6th lesson

https://www2.karlin.mff.cuni.cz/~kuncova/en/teachMat1.php kunck6am@natur.cuni.cz

Exercises

1. (a)

$$
\lim _{n \rightarrow \infty} \frac{(-2)^{n}+3^{n}}{(-2)^{n+1}+3^{n+1}}
$$

Řešení: Let us factor out the greatest term:

$$
\lim \frac{(-2)^{n}+3^{n}}{(-2)^{n+1}+3^{n+1}}=\lim \frac{3^{n}}{3^{n+1}} \cdot \lim \frac{\left(\frac{-2}{3}\right)^{n}+1}{\left(\frac{-2}{3}\right)^{n+1}+1}=\frac{1}{3} \cdot \frac{0+1}{0+1}=\frac{1}{3} .
$$

(b)

$$
\lim _{n \rightarrow+\infty} \frac{1^{n}+2^{n}+3^{n}+4^{n}+5^{n}}{5,0001^{n}}
$$

Řešení: We can factor out $5,0001^{n}$ or just split into five fractions and apply the Arithemics limit theorem:

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{1^{n}+2^{n}+3^{n}+4^{n}+5^{n}}{5,0001^{n}}=\lim _{n \rightarrow+\infty}\left(\frac{1}{5,0001}\right)^{n}+\left(\frac{2}{5,0001}\right)^{n}+ \\
& +\left(\frac{3}{5,0001}\right)^{n}+\left(\frac{4}{5,0001}\right)^{n}+\left(\frac{5}{5,0001}\right)^{n}=0+0+0+0+0=0
\end{aligned}
$$

(c)

$$
\lim _{n \rightarrow \infty} \frac{3^{n}+n^{5}+(n+1)!}{n\left(n^{6}+n!\right)}
$$

Řešení: The greatest term is factorial, hence:

$$
\begin{array}{r}
\lim _{n \rightarrow+\infty} \frac{3^{n}+n^{5}+(n+1)!}{n\left(n^{6}+n!\right)}=\lim _{n \rightarrow+\infty} \frac{(n+1)!}{n(n!)} \frac{\frac{3^{n}}{n!}+\frac{n^{5}}{n!}+1}{\frac{n^{6}}{n!}+1}=\lim _{n \rightarrow+\infty} \frac{n+1}{n} \frac{\frac{3^{n}}{n!}+\frac{n^{5}}{n!}+1}{\frac{n^{6}}{n!}+1} \\
=1 \cdot \frac{0+0+1}{0+1}=1
\end{array}
$$

(d)

$$
\lim _{n \rightarrow \infty} \frac{\ln n+n^{3}+\frac{1}{n}+e^{n}+5^{n}}{\ln _{10} n+n^{4}+5^{n}+n^{3}+4^{n}}
$$

Řešení: We factor out 5^{n} :

$$
\lim _{n \rightarrow \infty} \frac{5^{n}}{5^{n}} \frac{\frac{\ln n}{5^{n}}+\frac{n^{3}}{5^{n}}+\frac{\frac{1}{n}}{5^{n}}+\frac{e^{n}}{5^{n}}+\frac{5^{n}}{5^{n}}}{\frac{\ln _{10} n}{5^{n}}+\frac{n^{4}}{5^{n}}+\frac{5^{n}}{5^{n}}+\frac{n^{3}}{5^{n}}+\frac{4^{n}}{5^{n}}} \stackrel{V O A L}{=} \lim _{n \rightarrow \infty} \frac{0+0+0+0+1}{0+0+1+0+0}=1
$$

(e)

$$
\lim _{n \rightarrow \infty} \frac{(n+2)!+(n+1)!}{(n+2)!-(n+1)!}
$$

Řešení: Let us factor out $(n+1)!$:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{(n+2)!+(n+1)!}{(n+2)!-(n+1)!}=\lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)!} \cdot \frac{(n+2)+1}{n+2-1}=\lim _{n \rightarrow \infty} \frac{n+3}{n+1}= \\
& \lim _{n \rightarrow \infty} \frac{n}{n} \cdot \frac{1+3 / n}{1+1 / n} \stackrel{V O A L}{=} 1
\end{aligned}
$$

2. Find infimum, minimum, maximum and supremum in \mathbb{R} :
(a)
\mathbb{N}
(b)

$$
(0 ; 2]
$$

(c)

$$
(0 ; 1) \cap \mathbb{Q}
$$

(d)

$$
\{x \in \mathbb{Z} ; x \geq-\sqrt{6}\}
$$

(e)

$$
\left\{(-1)^{n} \sqrt{n} ; n \in \mathbb{N}\right\}
$$

(f)
(g)

$$
\{\arctan x ; x \in \mathbb{R}\}
$$

$$
\left\{1-\frac{1}{n} ; n \in \mathbb{N}\right\}
$$

(h)

$$
\left\{\frac{1+(-1)^{n}}{2} ; n \in \mathbb{N}\right\}
$$

(i)

$$
\left\{\cos \frac{n \pi}{2} ; n \in \mathbb{N}\right\}
$$

(j)

$$
\left\{(-1)^{n} n ; n \in \mathbb{N}\right\}
$$

	inf	min	max	sup
a	1	1	\#	∞
b	0	\#	2	2
c	0	\nexists	\ddagger	1
d	-2	-2	\#	∞
e	$-\infty$	\#	\#	∞
f	$-\frac{\pi}{2}$	\#	\#	$\frac{\pi}{2}$
g	0	0	\#	1
h	0	0	1	1
i	-1	-1	1	1
j	$-\infty$	\nexists	\#	∞

3. Find limsup and liminf of the following sequences. Can we find also limits?
(a)

$$
x_{n}=1-\frac{1}{n}
$$

Solution: Since the sequence is convergent, we have.

$$
\limsup x_{n}=\liminf x_{n}=\lim x_{n}=1
$$

(b)

$$
x_{n}=(-1)^{n-1}\left(2+\frac{3}{n}\right)
$$

Solution: Let us consider even and odd subsequence: $x_{2 n}=\left(2+\frac{3}{n}\right)$ a $x_{2 n+1}=-\left(2+\frac{3}{n}\right)$. Hence

$$
\limsup x_{n}=2, \quad \liminf x_{n}=-2
$$

(c)

$$
x_{n}=\frac{(-1)^{n}}{n}+\frac{1+(-1)^{n}}{2}
$$

Solution: Let us consider even and odd subsequence: $x_{2 n}=\frac{1}{n}+1$ a $x_{2 n+1}=$ $\frac{1}{n}$. Hence

$$
\limsup x_{n}=1, \quad \liminf x_{n}=0
$$

(d)

$$
x_{n}=1+\frac{n}{n+1} \cos \frac{n \pi}{2}
$$

Solution: The sequence $\cos \frac{n \pi}{2}$ attains only values $0,-1,0,1$. All odd terms are zero, even terms are:

$$
x_{2 n}=1-\frac{2 n}{2 n+1} \rightarrow 0, \quad x_{4 n}=1+\frac{4 n}{4 n+1} \rightarrow 2 .
$$

Hence

$$
\limsup x_{n}=2, \quad \liminf x_{n}=0
$$

(e)

$$
x_{n}=1+2(-1)^{n+1}+3 \cdot(-1)^{\frac{n(n-1)}{2}}
$$

Solution: The term $n(n-1) / 2$ is even for $n=4 k$ and $n=4 k+1$, for $n=4 k+2$ and $n=4 k+3$ it is odd. Hence we can find four subsequences:
$x_{4 n}=1+2+3=6, \quad x_{4 n+1}=1-2+3=2, \quad x_{4 n+2}=1+2-3=0, \quad x_{4 n+3}=1-2-3=-4$.
Hence $\limsup x_{n}=\sup x_{n}=6$ and $\lim \inf x_{n}=\inf x_{n}=-4$.
(f)

$$
x_{n}=(-1)^{n} n
$$

Solution: Odd and even subsequences $x_{2 n}=2 n$ and $x_{2 n+1}=-2 n-1$ goes to $\pm \infty$. We then have

$$
\limsup x_{n}=\sup x_{n}=+\infty, \quad \lim \inf x_{n}=\inf x_{n}=-\infty
$$

(g)

$$
x_{n}=-n\left[2+(-1)^{n}\right]
$$

Solution: The sequence is convergent, because $-n\left[2+(-1)^{n}\right] \leq-n \rightarrow-\infty$. Therefore we obtain

$$
\limsup x_{n}=\liminf x_{n}=\inf x_{n}=-\infty .
$$

