Continuity

Kristýna Kuncová

A D > <
 A P >
 A

Definition

Let $f : M \to \mathbb{R}, M \subset \mathbb{R}, a \in M$. We say that f is *continuous at a*,aif

 $\lim_{x \to a} f(x) = f(a).$

Caption: Calculus: Single and Multivariable, Hughes-Hallet

Sketch a graph of function, which

- 1. is continuous on \mathbb{R}
- 2. is continuous on $\mathbb{R} \setminus \{-3\}$
- 3. has discontinuity at infinitely many points.

→ < Ξ →</p>

Image: A mathematical states of the state

Sketch a graph of function, which

- 1. is continuous on \mathbb{R}
- 2. is continuous on $\mathbb{R} \setminus \{-3\}$

3. has discontinuity at infinitely many points.

For example x^2 , $\frac{1}{x+3}$, $\cot x$

Sketch a graph of function, which

- 1. is continuous on \mathbb{R}
- 2. is continuous on $\mathbb{R} \setminus \{-3\}$
- 3. has discontinuity at infinitely many points.

For example x^2 , $\frac{1}{x+3}$, $\cot x$

Question

Find functions continuous on \mathbb{R} :

A
$$x^{3} + \sin(4 - x)$$

B $\frac{e^{x}}{2 + x}$
C $\frac{2 + x}{e^{x}}$
D $\cos(e^{\sqrt{x}})$

$$E \ln(2+x^2)$$

Kristýna Kuncová Continuity

Sketch a graph of function, which

- 1. is continuous on \mathbb{R}
- 2. is continuous on $\mathbb{R} \setminus \{-3\}$
- 3. has discontinuity at infinitely many points.

For example x^2 , $\frac{1}{x+3}$, $\cot x$

Question

Find functions continuous on \mathbb{R} :

A, C, E

Kristýna Kuncová Continuity

3

E $\ln(2+x^2)$

Is the following function continuous?

$$f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

э

< ∃ >

A B > 4
 B > 4
 B

Is the following function continuous?

$$f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Is not.

Source: Calculus: Single and Multivariable, Hughes-Hallet

イロト イポト イヨト イヨト

Sketch a graph of the function such that:

- 1. f is continuous
- **2.** f(0) = 2
- 3. *f* is decreasing for $0 \le x \le 3$
- 4. *f* is increasing for $3 < x \le 5$
- 5. *f* is decreasing for x > 5

6. $f \rightarrow 9$ as $x \rightarrow \infty$

Source: Calculus: Single and Multivariable, Hughes-Hallet

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ◆ ○ ◆

Find $k \in \mathbb{R}$, such that f is continuous on \mathbb{R} .

1.

$$f(x) = \begin{cases} kx, & x < 3, \\ 5, & 3 \le x \end{cases}$$

< ∃⇒

Image: A mathematical states and a mathem

Find $k \in \mathbb{R}$, such that f is continuous on \mathbb{R} .

1.

$$f(x) = \begin{cases} kx, & x < 3, \\ 5, & 3 \le x \end{cases}$$

k = 5/3

Find $k \in \mathbb{R}$, such that f is continuous on \mathbb{R} .

 $f(x) = \begin{cases} kx, & x < 3, \\ 5, & 3 \le x \end{cases}$

2.

k = 5/3

1.

 $f(x) = \begin{cases} \ln(kx+1), & 0 < x < 2, \\ x+4, & 2 \le x \end{cases}$

1.

Find $k \in \mathbb{R}$, such that f is continuous on \mathbb{R} .

 $f(x) = \begin{cases} kx, & x < 3, \\ 5, & 3 \le x \end{cases}$

2.

 $f(x) = \begin{cases} \ln(kx+1), & 0 < x < 2, \\ x+4, & 2 \le x \end{cases}$

 $k = \frac{e^6 - 1}{2}$

k = 5/3

米部 とくほと くほと

Find $k \in \mathbb{R}$, such that f is continuous on \mathbb{R} . 1.

$$f(x) = \begin{cases} kx, & x < 3\\ 5, & 3 \le x \end{cases}$$

k = 5/3 $f(x) = \begin{cases} \ln(kx+1), & 0 < x < 2, \\ x+4, & 2 \le x \end{cases}$ $k = \frac{e^6 - 1}{2}$

3.

2.

$$f(x) = \begin{cases} k \cos x, & x < \pi, \\ k + x, & \pi \le x \end{cases}$$

イロト イポト イヨト イヨト

э

Find $k \in \mathbb{R}$, such that *f* is continuous on \mathbb{R} . 1. $f(x) = \begin{cases} kx, & x < 3, \\ 5, & 3 \le x \end{cases}$ k = 5/32. $f(x) = \begin{cases} \ln(kx+1), & 0 < x < 2, \\ x+4, & 2 \le x \end{cases}$ $k = \frac{e^{6}-1}{2}$ 3.

$$f(x) = \begin{cases} k \cos x, & x < \pi, \\ k + x, & \pi \le x \end{cases}$$

 $k = -\frac{\pi}{2}$

< ロ > < 回 > < 回 > < 回 > < 回 > <

Find $k \in \mathbb{R}$, such that *f* is continuous on \mathbb{R} . 1. $f(x) = \begin{cases} kx, & x < 3, \\ 5, & 3 \le x \end{cases}$ k = 5/32. $f(x) = \begin{cases} \ln(kx+1), & 0 < x < 2, \\ x+4, & 2 \le x \end{cases}$ $k = \frac{e^{6} - 1}{2}$ 3. 4. $f(x) = \begin{cases} k \sin x, & x < \pi, \\ x + 4, & \pi \le x \end{cases}$ $f(x) = \begin{cases} k \cos x, & x < \pi, \\ k + x, & \pi \le x \end{cases}$

 $k = -\frac{\pi}{2}$

「日本・日本・日本・

₹ *•* ��(

Find $k \in \mathbb{R}$, such that *f* is continuous on \mathbb{R} . 1. $f(x) = \begin{cases} kx, & x < 3, \\ 5, & 3 < x \end{cases}$ k = 5/32. $f(x) = \begin{cases} \ln(kx+1), & 0 < x < 2, \\ x+4, & 2 \le x \end{cases}$ $k = \frac{e^{6} - 1}{2}$ 3. 4. $f(x) = \begin{cases} k \cos x, & x < \pi, \\ k + x, & \pi \le x \end{cases}$ $f(x) = \begin{cases} k \sin x, & x < \pi, \\ x + 4, & \pi \le x \end{cases}$ no solution:($k = -\frac{\pi}{2}$

Source: Calculus: Single and Multivariable, Hughes-Hallet,

Kristýna Kuncová	Continuity	

э