Properties of functions

Kristýna Kuncová

Matematika B2 18/19

Exercise

Find even and odd functions:

Exercise

Find even and odd functions:

odd: A, D, E (symmetry about the origin) even: B (symmetry about the y axis)

Definition

Function $f: M \rightarrow \mathbb{R}, M \subseteq R$:

- even: $\forall x \in M:-x \in M$ a $f(-x)=f(x)$.
- odd: $\forall x \in M:-x \in M$ a $f(-x)=-f(x)$.

Exercise

Find even and odd functions:
A $x^{3}+1$
C $|x-2|$
$\mathrm{E}|1+\cos x|$
B $x\left(x^{2}+1\right)$
D $e^{x^{2}} \sin x$

Definition

Function $f: M \rightarrow \mathbb{R}, M \subseteq R$:

- even: $\forall x \in M:-x \in M$ a $f(-x)=f(x)$.
- odd: $\forall x \in M$: $-x \in M$ a $f(-x)=-f(x)$.

Exercise

Find even and odd functions:
A $x^{3}+1$
C $|x-2|$
$\mathrm{E}|1+\cos x|$
B $x\left(x^{2}+1\right)$
even: E
D $e^{x^{2}} \sin x$
odd: B, D

Exercise

Find even and odd functions:
A $x^{3}+1$
C $|x-2|$
$\mathrm{E}|1+\cos x|$
B $x\left(x^{2}+1\right)$
D $e^{x^{2}} \sin x$

We apply the definition. Even: E, Odd: B, D.
E : Since $\cos x$ is even function, we have $\cos (-x)=\cos x$. Then
$f(-x)=|1+\cos (-x)|=|1+\cos x|=f(x)$.
B: $f(-x)=-x\left((-x)^{2}+1\right)=-x\left(x^{2}+1\right)=-f(x)$
D: Since $\sin x$ is odd function, we have $\sin (-x)=-\sin x$. Then
$f(-x)=e^{(-x)^{2}} \sin (-x)=e^{x^{2}}(-\sin x)=-f(x)$.
The other functions does not fit the definition. Let us try set some different x :
For example A: $f(1)=1+1=2$, but $f(-1)=-1+1=0$. Hence $f(-x) \neq \pm f(x)$, the function is neither even, nor odd.

Exercise

Sketch the graph to be odd/even:

Exercise

Odd:

Exercise

Even:

Question

Complete the table of function values, such that

1. f is an even function
2. g is an odd function
3. h is the composition $g(f(x))$.

x	-3	-2	-1	0	1	2	3
$f(x)$	0	2	2	0			
$g(x)$	0	2	2	0			
$h(x)$							

Source: Calculus: Single and Multivariable, Hughes-Hallet

Question

Complete the table of function values, such that

1. f is an even function
2. g is an odd function
3. h is the composition $g(f(x))$.

x	-3	-2	-1	0	1	2	3
$f(x)$	0	2	2	0	2	2	0
$g(x)$	0	2	2	0	-2	-2	0
$h(x)$	0	-2	-2	0	-2	-2	0

Source: Calculus: Single and Multivariable, Hughes-Hallet

Question (True or False?)

1. If a function is even, then it does not have an inverse.
2. If a function is odd, then it does not have an inverse.
3. If $g(x)$ is an even function, then $f(g(x))$ is even for every function $g(x))$.
4. There is a function which is both even and odd.

Question (True or False?)

1. If a function is even, then it does not have an inverse.
2. If a function is odd, then it does not have an inverse.
3. If $g(x)$ is an even function, then $f(g(x))$ is even for every function $g(x))$.
4. There is a function which is both even and odd.

False. For example if $f(x)=0$ only for $x=0$, then f is even and has inverse $f^{-1}=f$. On the other hand, $\cos (x)$ does not have inverse - it is true for domains larger than one point.
False, for example x^{3} has inverse, $\sin x$ has not.
True. Since g is even, we have $g(-x)=g(x)$. Hence $f(g(-x))=f(g(x))$.
True, $f(x) \equiv 0$.
Source: Calculus: Single and Multivariable, Hughes-Hallet

Definition

We say that $f: M \rightarrow \mathbb{R}, M \subseteq R$, is periodic with a period $p \in \mathbb{R}$, if $\forall x \in M:(x \pm p) \in M$ and $f(x+p)=f(x)=f(x-p)$.

Definition

We say that $f: M \rightarrow \mathbb{R}, M \subseteq R$, is periodic with a period $p \in \mathbb{R}$, if $\forall x \in M:(x \pm p) \in M$ and $f(x+p)=f(x)=f(x-p)$.

Exercise

Decide, if the sketched function is periodic:

Caption: https://math.stackexchange.com/questions/582930/how-does-a-piecewise-step-function-work
Inspired by:realisticky.cz

Definition

We say that $f: M \rightarrow \mathbb{R}, M \subseteq R$, is periodic with a period $p \in \mathbb{R}$, if $\forall x \in M:(x \pm p) \in M$ and $f(x+p)=f(x)=f(x-p)$.

Exercise

Decide, if the sketched function is periodic:

Caption: https://math.stackexchange.com/questions/582930/how-does-a-piecewise-step-function-work
No, Yes.
Inspired by:realisticky.cz

Exercise

Sketch the graph to be periodic (with smallest possible period):

Exercise

Sketch the graph to be periodic (with smallest possible period):

Question (True or False?)

1. If $g(x)$ is a periodic function with period k, then $f(g(x))$ is periodic with period k for every function $f(x)$.
2. If $f(x)$ is a periodic function with period k, then $f(g(x))$ is periodic with period k for every function $g(x)$.

Question (True or False?)

1. If $g(x)$ is a periodic function with period k, then $f(g(x))$ is periodic with period k for every function $f(x)$.
2. If $f(x)$ is a periodic function with period k, then $f(g(x))$ is periodic with period k for every function $g(x)$.

Yes.
No, for example $\sin \left(x^{2}\right)$.
Source: Calculus: Single and Multivariable, Hughes-Hallet

Exercise

Find function which is bounded, bounded from above, bounded from below, unbounded:

Exercise

Find function which is bounded, bounded from above, bounded from below, unbounded:

Exercise

In the graph there is average precipitation in Prague (per month). Find intervals, where the function is increasing and decreasing

Caption:
https://weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine,Prague,Czech-Republic

Exercise

In the graph there is average precipitation in Prague (per month). Find intervals, where the function is increasing and decreasing

Caption:
https://weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine,Prague,Czech-Republic

Increasing: February - May, July - August, October - November Decreasing: January - February, May - July, August - October, November December

Exercise

What can you say about the monotony of the following functions:

Exercise

Function is nondecreasing on \mathbb{R}.
On intervals $[-1 ; 0],[1 ; 2],[3 ; 4]$ etc. f is increasing. On $[-2 ;-1],[0 ; 1],[2 ; 3]$ etc. f is constant $=$ nondecreasing and nonincreasing simultaneously.

Exercise

It is cotangens. It is decreasing on intervals $(-\pi ; 0),(0 ; \pi)$ etc. However, f is NOT decreasing on \mathbb{R}. Compare for example $f(-1)$ and $f(1 / 2)$.

Exercise

It is decreasing function on \mathbb{R}.

Exercise

Exercise

Function is increasing on $(-\infty ; 0)$ and on $(0 ; \infty)$. However, f is NOT increasing on $(-\infty ; 0) \cup(0 ; \infty)$.

Exercise

In the graph there is daily growth of new cases of COVID for last 14 days. Find local/global maxima and minima.

Exercise

In the graph there is daily growth of new cases of COVID for last 14 days. Find local/global maxima and minima.

Global maximum: 4.11., global minimum: 8.11.
Local maximum: 30.10., 4.11., 10.11., local minimum 28.10., 1.11., 8.11.

Remark

Caption: https://en.wikipedia.org/wiki/Maxima_and_minima

Remark

Is there maximum at point x_{5} ?

Caption: https://www.math24.net/local-extrema-functions/

Remark

Find maximum and minimum.

Remark

Find maximum and minimum.

This function does not have any maximum or minimum.

