni.cz/~kuncova/en/teachMat1.php
kunck6am@natur.cuni.cz

Theory

Definition 1. Let f be a function and $a \in \mathbb{R}$. If the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists, then it is called the derivative of the function f at a point a. It is denoted by $f^{\prime}(a)$.

Theorem 2. Suppose that the function f has a finite derivative at a point $a \in \mathbb{R}$. Then f is continuous at a.

Theorem 3. Suppose that a function f is continuous from the right at $a \in \mathbb{R}$ and the limit $\lim _{x \rightarrow a+} f^{\prime}(x)$ exists. Then the derivative $f_{+}^{\prime}(a)$ exists and

$$
f_{+}^{\prime}(a)=\lim _{x \rightarrow a+} f^{\prime}(x)
$$

Theorem 4. Suppose that a function f has a finite derivative at a point $a \in \mathbb{R}$. Then the line

$$
y=f(a)+f^{\prime}(a)(x-a)
$$

is called the tangent to the graph of f at the point $[a, f(a)]$.

Exercises

Intro: Write a dating ad for a function and its derivation.

Find the derivatives using definition or theorem.

1. (a) $x^{2}-4 x$
(d) $\frac{1}{x+3}$
(f) \sqrt{x}
(b) $3 x^{2}+2 x+7$
(e) $x^{3}-x$
(g) $\frac{1-x}{2+x}$
2. (a) $\sqrt{|x|}$ at $x=0$
(b) $f(x)= \begin{cases}-x, & x<0 \\ x^{2}, & x \geq 0\end{cases}$
(e) $f(x)=\left\{\begin{array}{ll}\sin x, & x<0 \\ x, & x \geq 0 .\end{array}\right.$ at $x=0$
(c) $|x+3|$ at $x=-3$
(f) $f(x)=\left\{\begin{array}{ll}x+1, & x<0 \\ x, & x \geq 0 .\end{array}\right.$ at $x=0$
(d) $f(x)= \begin{cases}5-2 x, & x<0 \\ x^{2}-2 x+5, & x \geq 0 .\end{cases}$
3. Find such $a, b \in \mathbb{R}$ such that the following function is differentiable at every $x \in \mathbb{R}$:
$f(x)= \begin{cases}a x+b, & x \leq-1 \\ a x^{3}+x+2 b, & x>-1 .\end{cases}$
4. You need to design a track for a toy car which starts as a parabola and continue as a line with the following parameters:
$f(x)= \begin{cases}\frac{1}{10} x^{2}+b x+c, & x<-10 \\ -\frac{1}{4} x+\frac{5}{2}, & x \geq-10 .\end{cases}$
Find $b, c \in \mathbb{R}$ such that the track is continuous and differentiable.
Source and a picture: https://math.libretexts.org/Bookshelves/Calculus /Book\%3A_Calculus_(OpenStax)/03\%3A_Derivatives/3.2\%3A_The_Derivative_a s_a_Function

5. Help:

Given the function:

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x \geq 0 \\ x^{2}-1 & \text { if } x<0\end{cases}
$$

Question: are we justified to say that the derivative at $f(0)$ exists? If so, what is $f^{\prime}(0)$? And how do we justify it?

Of course I do realize that the function isn't continuous at $x=0$ but still since the slope near $x=0$ seems equal near $0+$ and $0-$ I wondered why we can't say that $f^{\prime}(0)=0$

What I tried is this:

$f_{+}^{\prime}(0)=\lim _{h \rightarrow 0+} \frac{(x+h)^{2}+1-\left(x^{2}+1\right)}{h}=\lim _{h \rightarrow 0+} \frac{(0+h)^{2}+1-\left(0^{2}+1\right)}{h}=\lim _{h \rightarrow 0+} \frac{h^{2}}{h}=h=0$
$f_{-}^{\prime}(0)=\lim _{h \rightarrow 0-} \frac{(x+h)^{2}+1-\left(x^{2}+1\right)}{h}=\lim _{h \rightarrow 0-} \frac{(0+h)^{2}+1-\left(0^{2}+1\right)}{h}=\lim _{h \rightarrow 0-} \frac{h^{2}}{h}=h=0$
My conclusion is that since both the right and left limit using the definition of the derivative exist and generate the same answer the limit exists such that $f^{\prime}(0)=0$.

Apparently this is not true, so what is my mistake?

Source: https://math.stackexchange.com/questions/1532014/how-to-appl y-the-definition-of-a-derivative-with-a-piecewise-function
6. Find a tangent at a point a :
(a) $x^{3}, a=1$
(b) $(x+2)(2 x+1)^{2}, a=-1$
(c) $\sqrt{x}, a=1$
(d) $x \sqrt{x-1}, a=2$
7. Finde a point of a function $y=x^{2}-2 x-3$, where the tangent is parallel to the x axis.
8. Finde a point of a function $y=\ln x^{2}$, where the tangent is parallel to the line $y=x$.
9. Find a tangent to the function $x^{2}+2 x+3$ crossing the point $A=[-1,1]$.

