9th lesson

https://www2.karlin.mff.cuni.cz/kuncova/en/teachMat1.php kunck6am@natur.cuni.cz

Exercises

Graphs

1. Sketch a graph and find limits:

(a)
$$\lim_{x \to \infty} 42 = 42$$

$$(h) \lim_{x \to -\infty} e^x = 0$$

(h)
$$\lim_{x \to -\infty} e^x = 0$$
 (o)
$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$
 (i)
$$\lim_{x \to 0^-} e^{-x} = 0$$

(b)
$$\lim_{x \to \infty} x^2 = \infty$$

(i)
$$\lim_{x \to \infty} e^{-x} = 0$$

(p)
$$\lim \frac{1}{2} = \infty$$

(c)
$$\lim_{x \to \infty} \frac{1}{x} = 0$$

$$\lim_{x \to \infty} \arctan x = \frac{1}{2}$$

(a)
$$\lim_{x \to \infty} 42 = 42$$
 (b) $\lim_{x \to \infty} x^2 = \infty$ (c) $\lim_{x \to \infty} \frac{1}{x} = 0$ (d) $\lim_{x \to \infty} \sqrt{x} = \infty$ (e) $\lim_{x \to \infty} \ln x = \infty$ (f) $\lim_{x \to \infty} \ln x = \infty$ (g) $\lim_{x \to \infty} e^x = \infty$ (h) $\lim_{x \to -\infty} e^x = 0$ (o) $\lim_{x \to 0^-} \frac{1}{x} = -\infty$ (o) $\lim_{x \to 0^-} \frac{1}{x} = -\infty$ (o) $\lim_{x \to 0^-} \frac{1}{x} = -\infty$ (p) $\lim_{x \to 0} \frac{1}{x^2} = \infty$ (p) $\lim_{x \to 0} \frac{1}{x^2} = \infty$ (q) $\lim_{x \to 1^-} \arcsin x = \frac{\pi}{2}$ (r) $\lim_{x \to \frac{\pi}{2}} \tan x \neq \frac{\pi}{2}$ (r) $\lim_{x \to 0^+} \tan x \neq \frac{\pi}{2}$ (r) $\lim_{x \to 0^$

(d)
$$\lim_{x \to \infty} \sqrt{x} = \infty$$

$$x \to \infty$$
(1) $\lim \sin x \quad \exists$

(q)
$$\lim_{x \to 1-} \arcsin x = \frac{\pi}{2}$$

(e)
$$\lim_{x \to -\infty} \sqrt{x^3}$$

(m)
$$\lim_{x \to \infty} \ln x = -\infty$$

(r)
$$\lim_{x \to \frac{\pi}{2}} \tan x \not\equiv$$

$$(f) \lim_{x \to \infty} \ln x = 0$$

(n)
$$\lim_{x \to 0+} \frac{1}{x} = \infty$$

(s)
$$\lim_{x \to -2} \ln x \not\equiv$$

Set x

2. Find limits:

(a)
$$\lim_{x \to 5} 10x + 7 = 57$$

(b)
$$\lim_{x \to 1} (3x - 1)^{10} = 2^{10}$$

(c)
$$\lim_{x \to -1} \frac{3x - 4}{8x^2 + 2x - 2} = \frac{-7}{4}$$

(d)
$$\lim_{x \to \pi} \frac{\tan x}{x} = 0$$

(e)
$$\lim_{x \to \pi} x \cos x = -\pi$$

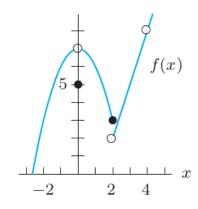
(f)
$$\lim_{x \to \infty} 4 - \frac{3}{x^2} = 4$$

(g)
$$\lim_{x \to 3} \ln(2x+6) = \ln(12)$$

(h)
$$\lim_{x \to \infty} \sqrt{x} + \operatorname{arccot} x = \infty$$

(i)
$$\lim_{x \to 0+} \frac{-\sin x}{\ln x} = 0$$

- 3. Find
 - (a) $\lim_{x\to 0} f(x) = 7$
 - (b) $\lim_{x\to 2} f(x) \not\equiv$
 - (c) $\lim_{x\to 2+} f(x) = 2$
 - (d) $\lim_{x\to 2-} f(x)3$
 - (e) $\lim_{x\to 4} f(x) = 8$



- 4. Find
 - (a) $\lim_{x\to 1^-} f(x) + g(x) = 8$ (b) $\lim_{x\to 1^+} f(x) + 2g(x) = 6$

 - (c) $\lim_{x\to 1^-} f(x)g(x) = 15$
- (1,4)
- 5. Find a function with the following properties (just sketch a graph). Both conditions must be valid simultaneously.
 - (a) $\lim_{x \to \infty} f(x) = -\infty$

$$\lim_{x \to -\infty} f(x) = -\infty$$

Solution: $-x^2$

(b) $\lim_{x \to \infty} f(x) = 1$

$$\lim_{x \to -\infty} f(x) = \infty$$

Solution: $1 + e^{-x}$

(c) $\lim_{x \to \infty} f(x) = 2$

$$\lim_{x \to -1} f(x) = \infty$$

Solution: $2 + \frac{1}{(x+1)^2}$

6. Find a function (just sketch a graph), which is continuous on $\mathbb{R} \setminus \{5\}$.

Solution: $\frac{1}{x-5}$

7. Find a function (just sketch a graph), which is increasing, but not continuous on (whole) interval [0, 5].

Solution: x + |x|

8.

False Let f be function, such that f is continuous on [0, 10], f(0) = 0, f(10) = 100. Then f is nonnegative on [0, 10].

False Let P(x) and Q(x) be polynomials (hence they are continuous). Then P(x)/Q(x) is also continuous.

9. For which x is this function continuous?

$$f(x) = \begin{cases} \sin x & x \in (-\infty, -1] \\ -x^2 & x \in (-1, 0) \\ 1 & x = 0 \\ \sqrt{x} & x \in (0, 4) \\ 6 - x & x \in [4, \infty) \end{cases}$$
A $x = -1$
B $x = 0$
B $x = 4$
E $x = \infty$

C, D

10. Find $k \in \mathbb{R}$, such that the following functions are continuous on \mathbb{R} .

(a)
$$f(x) = \begin{cases} kx, & x < 1, \\ x+3, & 1 \le x \end{cases}$$
 (b)
$$f(x) = \begin{cases} k\cos x, & x < \pi, \\ 3\pi - x, & \pi \le x \end{cases}$$
 (c)
$$f(x) = \begin{cases} x+k, & x < 5, \\ kx, & 5 \le x \end{cases}$$

- 11. Which of the following functions are continuous (consider f(t), where t denotes time):
 - (a) Amount of gas in Your car tank on the way from Lisbon to Helsinki.
 - (b) The age of the oldest person in Czech Republic.
 - (c) Number of students visiting lectures during semester.

12. Bacteria population (in thousands) in Your Petri dish can be described with the following function (time t is in months):

$$P(t) = \begin{cases} e^{kt}, 0 \le t \le 12, \\ 100, t > 12. \end{cases}$$

(a) How many bacteria do You have at the beginning?

Solution: 1 000

- (b) What can You tell about k? $k = \frac{\ln 100}{12}$
- (c) Can You describe the situation with Your own words? How is the population changing? Why?

Source for almost all today's excercises: Calculus: Single and Multivariable, Hughes-Hallet