Properties of functions

Kristýna Kuncová

Matematika B2 18/19

Function $f : M \to \mathbb{R}, M \subseteq R$:

- even: $\forall x \in M : -x \in M$ a f(-x) = f(x).
- odd: $\forall x \in M : -x \in M$ a f(-x) = -f(x).

Exercise

A $x^3 + 1$	C $ x-2 $	$\mathbf{E} 1 + \cos x $
B $x(x^2 + 1)$	D $e^{x^2} \sin x$	

Function $f : M \to \mathbb{R}, M \subseteq R$:

- even: $\forall x \in M : -x \in M$ a f(-x) = f(x).
- odd: $\forall x \in M : -x \in M$ a f(-x) = -f(x).

Exercise

A $x^3 + 1$	x-2	$\mathbb{E} 1 + \cos x $
B $x(x^2 + 1)$	D $e^{x^2} \sin x$	
even: E	odd: B, D	

Find even and odd functions:

A
$$x^{3} + 1$$

B $x(x^{2} + 1)$
C $|x - 2|$
D $e^{x^{2}} \sin x$
E $|1 + \cos x|$

We apply the definition. Even: E, Odd: B, D. E: Since $\cos x$ is even function, we have $\cos(-x) = \cos x$. Then $f(-x) = |1 + \cos(-x)| = |1 + \cos x| = f(x)$. B: $f(-x) = -x((-x)^2 + 1) = -x(x^2 + 1) = -f(x)$ D: Since $\sin x$ is odd function, we have $\sin(-x) = -\sin x$. Then $f(-x) = e^{(-x)^2} \sin(-x) = e^{x^2}(-\sin x) = -f(x)$. The other functions does not fit the definition. Let us try set some different *x*: For example A: f(1) = 1 + 1 = 2, but f(-1) = -1 + 1 = 0. Hence $f(-x) \neq \pm f(x)$, the function is neither even, nor odd.

Sketch the graph to be odd/even:

Odd:

Even:

Question

Complete the table of function values, such that

- 1. f is an even function
- 2. g is an odd function
- 3. *h* is the composition g(f(x)).

x	-3	-2	-1	0	1	2	3
f(x)	0	2	2	0			
g(x)	0	2	2	0			
h(x)							

Source: Calculus: Single and Multivariable, Hughes-Hallet

Question

Complete the table of function values, such that

- 1. f is an even function
- 2. g is an odd function
- 3. *h* is the composition g(f(x)).

x	-3	-2	-1	0	1	2	3
f(x)	0	2	2	0	2	2	0
g(x)	0	2	2	0	-2	-2	0
h(x)	0	-2	-2	0	-2	-2	0

Source: Calculus: Single and Multivariable, Hughes-Hallet

Question (True or False?)

- 1. If a function is even, then it does not have an inverse.
- 2. If a function is odd, then it does not have an inverse.
- 3. If g(x) is an even function, then f(g(x)) is even for every function g(x)).
- 4. There is a function which is both even and odd.

Question (True or False?)

- 1. If a function is even, then it does not have an inverse.
- 2. If a function is odd, then it does not have an inverse.
- 3. If g(x) is an even function, then f(g(x)) is even for every function g(x)).
- 4. There is a function which is both even and odd.

False. For example if f(x) = 0 only for x = 0, then f is even and has inverse $f^{-1} = f$. On the other hand, $\cos(x)$ does not have inverse - it is true for domains larger than one point.

False, for example x^3 has inverse, $\sin x$ has not.

True. Since g is even, we have g(-x) = g(x). Hence f(g(-x)) = f(g(x)). True, $f(x) \equiv 0$.

Source: Calculus: Single and Multivariable, Hughes-Hallet

We say that $f : M \to \mathbb{R}$, $M \subseteq R$, is *periodic* with a period $p \in \mathbb{R}$, if $\forall x \in M : (x \pm p) \in M$ and f(x + p) = f(x) = f(x - p).

We say that $f : M \to \mathbb{R}$, $M \subseteq R$, is *periodic* with a period $p \in \mathbb{R}$, if $\forall x \in M : (x \pm p) \in M$ and f(x + p) = f(x) = f(x - p).

Exercise

Caption: https://math.stackexchange.com/questions/582930/how-does-a-piecewise-step-function-work

Inspired by:realisticky.cz

We say that $f : M \to \mathbb{R}$, $M \subseteq R$, is *periodic* with a period $p \in \mathbb{R}$, if $\forall x \in M : (x \pm p) \in M$ and f(x + p) = f(x) = f(x - p).

Exercise

Caption: https://math.stackexchange.com/questions/582930/how-does-a-piecewise-step-function-work

Inspired by:realisticky.cz

No, Yes.

Sketch the graph to be periodic (with smallest possible period):

Sketch the graph to be periodic (with smallest possible period):

Question (True or False?)

- 1. If g(x) is a periodic function with period k, then f(g(x)) is periodic with period k for every function f(x).
- 2. If f(x) is a periodic function with period k, then f(g(x)) is periodic with period k for every function g(x).

Question (True or False?)

- 1. If g(x) is a periodic function with period k, then f(g(x)) is periodic with period k for every function f(x).
- 2. If f(x) is a periodic function with period k, then f(g(x)) is periodic with period k for every function g(x).

Yes. No, for example $\sin(x^2)$.

Source: Calculus: Single and Multivariable, Hughes-Hallet

Find function which is bounded, bounded from above, bounded from below, unbounded:

Find function which is bounded, bounded from above, bounded from below, unbounded:

In the graph there is average precipitation in Prague (per month). Find intervals, where the function is increasing and decreasing

Caption:

https://weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine,Prague,Czech-Republic

In the graph there is average precipitation in Prague (per month). Find intervals, where the function is increasing and decreasing

Caption:

https://weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine,Prague,Czech-Republic

Increasing: February – May, July – August, October – November Decreasing: January – February, May – July, August – October, November – December

What can you say about the monotony of the following functions:

Kristýna Kuncová

Function is nondecreasing on \mathbb{R} . On intervals [-1; 0], [1; 2], [3; 4] etc. *f* is increasing. On [-2; -1], [0; 1], [2; 3] etc. *f* is constant = nondecreasing and nonincreasing simultaneously.

It is cotangens. It is decreasing on intervals $(-\pi; 0)$, $(0; \pi)$ etc. However, f is NOT decreasing on \mathbb{R} . Compare for example f(-1) and f(1/2).

It is decreasing function on \mathbb{R} .

Function is increasing on $(-\infty; 0)$ and on $(0; \infty)$. However, *f* is NOT increasing on $(-\infty; 0) \cup (0; \infty)$.

In the graph there is daily growth of new cases of COVID for last 14 days. Find local/global maxima and minima.

Caption: https://onemocneni-aktualne.mzcr.cz/covid-19

In the graph there is daily growth of new cases of COVID for last 14 days. Find local/global maxima and minima.

Caption: https://onemocneni-aktualne.mzcr.cz/covid-19

Global maximum: 4.11., global minimum: 8.11. Local maximum: 30.10., 4.11., 10.11., local minimum 28.10., 1.11., 8.11.

Caption: https://en.wikipedia.org/wiki/Maxima_and_minima

Kristýna Kuncová P

Properties of functions

23/25

Is there maximum at point x_5 ?

Find maximum and minimum.

Find maximum and minimum.

This function does not have any maximum or minimum.