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Theory

Theorem 1 (Squeeze theorem). Let I be an interval having the point a as a limit point.
Let g, f , and h be function defined on I, except possibly at a itself. Suppose that for
every x in I not equal to a, we have

g(x) ≤ f(x) ≤ h(x)

and also suppose that
lim
x→a

g(x) = lim
x→a

h(x) = L.

Then
lim
x→a

f(x) = L.

Facts

1. β > 0, a > 1: limx→+∞
xβ

ax = 0. 2. α > 0, β > 0: limx→+∞
lnα x
xβ

= 0.

Exercises

Set x

1. Find limits:

(a) lim
x→5

10x+ 7 = 57

(b) lim
x→1

(3x− 1)10 = 210

(c) lim
x→−1

3x− 4

8x2 + 2x− 2
=
−7

4

(d) lim
x→π

tan x

x
= 0

(e) lim
x→π

x cosx = −π

(f) lim
x→∞

4− 3

x2
= 4

(g) lim
x→3

ln(2x+ 6) = ln(12)

(h) lim
x→∞

√
x+ arccot x =∞

(i) lim
x→0+

− sinx

lnx
= 0

∞

2. Find limits:

(a) lim
x→∞

−2x+ 3

3x2 + 1

(b) lim
x→∞

−2x2 + 3

3x2 + 1
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(c) lim
x→∞

−2x3 + 3

3x2 + 1

(d) lim
x→∞

1

x2 − x− 1

(e) lim
x→∞

x√
3x2 + 2

(f) lim
x→∞

x− cosx

x

(g) lim
x→0

x2 sin
1

x
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782 Chapter 11 Limits and an Introduction to Calculus

Example 2 Comparing Limits at Infinity

Find the limit as approaches for each function.

a.

b.

c.

Solution
In each case, begin by dividing both the numerator and denominator by

the highest-powered term in the denominator.

a.

b.

c.

In this case, you can conclude that the limit does not exist because the numerator
decreases without bound as the denominator approaches 3.

Now try Exercise 19.

In Example 2, observe that when the degree of the numerator is less than the degree
of the denominator, as in part (a), the limit is 0. When the degrees of the numerator 
and denominator are equal, as in part (b), the limit is the ratio of the coefficients of the
highest-powered terms. When the degree of the numerator is greater than the degree of
the denominator, as in part (c), the limit does not exist.

This result seems reasonable when you realize that for large values of the 
highest-powered term of a polynomial is the most “influential” term. That is, a 
polynomial tends to behave as its highest-powered term behaves as approaches 
positive or negative infinity.

x

x,

 lim
x→�

 
�2x3 � 3

3x2 � 1
� lim

x→�
 

�2x �
3

x2

3 �
1

x2

 � �
2

3

 �
�2 � 0

3 � 0

 lim
x→�

 
�2x2 � 3

3x2 � 1
� lim

x→�
 

�2 �
3

x2

3 �
1

x2

 � 0

 �
�0 � 0

3 � 0

 lim
x→�

 
�2x � 3

3x2 � 1
� lim

x→�
 

�
2

x
�

3

x2

3 �
1

x2

x2

f �x� �
�2x3 � 3

3x2 � 1

f �x� �
�2x2 � 3

3x2 � 1

f �x� �
�2x � 3

3x2 � 1

�x Explore the Concept
Use a graphing utility
to complete the table
below to verify that

Make a conjecture about

lim
x→0

 
1
x
.

lim
x→�

 
1
x

� 0.

x 100 101 102

1
x

x 103 104 105

1
x

Activity
Have students use these observations from
Example 2 to predict the following limits.

a.

b.

c.

Then ask several students to verify the 
predictions algebraically, several other 
students to verify the predictions numerically,
and several more students to verify the 
predictions graphically. Lead a discussion
comparing the results.

lim
x→�

 
�6x2 � 1

3x2 � x � 2

lim
x→�

 
4x3 � 5x

8x4 � 3x2 � 2

lim
x→�

 
5x�x � 3�

2x
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EXAMPLE 4. Evaluate limit (not evoke graphs)

lim
x→∞

1
x2 − x− 1

Attention: indeterminacy ∞−∞

= lim
x→∞

1

x2
�
1− 1

x
− 1

x2

�

= lim
x→∞

1
x2 lim

x→∞
1

1− 1
x
− 1

x2

= 0 · 1 = 0



2

Example 5: Evaluate the limit limx→∞(5x3 + 6x2 + x + 1)/(3x3 + x2− x + 7). Dividing numerator and
denominator by the highest power in the denominator, we have

lim
x→∞

5x3 + 6x2 + x + 1
3x3 + x2 − x + 7

= lim
x→∞

5 + 6
x + 1

x2 + 1
x3

3 + 1
x − 1

x2 + 7
x3

=
5
3

The examples involve rational functions R(x) = P (x)/Q(x), i.e. quotients of polynomials. Three typical
situations are illustrated. In Example 3 the degree of the numerator is less than the degree of the denominator,
and the limit is 0. In Example 4 the degree of the numerator is greater than the degree of the denominator,
and the limit is∞. In Example 5 the degrees of the numerator and denominator are the same, and the limit
is the quotient of the coefficients of the highest power terms. These three cases are often codified as rules:

Dominant Term Rule: For the limit limx→∞ P (x)/Q(x), where P (x) is a polynomial of degree n and
Q(x) is a polynomial of degree m,

1. If n < m, the limit is 0,

2. If n > m, the limit is ±∞,

3. If n = m, the limit is the quotient of the coefficients of the highest powers.

Our advice is to ignore this rule as just so much clutter. Memorizing more rules just obscures the
technique illustrated in the three examples. The technique applies to more than just limits of rational
functions, hence warrants your attention.

Example 6: As an example involving a non-rational function, evaluate
limx→∞ x/

√
3x2 + 2. In this example, thinking in the dominant term style, we suspect that the de-

nominator will behave very much like the function
√

3x2 =
√

3x. Thus we guess that the limit is 1/
√

3.
This is indeed the case as the following computation shows:

lim
x→∞

x√
3x2 + 2

= lim
x→∞

x�
x2(3 + 2

x2 )

= lim
x→∞

1�
3 + 2

x2

=
1√
3

Note that the Dominant Term Rule does not apply directly to this example, but the technique underlying
it does. Before concluding this section, we give a few examples of infinite limits:

Example 7: Evaluate limx→0 1/x2. The limit does not exist, of course, since it is of the form “ 1
0”. But

let us analyse the right-hand and left-hand limits at 0. Clearly limx→0+(1/x2) = ∞ as does the left-hand
limit (the function is an even function). In this case the right-hand and left-hand limits do not differ, so
we can also write limx→0(1/x2) =∞. Although the limit DNE, the notation signals additional information
about how the function 1/x2 behaves in the vicinity of 0. The y-axis is a vertical asymptote, and the x-axis
is a horizontal asymptote.

Example 8: limx→π/2 tanx = limx→π/2
sin x
cos x does not exist (it is of the form “ 1

0”). In this case
limx→π/2+ tanx = −∞ and limx→π/2− tanx = ∞ (see the graph below). The lines x = π/2 + nπ, n
any integer, are vertical asymptotes.



Example 4

Evaluate

lim
x→∞

x− cos(x)

x

We are eventually going to use the Squeeze Theorem on this example. There are a couple of
ways to approach this; the part of the function being squeezed will be different in each case,
but the end result is the same.

1. We first rewrite the function by dividing the numerator through by x, and then use
limit laws to split into two separate limits:

lim
x→∞

x− cos(x)

x
= lim

x→∞

(
1− cos(x)

x

)
= lim

x→∞
1− lim

x→∞

cos(x)

x
= 1− lim

x→∞

cos(x)

x

We now use the Squeeze Theorem on the remaining limit:

We know that
−1 6 cos(x) 6 1

Since x → +∞, x is positive, dividing this inequality through by x won’t change the
inequalities:

−1

x
6 cos(x)

x
6 1

x

So,

lim
x→∞

−1

x
6 lim

x→∞

cos(x)

x
6 lim

x→∞

1

x

The outer limits are both 0, so by the Squeeze Theorem,

lim
x→∞

cos(x)

x
= 0,

and thus

lim
x→∞

x− cos(x)

x
= 1− 0 = 1

2. In this second approach, we start into the Squeeze Theorem right away:

−1 6 cos(x) 6 1

So
1 > − cos(x) > −1,

which is the same as
−1 6 − cos(x) 6 1.

Adding x to all sides gives us

x− 1 6 x− cos(x) 6 x+ 1,
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and then dividing through by x gives us

x− 1

x
6 x− cos(x)

x
6 x+ 1

x

(since x → +∞, x is positive, so dividing through by x won’t change the inequalities).
Now we can use the Squeeze Theorem to say that

lim
x→∞

x− 1

x
6 lim

x→∞

x− cos(x)

x
6 lim

x→∞

x+ 1

x

Both outside limits involve rational functions with the same degree in both numerator
and denominator, so the limit as x → ∞ is simply the ratio of the leading coefficients,
which in both of these is 1

1
= 1. Since the outside limits go to the same value, then,

by the Squeeze Theorem,

lim
x→∞

x− cos(x)

x
= 1

Example 5

Evaluate

lim
x→−∞

5x2

x+ 3

Note: In this case we can’t use the theorem we talked about in class for the limit of a rational
function since that theorem only applied in cases where x → +∞, not when x → −∞.
However, we can still use the method of dividing through by a power of x. Now, we don’t
always want to divide through by the highest power from either numerator or denominator
(in this case, if we divided the numerator and denominator through by x2, we’d end up with
a numerator going to 0); here, we’ll instead divide everything through be the highest power
in the denominator:

lim
x→−∞

5x2

x+ 3
= lim

x→−∞

5x2

x
x+ 3

x

= lim
x→−∞

5x

1 + 3
x

Now 3
x
→ 0 as x → −∞, so the denominator is going to 1 (which is positive). The numerator

is going to −∞ since we have a positive constant times x, so the entire function is going to
be negative: (+)(−)

(+)
= (−). Thus,

lim
x→−∞

5x2

x+ 3
= −∞

Example 6

Evaluate
lim
x→∞

e3−x2
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Similarly, for a number a in the domain of the given trigonometric function

(3)

(4)

EXAMPLE 1 Using (1) and (2)
From (1) and (2) we have

(5)

We will draw on the results in (5) in the following discussion on computing other trigono-
metric limits. But first, we consider a theorem that is particularly useful when working with
trigonometric limits.

Squeeze Theorem The next theorem has many names: Squeeze Theorem, Pinching
Theorem, Sandwiching Theorem, Squeeze Play Theorem, and Flyswatter Theorem are just
a few of them. As shown in FIGURE 2.4.1, if the graph of is “squeezed” between the graphs
of two other functions and for all x close to a, and if the functions g and h have a com-
mon limit L as it stands to reason that f also approaches L as The proof of
Theorem 2.4.1 is given in the Appendix.

xS a.xS a,
h(x)g(x)

f (x)

lim
xS0

 sin x � sin 0 � 0 and lim
xS0

 cos x � cos 0 � 1.

lim
xSa 

sec x � sec a,  lim
xSa

 csc x � csc a.

lim
xSa

 tan x � tan a,  lim
xSa

 cot x � cot a,

2.4 Trigonometric Limits 89

y

y � ƒ(x)

y � h(x)

y � g(x)

a
x

FIGURE 2.4.1 Graph of f squeezed
between the graphs g and h

y

x

y � sin

�

1
x
1
�

1
�

FIGURE 2.4.2 Graph of function in
Example 2

Theorem 2.4.1 Squeeze Theorem

Suppose f, g, and h are functions for which for all x in an open interval
that contains a number a, except possibly at a itself. If

,

then lim
xSa

 f (x) � L.

lim
xSa

 g(x) � L and lim
xSa

 h(x) � L

g(x) � f (x) � h(x) A colleague from Russia said this
result was called the Two Soldiers
Theorem when he was in school.
Think about it.

Before applying Theorem 2.4.1, let us consider a trigonometric limit that does not exist.

EXAMPLE 2 A Limit That Does Not Exist
The limit does not exist. The function is odd but is not periodic.

The graph f oscillates between and 1 as :

.

For example, for or and for or
This means that near the origin the graph of f becomes so compressed that it

appears to be one continuous smear of color. See FIGURE 2.4.2.

EXAMPLE 3 Using the Squeeze Theorem

Find the limit .

Solution First observe that

because we have just seen in Example 2 that does not exist. But for we
have Therefore,

.�x2 � x2  sin 

1
x

� x2

�1 � sin(1>x) � 1.
x � 0lim

xS0
 sin(1>x)

lim
xS0

 x 2 sin 
1
x

� Q lim
xS0

 x 2R Q lim
xS0

 sin 

1
x
R

lim
xS0 

x2 sin 
1
x

x � 0.00063.
n � 501sin(1>x) � �1x � 0.00064,n � 500 sin (1>x) � 1

sin 
1
x

� �1 for 1
x

�
p

2
� np, n � 0, �1, �2, p

xS 0�1

f (x) � sin (1>x)lim
xS0

 sin (1>x)
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Now if we make the identifications and it follows from (1) of Section 2.2
that and Hence, from the Squeeze Theorem we conclude that

In FIGURE 2.4.3 note the small scale on the x- and y-axes.

lim
xS0 

x2 sin 

1
x

� 0.

lim
xS0 

h(x) � 0.lim
xS0 

g(x) � 0
h (x) � x2,g(x) � �x2

90 CHAPTER 2 Limit of a Function

0.01

0.005

�0.005

�0.01

0.1�0.1

y

y � x2

y � �x2

x

y � x2 sin 1
x

FIGURE 2.4.3 Graph of function in Example 3

An Important Trigonometric Limit Although the function is not defined at
the numerical table in Example 7 of Section 2.1 and the graph in FIGURE 2.4.4 suggests that

exists. We are now able to prove this conjecture using the Squeeze Theorem.
Consider a circle centered at the origin O with radius 1. As shown in FIGURE 2.4.5(a), let

the shaded region OPR be a sector of the circle with central angle t such that 
We see from parts (b), (c), and (d) of Figure 2.4.5 that

(6)

From Figure 2.4.5(b) the height of is and so

(7)

From Figure 2.4.5(d), or so that

(8)area of ^OQR �
1
2

 OR . QR �
1
2

. 1 . tan t �
1
2 tan t.

QR � tan t,QR>OR � tan t

area of ^OPR �
1
2

  OR . (height) �
1
2

. 1 . sin t �
1
2 sin t.

OP sin t � 1 . sin t � sin t,^OPR

area of ^OPR � area of sector OPR � area of ^OQR.

0 6 t 6 p>2.

lim
xS0 

(sin x)>xx � 0,
f (x) � (sin x)>xy

x
���

sin x
xy �

FIGURE 2.4.4 Graph of f (x) � (sin x)>x

O R

P
Q

t

1

1

x

y

O

t

1

(a) Unit circle

1

FIGURE 2.4.5 Unit circle along with two triangles and a circular sector
(b) Triangle OPR

O R

P

1

t

O R

P

1

(c) Sector OPR

t

O R

Q

1

(d) Right triangle OQR

t
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(h) lim
x→∞

2x + 3x

2x+1 + 3x+1

Solution:

Let us factor out the greatest term:

lim
x→∞

2x + 3x

2x+1 + 3x+1
= lim

x→∞

3x

3x+1
· lim
x→∞

(
2
3

)x
+ 1(

2
3

)x+1
+ 1

=
1

3
· 0 + 1

0 + 1
=

1

3
.

(i) lim
x→∞

1x + 2x + 3x + 4x + 5x

5, 0001x

Solution: We can factor out 5, 0001x or just split into five fractions and
apply the Arithemics limit theorem:

lim
x→+∞

1x + 2x + 3x + 4x + 5x

5, 0001x
= lim

x→+∞

(
1

5, 0001

)x
+

(
2

5, 0001

)x
+

+

(
3

5, 0001

)x
+

(
4

5, 0001

)x
+

(
5

5, 0001

)x
= 0 + 0 + 0 + 0 + 0 = 0,

(j) lim
x→∞

lnx+ x3 + 1
x + ex + 5x

ln10 x+ x4 + 5x + x3 + 4x

Solution:

We factor out 5x:

lim
x→∞

5x

5x

lnx
5x + x3

5x +
1
x
5x + ex

5x + 5x

5x

ln10 x
5x + x4

5x + 5x

5x + x3

5x + 4x

5x

AL
= lim

x→∞

0 + 0 + 0 + 0 + 1

0 + 0 + 1 + 0 + 0
= 1

(k) lim
x→∞

sinx

x
Solution: Since | sinx| ≤ 1 and limx→∞

1
x = 0, by the Squeeze theorem we

obtain

lim
x→∞

sinx

x
= 0

(l) lim
x→∞

e−x cosx

Solution: Since | cosx| ≤ 1 and limx→∞ e
−x = 0, by the Squeeze theorem

we obtain
lim
x→∞

e−x cosx = 0

(m) lim
x→∞

x+ sinx

x− sinx
Solution: Let us factor out the greatest term - x and then apply the Squeeze
theorem.

lim
x→∞

x+ sinx

x− sinx
= lim

x→∞

x

x
·

1 + sinx
x

1− sinx
x

=
1 + 0

1− 0
= 1
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(n) lim
x→0+

x cos

(
x+ 3√
x− 1

)
Solution: Since cos is bounded function and limx→ 0+x = 0, we apply
the Squeeze theorem:

lim
x→0+

x cos

(
x+ 3√
x− 1

)
= 0

(o) lim
x→∞

ex + e−x

ex − e−x
Solution: Let us factor out the greatest term - ex and then apply the Squeeze
theorem.

lim
x→∞

ex + e−x

ex − e−x
lim
x→∞

1 + e−2x

1− e−2x
=

1 + 0

1 + 0
= 1

(p) lim
x→∞

ex cosx

Solution: This limit does not exists. Sketch a (really oscillating graph).

(q) lim
x→∞

x

sinx
Solution: This limit does not exists. The function sinx = 0 for x = kπ,
k ∈ Z. Hence there is no neigbourhood of ∞, such that fraction is well
defined. Hence the limit does not make sense.

Mathematics 1, 2020/21, Kristýna Kuncová 4



0

3. Find limits:

(a) lim
x→1

x− 1

x2 + x− 2

(b) lim
x→−3

x2 + x− 6

x+ 3

(c) lim
x→2

x2 + 3x− 4

x2 − 4x+ 4

(d) lim
x→0

1

sinx

(e) lim
x→−2

−4

x+ 2

(f) lim
x→4

3

(4− x)3

(g) lim
x→3

2x

x− 3

(h) lim
x→4

x2

x2 − 4

(i) lim
x→−3

x2 − 2x− 3

x2 + 6x+ 9

(j) lim
x→−∞

1

ex

(k) lim
x→0

|2x|
x

Mathematics 1, 2020/21, Kristýna Kuncová 5



2.2 Limit Theorems 77

Of course we must add to (3) the all-important requirement that the limit of the denomina-
tor is not 0, that is,

EXAMPLE 7 Using (2) and (3)

Evaluate 

Solution is a rational function and so if we identify the polynomials

and , then from (2),

Since it follows from (3) that

You should not get the impression that we can always find a limit of a function by sub-
stituting the number a directly into the function.

EXAMPLE 8 Using Theorem 2.2.3

Evaluate 

Solution The function in this limit is rational, but if we substitute into the function
we see that this limit has the indeterminate form 0 0. However, by simplifying first, we can
then apply Theorem 2.2.3(iii):

Sometimes you can tell at a glance when a limit does not exist.

 �
lim
xS1 

1

lim
xS1

(x � 2)
�

1
3

.

 � lim
xS1

  
1

x � 2

 lim
xS1

  
x � 1

x2 � x � 2
� lim

xS1
  

x � 1
(x � 1)(x � 2)

> x � 1

lim
xS1

  

x � 1
x2 � x � 2

.

lim
xS�1

  
3x � 4

8x2 � 2x � 2
�

p(�1)
q(�1)

�
�7
4

� �
7
4

.

q(�1) � 0

lim
xS�1

 p(x) � p(�1) � �7  and  lim
xS�1

q(x) � q(�1) � 4.

q(x) � 8x2 � 2x � 2p(x) � 3x � 4

f (x) �
3x � 4

8x2 � 2x � 2

lim
xS�1

  
3x � 4

8x2 � 2x � 2
.

q(a) � 0.

cancellation is valid 
provided that x � 1

d

Theorem 2.2.5 A Limit That Does Not Exist

Let and . Then

does not exist.

lim
xSa

 
f (x)
g(x)

lim
xSa

 g(x) � 0lim
xSa

 f (x) � L1 � 0

PROOF We will give an indirect proof of this result based on Theorem 2.2.3. Suppose
and and suppose further that exists and equals

L2. Then

By contradicting the assumption that , we have proved the theorem.L1 � 0

 � (lim
xSa

 g(x)) QlimxSa
 
f (x)
g(x)
R � 0 . L2 � 0.

 L1 � lim
xSa

 f (x) � lim
xSa

 Qg(x) . f (x)
g(x)
R,  g(x) � 0,

lim
xSa  

( f (x)>g(x))lim
xSa  

g(x) � 0lim
xSa

 f (x) � L1 � 0

If a limit of a rational function has
the indeterminate form as ,
then by the Factor Theorem of
algebra must be a factor of
both the numerator and the
denominator. Factor those quantities
and cancel the factor .x � a

x � a

xS a0>0

© Jones and Bartlett Publishers, LLC.  NOT FOR SALE OR DISTRIBUTION. 



760 Chapter 11 Limits and an Introduction to Calculus

Dividing Out Technique
In Section 11.1, you studied several types of functions whose limits can be evaluated
by direct substitution. In this section, you will study several techniques for evaluating
limits of functions for which direct substitution fails. 

Suppose you were asked to find the following limit.

Direct substitution fails because is a zero of the denominator. By using a table,
however, it appears that the limit of the function as approaches is 

Another way to find the limit of this function is shown in Example 1.

Example 1 Dividing Out Technique

Find the limit.

Solution
Begin by factoring the numerator and dividing out any common factors.

Factor numerator.

Divide out common factor.

Simplify.

Direct substitution

Simplify.

Now try Exercise 11.

This procedure for evaluating a limit is called the dividing out technique.
The validity of this technique stems from the fact that when two functions agree 
at all but a single number they must have identical limit behavior at 
In Example 1, the functions given by

and

agree at all values of other than

So, you can use to find the limit of f �x�.g�x�

x � �3.

x

g�x� � x � 2f �x� �
x2 � x � 6

x � 3

x � c.c,

 � �5

 � �3 � 2

 � lim
x→�3

�x � 2�

 � lim
x→�3 

�x � 2��x � 3�
x � 3

 lim
x→�3 

x2 � x � 6

x � 3
� lim

x→�3 
�x � 2��x � 3�

x � 3

lim
x→�3 

x2 � x � 6

x � 3

�5.�3x
�3

lim
x→�3 

x2 � x � 6

x � 3

11.2 Techniques for Evaluating Limits

What you should learn
● Use the dividing out technique

to evaluate limits of functions.
● Use the rationalizing technique

to evaluate limits of functions.
● Use technology to approximate

limits of functions graphically
and numerically.

● Evaluate one-sided limits of
functions.

● Evaluate limits of difference
quotients from calculus.

Why you should learn it
Many definitions in calculus involve
the limit of a function. For instance,
in Exercises 69 and 70 on page 768,
the definition of the velocity of 
a free-falling object at any 
instant in time involves 
finding the limit of a 
position function.

x �3.01 �3.001 �3.0001 �3 �2.9999 �2.999 �2.99

 x2 � x � 6
x � 3

�5.01 �5.001 �5.0001 ? �4.9999 �4.999 �4.99

Vibrant Image Studio 2010/used under license from Shutterstock.com
Grafissimo/iStockphoto.com



EXAMPLE 10. Evaluate infinite limit

lim
x→2

x2 + 3x− 4
x2 − 4x + 4

Factoring and sign analysis:

= lim
x→2

(x + 4)(x− 1)
(x− 2)2 =

(6) · (1)
(0+)

= −∞



EXAMPLE 11. Evaluate infinite limit

lim
x→0

1
sinx

Sign analysis for one-sided limits:

lim
x→0+

1
sinx

=
1

(0+)
= +∞

lim
x→0−

1
sinx

=
1

(0−)
= −∞

Limit at 0 does not exist
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With this next example we’ll move away from just an x in the denominator, but as we’ll see in the next 
couple of examples they work pretty much the same way. 
 

Example 3  Evaluate each of the following limits. 

 
22 2

4 4 4
lim lim lim

2 2 2xx xx x x+ − →−→− →−

− − −
+ + +

 

Solution 
Let’s again start with the right-hand limit.  With the right-hand limit we know that we have, 
 2 2 0x x> − ⇒ + >  

 

Also, as x gets closer and closer to -2 then 2x + will be getting closer and closer to zero, while staying 
positive as noted above.  So, for the right-hand limit, we’ll have a negative constant divided by an 
increasingly small positive number.  The result will be an increasingly large and negative number.  So, 
it looks like the right-hand limit will be negative infinity. 
 
For the left-hand limit we have, 
 2 2 0x x< − ⇒ + <  

and 2x +  will get closer and closer to zero (and be negative) as x gets closer and closer to -2.  In this 
case then we’ll have a negative constant divided by an increasingly small negative number.  The result 
will then be an increasingly large positive number and so it looks like the left-hand limit will be 
positive infinity. 
 
Finally, since two one sided limits are not the same the normal limit won’t exist. 
 
Here are the official answers for this example as well as a quick graph of the function for verification 
purposes. 
 

 
22 2

4 4 4
lim lim lim doesn't exist

2 2 2xx xx x x+ − →−→− →−

− − −
= −∞ = ∞

+ + +
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At this point we should briefly acknowledge the idea of vertical asymptotes.  Each of the three previous 
graphs have had one.  Recall from an Algebra class that a vertical asymptote is a vertical line (the dashed 

line at 2x = −  in the previous example) in which the graph will go towards infinity and/or minus infinity 
on one or both sides of the line.   
 
In an Algebra class they are a little difficult to define other than to say pretty much what we just said.  
Now that we have infinite limits under our belt we can easily define a vertical asymptote as follows, 
 
Definition 

The function f(x) will have a vertical asymptote at x a=  if we have any of the following limits at 
x a= . 

 ( ) ( ) ( )lim lim lim
x ax a x a

f x f x f x
− + →→ →

= ±∞ = ±∞ = ±∞  

 
Note that it only requires one of the above limits for a function to have a vertical asymptote at x a= . 
 

Using this definition we can see that the first two examples had vertical asymptotes at 0x =  while the 

third example had a vertical asymptote at 2x = − . 
 
We aren’t really going to do a lot with vertical asymptotes here but wanted to mention them at this 
point since we’d reached a good point to do that. 
 
Let’s now take a look at a couple more examples of infinite limits that can cause some problems on 
occasion.  
 

Example 4  Evaluate each of the following limits. 

 
( ) ( ) ( )3 3 344 4

3 3 3
lim lim lim

4 4 4xx xx x x+ − →→ →− − −
 

 
Solution 
Let’s start with the right-hand limit.  For this limit we have, 

 ( )3
4 4 0 4 0x x x> ⇒ − < ⇒ − <  
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also, 4 0x− →  as 4x→ .  So, we have a positive constant divided by an increasingly small negative 
number.  The results will be an increasingly large negative number and so it looks like the right-hand 
limit will be negative infinity. 
 
For the left-handed limit we have, 

 ( )3
4 4 0 4 0x x x< ⇒ − > ⇒ − >  

and we still have, 4 0x− →  as 4x→ .  In this case we have a positive constant divided by an 
increasingly small positive number.  The results will be an increasingly large positive number and so it 
looks like the left-hand limit will be positive infinity. 
 
The normal limit will not exist since the two one-sided limits are not the same.  The official answers to 
this example are then, 

 
( ) ( ) ( )3 3 344 4

3 3 3
lim lim lim doesn't exist

4 4 4xx xx x x+ − →→ →
= −∞ = ∞

− − −
 

 
Here is a quick sketch to verify our limits. 
 

 
All the examples to this point have had a constant in the numerator and we should probably take a quick 
look at an example that doesn’t have a constant in the numerator. 
 

Example 5  Evaluate each of the following limits. 

 
33 3

2 2 2
lim lim lim

3 3 3xx x

x x x

x x x+ − →→ →− − −
 

Solution 
Let’s take a look at the right-handed limit first.  For this limit we’ll have, 

 3 3 0x x> ⇒ − >  
 
The main difference here with this example is the behavior of the numerator as we let x get closer 
and closer to 3.  In this case we have the following behavior for both the numerator and denominator. 
 3 0 and   2 6 as   3x x x− → → →  
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So, as we let x get closer and closer to 3 (always staying on the right of course) the numerator, while 
not a constant, is getting closer and closer to a positive constant while the denominator is getting 
closer and closer to zero and will be positive since we are on the right side.   
 
This means that we’ll have a numerator that is getting closer and closer to a non-zero and positive 
constant divided by an increasingly smaller positive number and so the result should be an 
increasingly larger positive number.  The right-hand limit should then be positive infinity. 
 
For the left-hand limit we’ll have, 

 3 3 0x x< ⇒ − <  
 
As with the right-hand limit we’ll have the following behaviors for the numerator and the 
denominator, 

3 0 and   2 6 as   3x x x− → → →  

 
The main difference in this case is that the denominator will now be negative.  So, we’ll have a 
numerator that is approaching a positive, non-zero constant divided by an increasingly small negative 
number.  The result will be an increasingly large and negative number. 
 
The formal answers for this example are then, 

 
33 3

2 2 2
lim lim lim   doesn't exist

3 3 3xx x

x x x

x x x+ − →→ →
= ∞ = −∞

− − −
 

 
As with most of the examples in this section the normal limit does not exist since the two one-sided 
limits are not the same. 
 
Here’s a quick graph to verify our limits. 

 
 
So far all we’ve done is look at limits of rational expressions, let’s do a couple of quick examples with 
some different functions. 
 
 
 



Limit examples

Example 1

Evaluate

lim
x→4

x2

x2 − 4

If we try direct substitution, we end up with “16
0
” (i.e., a non-zero constant over zero), so

we’ll get either +∞ or −∞ as we approach 4. We then need to check left- and right-hand
limits to see which one it is, and to make sure the limits are equal from both sides.

• Left-hand limit:

lim
x→4−

x2

(x− 4)(x+ 4)

As x → 4−, the function is negative since (+)2

(−)(+)
= (−), so the left-hand limit is −∞.

• Right-hand limit:

lim
x→4+

x2

(x− 4)(x+ 4)

As x → 4+, the function is positive since (+)2

(+)(+)
= (+), so the right-hand limit is +∞.

Since the left- and right-hand limits are not equal,

lim
x→4

x2

x2 − 4
DNE

Example 2

Evaluate

lim
x→−3

x2 − 2x− 3

x2 + 6x+ 9

If we try direct substitution, we end up with “12
0
”, so we’ll get either +∞ or −∞ as we

approach -3. As in the last example, we need to check left- and right-hand limits to see
which one it is, and to make sure the limits are equal from both sides.

1



• Left-hand limit:

lim
x→−3−

(x− 3)(x+ 1)

(x+ 3)2

As x → −3−, the function is positive since (−)(−)
(−)2

= (+)
(+)

= (+), so the left-hand limit
is +∞.

• Right-hand limit:

lim
x→−3+

(x− 3)(x+ 1)

(x+ 3)2

As x → −3+, the function is positive since (−)(−)
(+)2

= (+)
(+)

= (+), so the right-hand limit
is also +∞.

Since the left- and right-hand limits are the same,

lim
x→4

x2 − 2x− 3

x2 + 6x+ 9
= ∞

Example 3

Evaluate

lim
x→0+

2

sin(x)

First of all, we note that direct substitution fails (we get “2
0
”). There are a couple of different

ways we can look at this problem. For either one, we observe that as x → 0+, sin(x) also

goes to zero from values greater than zero (i.e., sin(x) → 0+): So, lim
x→0+

2

sin(x)
is either +∞

or −∞. From what we observed above, we know the function will be (+)
(+)

= (+), so the limit
is +∞.

The other way we can approach this is to replace sin(x) with another variable that goes
to the same value as sin(x) when we take the limit. Since sin(x) → 0+ as x → 0+, then

lim
x→0+

2

sin(x)
= lim

t→0+

2

t
( which still = ∞).

2



To show this one formally, we first note that as x → ∞, then

x2 → ∞

as well, so
−x2 → −∞

and
3− x2 → −∞

also. So, we can replace the “3−x2” in the exponent with another variable (say, t) that goes
to −∞ without changing the limit, i.e.,

lim
x→∞

e3−x2

= lim
t→−∞

et (= 0 by properties mentioned in class).

Example 7

Evaluate

lim
x→−∞

1

ex

In this example, we first rewrite the limit as

lim
x→−∞

e−x,

which is +∞ from properties mentioned in class.

5
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Example 6 – Evaluating One-Sided Limits 

Find the limit as x  0 from the left and the limit as x  0 
from the right for 
              f (x) =       .  
 
Solution: 
From the graph of f, shown in 
the figure, you can see 
that f (x) = –2 for all x < 0. 
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Example 6 – Solution 
So, the limit from the left is 
 
      = –2. 
 
 
Because f (x) = 2 for all x > 0, the limit from the right is 
 
      = 2. 

Limit from the left 

Limit from the right 

cont’d 


