Continuity

Kristýna Kuncová

Definition

Let $f: M \rightarrow \mathbb{R}, M \subset \mathbb{R}, a \in M$. We say that f is continuous at a,aif

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

Caption: Calculus: Single and Multivariable, Hughes-Hallet

Question

Sketch a graph of function, which

1. is continuous on \mathbb{R}
2. is continuous on $\mathbb{R} \backslash\{-3\}$
3. has discontinuity at infinitely many points.

Question

Sketch a graph of function, which

1. is continuous on \mathbb{R}
2. is continuous on $\mathbb{R} \backslash\{-3\}$
3. has discontinuity at infinitely many points.

For example $x^{2}, \frac{1}{x+3}, \cot x$

Question

Sketch a graph of function, which

1. is continuous on \mathbb{R}
2. is continuous on $\mathbb{R} \backslash\{-3\}$
3. has discontinuity at infinitely many points.

For example $x^{2}, \frac{1}{x+3}, \cot x$

Question

Find functions continuous on \mathbb{R} :
A $x^{3}+\sin (4-x)$
C $\frac{2+x}{e^{x}}$
$\mathrm{E} \ln \left(2+x^{2}\right)$
B $\frac{e^{x}}{2+x}$
D $\cos \left(e^{\sqrt[4]{x}}\right)$

Question

Sketch a graph of function, which

1. is continuous on \mathbb{R}
2. is continuous on $\mathbb{R} \backslash\{-3\}$
3. has discontinuity at infinitely many points.

For example $x^{2}, \frac{1}{x+3}, \cot x$

Question

Find functions continuous on \mathbb{R} :
A $x^{3}+\sin (4-x)$
C $\frac{2+x}{e^{x}}$
$\mathrm{E} \ln \left(2+x^{2}\right)$
B $\frac{e^{x}}{2+x}$
D $\cos \left(e^{\sqrt[4]{x}}\right)$

A, C, E

Question

Is the following function continuous?

$$
f(x)= \begin{cases}\frac{|x|}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

Question

Is the following function continuous?

$$
f(x)= \begin{cases}\frac{|x|}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

Is not.
Source: Calculus: Single and Multivariable, Hughes-Hallet

Question

Sketch a graph of the function such that:

1. f is continuous
2. $f(0)=2$
3. f is decreasing for $0 \leq x \leq 3$
4. f is increasing for $3<x \leq 5$
5. f is decreasing for $x>5$
6. $f \rightarrow 9$ as $x \rightarrow \infty$

Source: Calculus: Single and Multivariable, Hughes-Hallet

Question

Find $k \in \mathbb{R}$, such that f is continuous on \mathbb{R}.
1.

$$
f(x)= \begin{cases}k x, & x<3, \\ 5, & 3 \leq x\end{cases}
$$

Question

Find $k \in \mathbb{R}$, such that f is continuous on \mathbb{R}.
1.

$$
f(x)= \begin{cases}k x, & x<3, \\ 5, & 3 \leq x\end{cases}
$$

$$
k=5 / 3
$$

Question

Find $k \in \mathbb{R}$, such that f is continuous on \mathbb{R}.
1.

$$
f(x)= \begin{cases}k x, & x<3 \\ 5, & 3 \leq x\end{cases}
$$

$$
k=5 / 3
$$

2.

$$
f(x)=\left\{\begin{array}{l}
\ln (k x+1), \quad 0<x<2, \\
x+4, \quad 2 \leq x
\end{array}\right.
$$

Question

Find $k \in \mathbb{R}$, such that f is continuous on \mathbb{R}.
1.

$$
f(x)= \begin{cases}k x, & x<3 \\ 5, & 3 \leq x\end{cases}
$$

$$
k=5 / 3
$$

2.

$$
f(x)=\left\{\begin{array}{l}
\ln (k x+1), \quad 0<x<2, \\
x+4, \quad 2 \leq x
\end{array}\right.
$$

$$
k=\frac{e^{6}-1}{2}
$$

Question

Find $k \in \mathbb{R}$, such that f is continuous on \mathbb{R}.
1.

$$
f(x)= \begin{cases}k x, & x<3 \\ 5, & 3 \leq x\end{cases}
$$

$$
k=5 / 3
$$

2.

$$
f(x)=\left\{\begin{array}{l}
\ln (k x+1), \quad 0<x<2, \\
x+4, \quad 2 \leq x
\end{array}\right.
$$

$$
k=\frac{e^{6}-1}{2}
$$

3.

$$
f(x)=\left\{\begin{array}{l}
k \cos x, \quad x<\pi \\
k+x, \quad \pi \leq x
\end{array}\right.
$$

Question

Find $k \in \mathbb{R}$, such that f is continuous on \mathbb{R}.
1.

$$
f(x)= \begin{cases}k x, & x<3 \\ 5, & 3 \leq x\end{cases}
$$

$$
k=5 / 3
$$

2.

$$
f(x)=\left\{\begin{array}{l}
\ln (k x+1), \quad 0<x<2, \\
x+4, \quad 2 \leq x
\end{array}\right.
$$

$$
k=\frac{e^{6}-1}{2}
$$

3.

$$
\begin{aligned}
& f(x)= \begin{cases}k \cos x, \quad x<\pi, \\
k+x, \quad \pi \leq x\end{cases} \\
& k=-\frac{\pi}{2}
\end{aligned}
$$

Question

Find $k \in \mathbb{R}$, such that f is continuous on \mathbb{R}.
1.

$$
f(x)= \begin{cases}k x, & x<3 \\ 5, & 3 \leq x\end{cases}
$$

$$
k=5 / 3
$$

2.

$$
f(x)=\left\{\begin{array}{l}
\ln (k x+1), \quad 0<x<2, \\
x+4, \quad 2 \leq x
\end{array}\right.
$$

$$
k=\frac{e^{6}-1}{2}
$$

3.
4.

$$
f(x)=\left\{\begin{array}{l}
k \cos x, \quad x<\pi, \\
k+x, \quad \pi \leq x
\end{array} \quad f(x)= \begin{cases}k \sin x, & x<\pi \\
x+4, & \pi \leq x\end{cases}\right.
$$

$$
k=-\frac{\pi}{2}
$$

Question

Find $k \in \mathbb{R}$, such that f is continuous on \mathbb{R}.
1.

$$
f(x)= \begin{cases}k x, & x<3 \\ 5, & 3 \leq x\end{cases}
$$

$$
k=5 / 3
$$

2.

$$
f(x)=\left\{\begin{array}{l}
\ln (k x+1), \quad 0<x<2 \\
x+4, \quad 2 \leq x
\end{array}\right.
$$

$$
k=\frac{e^{6}-1}{2}
$$

3.
4.

$$
f(x)=\left\{\begin{array}{l}
k \cos x, \quad x<\pi, \\
k+x, \quad \pi \leq x
\end{array} \quad f(x)= \begin{cases}k \sin x, & x<\pi \\
x+4, & \pi \leq x\end{cases}\right.
$$

$$
k=-\frac{\pi}{2}
$$

no solution:(

Source: Calculus: Single and Multivariable, Hughes-Hallet

