15th lesson

 $https://www2.karlin.mff.cuni.cz/{\sim}kuncova/en/teachMat1.php\\kunck6am@natur.cuni.cz$

Theory

Definition 1. Let f be a function and $a \in \mathbb{R}$. If the limit

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h},$$

exists, then it is called the *derivative* of the function f at a point a. It is denoted by f'(a).

Theorem 2 (Arithmetics of derivatives). Let $a \in \mathbb{R}$ and f a g be functions defined on some neigbourhood of a point a. Let us suppose that $f'(a) \in \mathbb{R}^*$ and $g'(a) \in \mathbb{R}^*$ exist.

(a) Then

$$(f \pm g)'(a) = f'(a) \pm g'(a),$$

(b) If f or g is continuous at a, then

$$(fg)'(a) = f'(a)g(a) + f(a)g'(a),$$

(c) If g is continuous at a and $g(a) \neq 0$, then

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2},$$

if the right sides are well defined.

Theorem 3 (Derivative of a compound function). Let us suppose that the function f has a derivative at $y_0 \in \mathbb{R}$, the function g has derivative at $x_0 \in \mathbb{R}$, $y_0 = g(x_0)$ and g is continuous at x_0 . Then

$$(f \circ g)'(x_0) = f'(y_0)g'(x_0) = f'(g(x_0))g'(x_0),$$

if the right side is well defined.

Hints

$$a^b = e^{b \ln a}$$

Exercises

Find the derivatives (find also the domains of f and f'):

1. (a)
$$6x$$

(d)
$$\sqrt{x} + \frac{2}{\sqrt{x}}$$

(g)
$$\ln x + \frac{\cos x}{\pi}$$

(b)
$$x^3 + 2x - \sin x + 2$$

(e)
$$\sqrt[3]{x} - \sqrt[4]{x^7}$$

(h)
$$\cot x + \tan x$$

(c)
$$-2\cos x + 4e^x + \frac{1}{3}x^7$$
 (f) $\frac{1}{x} + \frac{2}{x^2} + \frac{3}{x^3}$

(f)
$$\frac{1}{x} + \frac{2}{x^2} + \frac{3}{x^3}$$

(i)
$$\arcsin x - 3\operatorname{arccot} x$$

(j) $2\arctan x + \arccos x$

2. (a)
$$xe^{x}$$

(c)
$$x^2 e^x \sin x$$

(e)
$$e^x(x^2-2x+2)$$

(b)
$$\frac{1+x-x^2}{1-x+x^2}$$

(d)
$$\frac{3x-2}{x^2+1}$$

(f)
$$\frac{1}{\ln x}$$

3. (a)
$$\operatorname{arcctg} 2x$$

(b)
$$(3x^2 - 2x + 10)^{10}$$

(c)
$$\sqrt{x} - \arctan \sqrt{x}$$

(d)
$$\ln^3 x^2$$

(e)
$$\sqrt{4-x^2}$$

(f)
$$\ln(\sin x)$$

(g)
$$\ln \ln(x-3) + \arcsin \frac{x-5}{2}$$

(h)
$$x^x$$

(i)
$$x^{(\sin x)}$$

$$(j) \sin(\sin(\sin x))$$

(k)
$$\ln(\ln^2(\ln^3 x))$$

(l)
$$\frac{\sin^2 x}{\sin x^2}$$

(m)
$$2^{\tan \frac{1}{x}}$$

(n)
$$\frac{1}{\sqrt{2}}$$
 arccotg $\frac{\sqrt{2}}{x}$

(o)
$$\frac{x^p(1-x)^q}{1+x}$$
, $p,q>0$

I Like Pushing Things to the Limits $\frac{d}{dx}f(x) = \lim_{\Delta \to 0} \frac{f(x + \Delta) - f(x)}{\Delta}$